
Durga et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 55

AN EFFICIENT DISTRIBUTED SYSTEM

FOR PRIVATE INFORMATION

RETRIEVAL IN PCLOUD
1Durga.R and 2Nithya.L.M

1 III-MTECH, Information And Technology (part-time),
SNS College of Technology, Anna University,

Coimbatore - 35, Tamil Nadu
2Professor and Head, Department of Information Technology

SNS College of Technology, Anna University, Coimbatore -35, Tamil Nadu
Email :- sdurgasns@gmail.com, lmnithya@gmail.com

Abstract:- The peer-to-peer computing has attracted
much attention as a new distributed computing
paradigm. pCloud organizes the peers in overlay
network, partitions the database into disjoint data
segments, and disseminates the individual segments
to the peers. To distribute the database to a number of
cooperative peers, and leverage their computational
resources to process cPIR queries in parallel by using
the stripping technique. pCloud reduces the query
response time compared to the traditional
client/server model, and has a very low
communication overhead Additionally it scales well
with an increasing number of peers, achieving a
linear speedup

Keywords: Private Information Retrieval (PIR),
Update with continuous Timestamp (UCT),
pCloud,P2P.

I. INTRODUCTION

Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released
with minimal management effort or service provider
interaction. Private cloud (pCloud) infrastructure is
provisioned for exclusive use by a single organization
comprising multiple consumers (e.g., business units).
It may be owned, managed, and operated by the

organization, a third party, or some combination of
them, and it may exist on or off premises.

Private information retrieval (PIR) [9] is the
task of fetching an item from a database server There
are two main types of PIR: information-theoretic and
computational. In information-theoretic PIR, the
server is unable to determine any information about
your query even with unbounded computing power.
In computational PIR (CPIR), the privacy of the
query be guaranteed

Peer-to-Peer (P2P) network overlays[4]
because they provide a good substrate for creating
large-scale data sharing, content distribution, and
application-level multicast applications. These P2P
overlay networks attempt to provide a long list of
features, such as: selection of nearby peers, redundant
storage, efficient search/location of data items, data
permanence or guarantees, hierarchical naming, trust
and authentication, and anonymity. P2P networks
potentially offer an efficient routing architecture that
is self-organizing, massively scalable, and robust in
the wide-area, combining fault tolerance, load
balancing, and explicit notion of locality.

II.EXISTING SYSTEM

There is an n-bit Database server. A PIR
[10] allows a client to retrieve a bit, from the server.
PIR can also retrieve blocks of data (e.g., an -bit
record) by viewing the database as n elements, each
with size bits. The peers hold the disjoint partitions of

Durga et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 56

the database DB and ready to answer queries upon
request. The database server holds the most current
view of the entire DB. The inclusion of the server is
necessary for the following reasons: (i) the PIR query
need to process every bit of the database. Suppose
that the client does not receive replies for all the
different database partitions. This suggests that at
least one partition has not been processed, because
either it did not exist in the network, or the node that
accommodated it failed. (ii) The server is the only
entity that receives the data updates and, therefore,
holds the most up-to-date DB instance at all times.
Note that, although a centralized entity exists, query
processing inside the P2P network is completely
independent (e.g., the server does not have a guide
for query propagation)

The challenge lies in how to partition and
distribute DB to the peers, so that query processing
experiences a linear performance speed-up with
respect to the number of partitions. Towards this end,
pCloud exploits the features of the striping technique
that is simply subdivide DB into k partitions, and
disseminates them among the peers; the query
execution cost will be k times lower, compared to the
traditional client/server model [7]. The above
statement is true, provided that every partition is
accommodated by at least one peer, and is processed
during the query execution [3]. The query processing
in pCloud involves two distinct phases: query and
result propagation.

Query flooding:

The client needs to retrieve every unique
partition that resides inside the network, so flooding
protocol [1] is used. The server distributes the
database among the cooperative peers. The database
is distributed randomly so every peer will not get all
databases. If any peer requires particular information
which it doesn’t have then, it may arise a query. That
query is passed to all neighboring peers.

Result propagation

The query is passed to all the neighboring
peers in the pCloud. A path is followed during query
generation [2]. The peer which has the required
information replies and sends the information
through the path.

If same query is arise more than threshold
time, then data replication will take place and the
peer which has the information will replicate it to all
the peers in that path. In the peer which had the

required information sends it through the path then
the peer who queried for that particular information
will extract it from the nearby peers

 DISADVANTAGE:

When the server receives a number of updates,
it modifies the corresponding pages, and produces a new
set of signatures that incorporate the current timestamp.
Subsequently, it broadcasts (using the flooding
mechanism of query propagation) a list with the
outdated (i.e., affected) partitions to all the peers. If a
peer receiving the server’s message is the owner of an
obsolete partition, it 1) suspends query processing (i.e.,
it does not return any results), and 2) contacts the server
to receive the updates. To save communication
resources, the server does not transmit the entire
partition, but only sends the blocks that are affected by
the updates. If updates are very frequent the client has to
request many partitions from the server, which greatly
increases the query response time

III.PROPOSED SYSTEM

Continuous Timestamp based Replication
Management (CTRM), which deals with the efficient
storage, retrieval and updating of replicas. To
perform updates on replicas, a new protocol is
proposed that stamps the updates with timestamps
which are generated in a distributed fashion using
groups of peer. The updates’ timestamps are not only
monotonically increasing but also continuous, i.e.
without gap. The property of monotonically
increasing allows CTRM to determine a total order
on updates and to deal with concurrent updates

After each update on a data, the
corresponding patch is sent to the group where a
monotonically increasing timestamp is generated by
one of the members, i.e. the responsible of the group.
Then the patch and its timestamp are published to the
members of the group using an update protocol,
called UCT protocol [5]. To retrieve an up-to-date
replica of a data, the request is sent to the responsible
of the data’s replica holder group. The responsible
peer sends the data and the latest generated
timestamp to the group members, one by one, and the
first member that has received all patches returns its
replica to the requester. To verify whether all patches
are received, replica holders check the two following
conditions, called up-to-date conditions: 1) the
timestamps of the received patches are continuous; 2)
the latest generated timestamp is equal to the
timestamp of the latest patch received by the replica
holder. The above up-to-date conditions are also

Durga et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 57

verified periodically by each member of the group. If
the conditions do not hold, the member updates its
replica by retrieving the missed patches and their
corresponding timestamps from the responsible of the
group or other members that hold them. The UCT
protocol proceeds as follows:

Update request:

In this phase, the update requester p0,
obtains the address of the responsible of the replica
holder group p1, using the lookup service, and sends
to it an update request Then, p0 waits for a commit
message from p1. It also uses a failure detector and
monitors p1. The wait time is limited by a default
value, e.g. by using a timer. If p0 receives the
terminate message from p1, then it commits the
operation. If the timer timeouts or the failure detector
reports a fault of p1, then p0 checks whether the
update has been done or not, i.e. by checking the data
at replica holders. If the answer is positive, then the
operation is committed, else it is aborted.

Timestamp generation and replica publication:

After receiving the update request, p1

generates a timestamp for k, Then, it sends (k) to the
replica holders, i.e. the members of its group, and
asks them to return an acknowledgement. When a
replica holder receives, it returns the
acknowledgement to p1 and maintains the data in a
temporary memory on disk

Update confirmation:

In this phase, p1 sends the commit message
to the replica holders. When a replica holder receives
the commit message. In the case of concurrent
updates, e.g. two or more peers want to update a data
d at the same time. In this case, the concurrent peers
send their request to the responsible of the group, say
p1. The peer p1 determines an order for the requests,
e.g. depending on their arrival time or on the distance
of requesters if the requests arrive at the same time.
Then it processes the requests one by one according
their order, i.e. it commits or aborts one request and
starts the next one.

ADVANTAGES:

1. Concurrent updates make no problem of
inconsistency for replication management

2. It avoids the node failures, thereby increase
the query response time.

IV. RELATED WORK

Most existing P2P systems support data
replication, but usually they do not deal with
concurrent and missed updates.

OceanStore [14] is a data management
system designed to provide a highly available storage
utility on top of P2P systems. It allows concurrent
updates on replicated data, and relies on
reconciliation to assure data consistency. The
reconciliation is done by a set of powerful servers
using a consensus algorithm. The servers agree on
which operations to apply, and in what order.
However, in the applications, which we address, the
presence of powerful servers is not guaranteed.

The BRICKS project [15] provides high data
availability in DHTs through replication. For
replicating a data, BRICKS stores the data in the
DHT using multiple keys, which are correlated to the
data key, e.g. k. There is a function that given k,
determines its correlated keys. To be able to retrieve
an up-to-date replica, BRICKS uses versioning. Each
replica has a version number which is increased after
each update. However, because of concurrent
updates, it may happen that two different replicas
have the same version number, thus making it
impossible to decide which one is the latest replica.

In [13], an update management service,
called UMS, was proposed to support data currency
in DHTs, i.e. the ability to return an up-to-date
replica. However, UMS does not guarantee
continuous time stamping which is a main
requirement for collaborative applications which
need to reconcile replica updates. UMS uses a set of
m hash functions and replicates randomly the data at
m different peers, and this is more expensive than the
groups which we use in CTRM, particularly in terms
of communication cost

V. RESULTS AND DISCUSSION

When compared to the traditional
client/server architecture, pCloud drops the query
response time by orders of magnitude, and its
performance improves linearly with the number of
peers. Finally, it is resilient to node failures and can
handle updates.

Durga et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 58

Figure 5.1: Comparison of Pcloud with C/S model
for response time

In pCloud, the response time is up to
more than two orders of magnitude smaller than in
CS. The reason is that in CS the server processes all
partitions sequentially, leading to an excessive
computational peers perform the reply generation
algorithm on a very small portion of the database in
parallel.

Figure 5.2: Comparison of Pcloud with C/S model
on varying the database size

The main database server is kept outside the
P2P network. The database is stored at the server.
The database is segmented into t blocks. The server
distributes the database among the cooperative peers.
The database is distributed randomly so every peer
will not get all databases.

If any peer requires particular information
which it doesn’t have then, it may arise a query. That
query is passed to all neighboring peers. A path is
followed during query generation. The peer which
has the required information replies and send the
information through the path. When the peer which
had the required information sends it through the path
then the peer who queried for that particular
information will extract it from the nearby peer.

While any updating done on the server it has
to be replicated on the peer also. So the request from
the peer has to send to the server on the timestamp
generation basis and replica publication. If any
update done, then it will send to the corresponding
peer through the stripping technique.

VI.CONCLUSION AND FUTURE

ENHANCEMENT

The data replication among the peers inside
the cloud takes place. Due to this replication the
searching of information can be achieved in less time.
Instead of accessing the same peer for that particular
information, the peers nearby to the peer which
require information can store the information in it
due to replication. In pCloud, the response time is up
to more than two orders of magnitude smaller than in
CS.

The future enhancement, which deals with
the efficient storage, retrieval and updating of
replicas. The replica holders cannot able to detect the
existence of missed updates they have received.
When it was detected then query response time will
be more efficient in pcloud.

REFERENCES

1. Ratnasamy, S., Francis, P., Handley, M.,
Karp, R., Shenker, S.: (2001) A scalable
content- addressable network. SIGCOMM
Conf., 161-172 [1] Vassilios V.
Dimakopoulos, Member, IEEE, and
Evaggelia Pitoura, Member, IEEE, 2006
“On the Performance of Flooding-Based
Resource Discovery”, IEEE transactions on
parallel and distributed systems, vol. 17, no.
11, November.

2. Dongsheng Li, Jiannong Cao, Senior
Member, (2009).IEEE, Xicheng Lu, and
Keith C.C. Chan,” Efficient Range Query
Processing in Peer-to-Peer Systems” IEEE
transactions on knowledge and data
engineering, vol. 21, no. 1, january

3. Haiying (Helen) Shen, Member, IEEE,
(2010),.IRM: Integrated File Replication
andConsistency Maintenance in P2P
Systems, IEEE transactions on parallel and
distributed systems, vol. 21, no. 1, january

4. Yi Hu, Student Member, IEEE, Laxmi N.
Bhuyan, Fellow, IEEE, and Min Feng, 2005
“maintaining data consistency in structured

Durga et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 59

5. p2p system”, IEEE transactions on parallel
and distributed systems

6. Reza Akbarinia1, Mounir Tlili2, Esther
Pacitti3, Patrick Valduriez4, Alexandre 2005
“continuous time stamping for efficient
replication management in dhtse”, In
ICALP,PP: 41 - 50.

7. Eng Keong Lua, Jon Crowcroft, And
Marcelo Pias, University Of Cambridgeravi
Sharma, Nanyang Technological
UniversitySteven Lim, Microsoft Asia 2005
“a survey and comparison of peer-to-peer
overlay network schemes SECOND
QUARTER, VOLUME 7, NO. 2

8. Iliev.A and Smith S.W (2004), “Private
information storage with logarithm-space
secure hardware”, In Proc. International
InformationSecurity Workshops, PP: 148 -
157.

9. Papadopoulos.S,Bakiras.S, Papadias.D
(2012), ‘pCloud A Distributed System for
Practical PIR’ TDSC,VOLUME:9, ISSUE:
1, PP: 115-127.

10. Goldberg.I (2007), ‘Improving the
Robustness of Private Information
Retrieval’,SP, PP: 131-148.

11. Melchor C.A, Crespin.B, Gaborit.P,
Jolivet.V, Rousseau.P (2008) , ‘High-Speed
Private Information Retrieval Computation
on GPU’ PP: 263-272

12. Melchor C.A, Gaborit.P (2008), ‘A fast
private information retrieval protocol’, ISIT,
PP:1848-1852.

13. Papadopoulos.S,Bakiras.S, Papadias.D
(2012), ‘pCloud A Distributed System for
Practical PIR’ TDSC,VOLUME:9, ISSUE:
1, PP: 115-127.

14. Akbarinia, R., Pacitti, E., Valduriez, P.: Data
Currency in Replicated DHTs.SIGMOD
Conf., 211-222 (2007)

15. Rhea, S.C., Eaton, P., Geels, D.,
Weatherspoon, H., Zhao, B., Kubiatowicz,
J.:Pond: the OceanStore Prototype. USENIX
Conf. on File and Storage Technologies, 1-
14 (2003)

16. Knezevic, P., Wombacher, A., Risse, T.:
Enabling High Data Availability in a DHT.
Proc. of Int. Workshop on Grid and P2P
Computing Impacts on Large Scale
Heterogeneous Distributed Database
Systems, 363-367 (2005)

