
Shina et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 444

A Review of Soft Computing Technique to
Increase the Accuracy of Software Development

Time Estimation
Shina Dhingra, P.S. Mann

Department of Computer Science & Engineering
DAV Institute of Engineering and Technology, Jalandhar, INDIA.

shinadhingra@yahoo.com, psmaan@hotmail.com

Abstract

Software effort estimation is a method to predict the effort required to develop software project. This paper presents a
general overview of software estimation models and techniques. Models can be categorized as Size-Based, Function-
Based, Learning-Based and Expertise-Based. Both Size-based and Function-based models can be termed as Parametric
as they use a function or formula of fixed form for software cost/effort estimation. Each and Every model has its own
strengths and weaknesses. The key factor in choosing an estimation model is the accuracy of its estimates.
Unfortunately, there is no single technique that is best for every situation, and that a careful comparison of the results of
several approaches is most likely to produce realistic estimates.

Keywords —Software development Effort Estimation, Evaluation of prediction model, Artificial Neural Network, Fuzzy Logic

I. INTRODUCTION

To develop a project successfully, it is important for any
organization that the project should be completed within
budget, on time and the project should have requisite quality.
In order to create a successful project, cost estimation is
essential in managing software projects because of the
uncertainty and diversity nature intrinsic in project
development. Estimation is the intelligent anticipation of
quantum of the work that needs to be performed and the
resources required to perform the work in a defined
environment using specific methods [1]. Software cost can be
defined as cost incurred in various resources to develop a
software project. The most important resource to develop
software is man power. Software estimation gives the
approximate calculation of software size, software
development cost and effort, and development schedule for a
particular software project. Software development effort can
be typify as the required human resources necessary for
developing the software project of an estimated size. It is
measured in “person-month” or “person-hours”. Software
development effort estimates are the basis for project bidding,
budgeting and planning. It is all about the future prediction of
the work so that the managers can make decisions that how
long and how many resources are required to complete the
project. The use of erroneous estimation makes the manager’s
decision as a recipe of disaster and looses the control and
execute plan in a wrong direction.
Software estimation involves the determination of one or more
of the following parameters:

 Effort (usually in person-months)

 Project duration (in calendar time)
 Cost (in dollars)

Fig 1: Software effort estimation process
In this paper, we present a fuzzy logic (FL) framework for
effort prediction. The paper is organized as follows. In Section
2, we discuss the eventually development of both algorithmic
and non-algorithmic models; Section 3 presents our soft
computing-based prediction systems. Section 4 concludes
discussions of our various experiments to realize the
framework and points out potential directions for the
upcoming research.

Shina et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 445

II. APPROACHES FOR SOFTWARE EFFORT
ESTIMATION

There are number of estimation methods that have been
developed, from very simple and earliest expert judgment to
the more complex algorithmic modeling, analogy based
methods and some hybrid techniques with soft computing.
The vagueness of the expert judgment makes the estimation a
critical task and motivates the researchers to develop more
efficient methods for effort estimation [2],[3]. There are
several approaches for software cost estimation described in
following section [4].

A. Algorithmic Models

From the study of historical data, costs are analyzed using
mathematical formulae linking costs or inputs with metrics to
produce an estimated output. These metrics are generally
characterized of the target system and the implementation
environment called cost drivers. Different algorithmic forms;
Linear models (Nelson model, 1966), Multiplicative models
(Doty model [Herd and others, 1977] and WalstonFelix,1977),

Analytic model (Halstead model [Halstead, 1977], and
Putnam’s model [Putnam, 197R]), Tabular model (Aron
model [Aron, 1969], Wolverton model [Wolverton, ICl74],
Boeing model [Black and others, 1977]), and Composite
model (RCA PRICES model [Freiman-Park, 1979], Putnam
SLIM model [Putnam-Fitzsimmons, 1979], TR W SCEP
model [Boehm-Wolverton, 1978] and the COCOMO model
[Berry Boehm, 1981]) can be adopted for software cost
estimation [5].

B. Expert Judgment

Expert judgment techniques involve consulting with
software cost estimation expert or a group of experts to use
their experience and understanding of the proposed project to
reach at an estimate of its cost. This method is often used
when estimating the effort needed to change an existing piece
of software. One of the most common methods which work
according to this technique is Delphi [3]. Delphi arranges a
special meeting among the project experts and tries to attain
the true information about the project from their debates.
The problems with this method are also associated:

 This method cannot be quantified.
 It is hard to document the factors used by the experts

or experts-group.
 Expert may be some biased, optimistic, and

pessimistic, even though they have been decreased
by the group consensus.

 The expert judgment method always compliments the
other cost estimating methods such as algorithmic
method.

C. Analogy Based

Analogy is defined as “Inference that if two or more things
agree with one another in some respects, they will probably
agree in others”. In software cost estimation approach a
similar completed project is identified and its actual effort is
used as the basis of the estimate for the new project. It is

infrequently used at the early stages of software development
because of such inherent uncertainty and imprecision
associated with attribute measurement. Analogy-based
reasoning is often used, however, especially in software effort
estimation as a synonym for case based reasoning (CBR), to
describe the typical case-based approach where experience is
retained for future reference.

Analogy follows the general case-based reasoning (CBR)
process. This section provides a general overview of this
process. Aamodt and Plaza describes a 4-stage general CBR
cycle, which consists of [6]:

1. RETRIEVE: The most similar cases or cases to the target
problem.

2. REUSE: The past information and solution to solve the
new problem.

3. REVISE: The proposed solution and to better adapt the
target problem.

4. RETAIN: The parts of current experience in the case-base
for future problem solving.
The main advantages of this method are:

 The estimation is based on actual project
characteristic data.

 The estimator's past experience and knowledge can
be used which is not easy to be quantified.

 The differences between the completed and the
proposed project can be identified and impacts
estimated.

The disadvantages include:
 We have to determine how best to describe the

projects. Which attributes are used having different
influence on software effort?

 We have to determine the similarity and how much
confidence can we place in the analogies.
Uncertainty inherited in software projects makes it
complex.

 Finally, we have to obtain an estimate for the new
project by using known effort values from the
analogous projects.

D. Parkinson Estimation

Parkinson’s Law [Parkinson, 1957] says, "Work expands
to fill the available volume". In some cases, a Parkinson
estimate has turned out to be remarkably accurate. These have
generally been cases in which the estimate left a good deal of
extra time and money to continue adding marginally useful
"bells and whistles" to the software until the budget ran out at
which point the software was declared complete. Parkinson
estimation is not recommended. Besides not being particularly
accurate, it tends to reinforce poor software development
practice.

E. Price to Win

In this approach a figure that appears to be sufficiently low
to win a contract is considered as ‘estimate’ [7]. The price-to-
win technique has won a large number of software contracts
for a large number of software companies. The inevitable

Shina et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 446

result is that the money or schedule runs out before the job is
done, everybody gets mad at each other, a lot of compromises
are made about the software to be delivered, and a lot of
programmers work long hours just trying to keep the Job from
becoming a complete disaster.

F. Top-Down

Top-down approach is normally associated with parametric
model. Top-down estimating method is also called Macro
Model. Using top-down estimating method, an overall cost
estimation for the project is derived from the global properties
of the software project and then the project is partitioned into
various low-level components. The leading method using this
approach is Putnam model. This method is more applicable to
early cost estimation when only global properties are known.
In the early phase of the software development, it is very
useful because there is no detailed information available [8].
The advantages of this method are:

 Does not need detailed information, so can be
applied in early stages.

 All the estimates are done at system level that
focuses on system-level activities such as integration,
documentation, configuration management, etc.

 It is usually faster and easier to implement.

The disadvantages are:
 A revision of estimates makes large changes in

schedule and time as each iteration gives more detail.
 It often does not identify difficult low-level problems

that are likely to raise costs and sometime tends to
overlook low-level components.

 It provides no detailed basis for justifying decisions
or estimates.

G. Bottom-Up

It is also an important method of cost estimation process.
Bottom-up estimation involves breaking the project into its
component tasks and then estimates how much effort will be
required to carry out each task, then combining the results to
generate an estimate of the complete project. It is often
difficult to execute a bottom-up estimate early in the life cycle
process because the necessary information may not be
available. This method also tends to be more time consuming
and may not be practicable when either time or personnel are
limited [9],
The advantages of this model include:

 It can be applied for completely novel project that
has no historical data.

 It permits the software group to handle an estimate in
an almost traditional fashion and to handle estimate
components for which the group has a feel.

 It is more stable because the estimation errors in the
various components have a chance to balance out.

The disadvantages are:

 It makes some assumptions about the characteristics
of the final system because the necessary information
may not available in the early phase.

 It may overlook many of the system-level costs
(integration, configuration management, quality
assurance, etc.) associated with software
development.

 It tends to be more time-consuming.
 It may not be feasible when either time or personnel

are limited.

III. COMPUTATIONAL INTELLIGENCE TECHNIQUES

Computational intelligence is the study of adaptive
mechanisms to allow or facilitate intelligent behavior in
complex and changing environments. As such, computational
intelligence combines artificial neural networks, evolutionary
computing, swarm intelligence and fuzzy systems. Software
cost estimation systems are large complex nonlinear stochastic
systems. Therefore, it is hard to find optimal feature weighting
and project selection in any cost estimation model.
Computational Intelligence provides a possible way to obtain
either optimal or suboptimal solutions. Computational
Intelligence methodologies can be adapted to dynamic
changes in project parameters. Software cost estimation
actions can be taken based on real-time datasets and historical
reasoning. Researchers have conducted a lot of work for
applications of computational intelligence in the field of
software cost estimation [10], [11].

A. Evolutionary Computation (EC)

EC are nature inspired techniques. EC are essentially an
umbrella of techniques that include genetic algorithms(GAs),
genetic programming, evolutionary programming,
evolutionary strategies, differential evolution, and so on. They
reproduce natural processes, such as natural evolution under
the principle of survival of the fittest. Fitness of a population
indicates quality of solution that it represents. Out of the many
performance metrics, MMRE is the de facto standard for
software cost estimation that is mostly used as a fitness
function.

B. Artificial Neural Network (ANN)

The feed forward multi-layer network with back
propagation learning is the most commonly used structure in
the field of software cost estimation. The network contains
neurons arranged in layers with each neuron is connected to
every neuron of the lower layer forming a complete graph.
The cost drivers or project attributes are fed as inputs at the
input layer which propagates across subsequent layers of
processing elements known as neurons and generates effort
estimation in terms of Person-Months (PM) at the output
layer. ANN follows a two-step process. In step 1 threefold
validation is employed for the training of the non-linear
adjustment (ANN). This is followed by predicting stage in

Shina et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 447

step 2. At this stage, a new project is presented to the trained
system. The training process of an ANN is a non-linear and
non-constrained optimization problem, where a search takes
place for a minimum of the error function between the
network output and the desired output. This cost function
traditionally is the mean square error (MSE).

C. Fuzzy Logic

The three main steps to apply fuzzy logic for effort prediction
are:
Step 1: Fuzzification: It converts crisp input to fuzzy
output.
Step 2: Fuzzy Rule Based System: Fuzzy logic systems use
fuzzy IFTHEN rules. Once all crisp input values are fuzzified
into their respective Linguistic values, the fuzzy inference
engine accesses the fuzzy rule base to derive.
Step 3: Defuzzification: It converts fuzzy output into crisp
output.
An adaptive software effort estimation model incorporating
different fuzzy logic system is developed to handle
imprecision and uncertainty in software attributes of
COCOMO-II model. Ahmed’s Type-2 Fuzzy logic System
(FLS) which evaluates the performance of a prediction system
developed using the framework for handling imprecision and
uncertainty when size is provided as a precise but uncertain
input is an another example of fuzzy system software cost
estimation. The prediction system consists of two stages:
nominal effort prediction and EAF (Effort Adjustment Factor)
prediction. The outputs of both the stages are merged
(multiplied) to produce the actual effort.

IV. Conclusions

As none of the methods are satisfactory enough to fit in all
circumstances which are frequent irrespective of
Environments; it necessitates expertise as well as revelation to
combine various techniques if possible and then calibrate [12],
[13]. The approach which the practioners take to condense the
risk of underestimation is to produce estimates using diverse
techniques presented by different experts. Differences
between the estimated efforts can then be reconciled using
statistical analysis techniques [14], [15].Applicability of using
Soft Computing and Machine Learning Techniques to solve
the effort and cost estimation problem for software systems.
Use of artificial neural networks (ANNs), Genetic Algorithms
(GAs), Genetic Programming (GP), Linear Regression (LR)
and Fuzzy-Logic to present a methodology for software cost
estimation .Many hybrid methods have also been investigated
including Neuro-GA, Neuro-fuzzy etc. though there are many
probable advantages from using more than one technique,
there is no way to figure out which techniques to use before
processing data [16].

REFERENCES

[1] M. Chemuturi, “Software Estimation Best Practices, Tools &
Techniques: AComplete Guide for Software
ProjectsEstimator”,availableat:http://books.google.co.in/books?id=IwE
OB2Mfzx0C&pg=PA1&source=gbs_toc_r
&cad=4#v=onepage&q&f=false, 2009.

[2] B. W. Boehm, “Software Engineering Economics”, Prentice-Hall,
EnglewoodCliffs, NJ, USA, 1981.

[3] T. Gruschke, “Empirical Studies of Software Cost Estimation: Training
of EffortEstimation Uncertainty Assessment Skills”, 11th IEEE
International SoftwareMetrics Symposium, IEEE, 2005.

[4] C. C. Kung and J. Y. Su, “Affine Takagi-Sugeno fuzzy modeling
algorithm byFuzzy c-regression models clustering with a novel cluster
validity criterion”, IETControl Theory Appl., pp. 1255 – 1265, 2007.

[5] V. Khatibi, Dayang and N. A. Jawawi, “ Software Cost Estimation
Methods: AReview”, Journal of Emerging Trends in Computing and
Information Sciences,CIS Journal, Vol. 2, no. 1, ISSN 2079-8407,
2011.

[6] N. Sharma1, A. Bajpai and M. R. Litoriya, “A Comparison of Software
CostEstimation Methods: A Survey”, The International Journal of
Computer Scienceand Applications (TIJCSA), Vol.1, no. 3, ISSN –
2278 – 1080, May 2012.

[7] J. Keung, “Software Development Cost Estimation Using Analogy: A
Review”,Australian Software Engineering conference, IEEE, 2009,
DOI:10.1109/ASWEC.2009.32, 1530-0803/09.

[8] B. Hughes and M. Cotterell, “Software Project Management”, Tata
McGraw-Hill, 2006.

[9] N. Sharma1, A. Bajpai and M. R. Litoriya, “A Comparison of Software
CostEstimation Methods: A Survey”, The International Journal of
Computer Scienceand Applications (TIJCSA), Vol.1, no. 3, ISSN –
2278 – 1080, May 2012.

[10] T. R. Benala, S. Dehuri and R. Mall, “Computational Intelligence in
Software CostEstimation: An Emerging Paradigm”, ACM SIGSOFT
Software Engineering NotesPage, Vol. 37, no.3, 2012, DOI:
10.1145/180921.2180932.

[11] J.S. Pahariya, V. Ravi and M. Carr, “Software Cost Estimation using
ComputationalIntelligence Techniques”, World Congress on Nature &
Biologically InspiredComputing(NaBIC 2009)978-1-4244-5612-
3/09/2009 IEEE, 2009.

[12] Qureshi, M. R. J. and S. A. Hussain. A Reusable Software Component-
Based Development Process Model Int. J Advances in Engineering
Software, 39(2): 88-94 (2008).

[13] Software Engineering – Kassem A. Saleh, J .Ross Publishinh, 2009.
[14] Software Engineering (Principles and Practice) – Waman S Jawadekar,

TMH, 2004.
[15] Roger, S. P. Software Engineering: A Practitioner’s Approach. pp 722-

.742 5th edi. McGraw-Hill (2000).
[16] Mrinal Kanti Ghose, Roheet Bhatnagar and Vandana Bhattacharjee.

“Comparing Some Neural Network Models forSoftware Development
Effort Prediction”, IEEE 2011.

[17] H. Mittal and P. Bhatia, “Optimization criteria for effort estimation
using fuzzy technique,” CLEI ELECTRONIC JOURNAL, vol. 10, no.
1, pp. 1–11, 2007.

[18] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specification, IEEE Std. 802.11, 1997.

