
Prakash et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 348

Double Guard: Detecting SQL Injection
Attack in Web Applications

R.Prakash
PG Scholar, Department of IT,
SNS college of Technology,
Coimbatore.
raman.prakash1@gmail.com

M.Suguna
Associative professor,
Department of IT, SNS College of
Technology, coimbatore
suguna.marappam@gmail.com

Dr.D.Sharmila
Professor & Head EIE

Department, Bannari Amman
Institute of technology,
Sathyamangalam,
sharmiramesh@reddiffmail.c
om

Abstract: Internet services and its applications have
become an inextricable part of routine life,
Establishing communication and the organizes
personnel information from any part of the world
web service application are increased day by day .it
provides more flexibility and data complexity , web
services have a multitier design and it follows to run
the front end logic and data are stored in file server
or database.

Intruder can attack the server and front end by using
sql query based attacks, SQL injection attack is the
most severe thread in application and it has many
types, By these attacks attacker can modify and delete
most vital information after retrieve their needful
information. To provide double guard prevention, it’s
a newly high automated approach to put off Sql
injection attack based on the concept of novel idea of
positive tainting and syntax aware evaluation. Here
applied the Web Application Sql injection Preventer
(WASP) tool technique which able to stop all sql
injection attack and never generate false positive.
Keywords: Sql injection, Novel idea Approach,
Positive Tainting

I.INTRODUCTION

WEB applications are used by the Internet
with help of using several acquiescent Web
browser that runs on every operating system and
structural design. They have suit ever-present due
to the expediency, litheness, accessibility, and
interoperability that they have provided. Web
applications interconnect with databases that have
more vital information such as employee names,
position, salary, employee id number, and so on.
Web sites erect SQL queries to contact these
databases supported, in division, on user-provided
input. The goal is that Web applications will bound
the variety of queries that can be produced to a
secure breaking up of all possible queries, in spite
of what input users give. However, insufficient
input legalization can allow attackers to expand
inclusive contact to such databases. One approach
in which this occurs that attackers can present input
strings that hold particularly prearranged database
commands. When the Web application put up a

query by utilizing these strings and proposes the
query to its essential database, the attacker’s
entrenched commands are accomplished by the
database and the attack thrives.

Fig 1: web architecture

The outcomes of these attacks are
habitually unsuccessful and can range from
revealing of perceptive data (for example,
employers details) to the demolition of database
information. In this paper, we propose a new vastly
automated approach for dynamic detection and
prevention of SQLI As. naturally, our method
works by discovering “assurance” strings in an
application and permitting merely these trusted
strings to be utilized to make the semantically
significant parts of a SQL query such as keywords
or operators.

WASP tool is the important one of the
prototype tools, it is implemented in the java and it
contains two model and library. It performs well
and gives more security to the web applications.

II.SQL ATTACK

Sql attack is the most important attacks and its has
variety of attacks each one has done some different
function, these attacks are given privilege
escalation attack, hijack attack, injection attack,
direct db attack, perform vulnerability, weak audit
and Denial of service. One example of sql attack

Prakash et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 349

Fig 2 :Direct DB Attack

This diagram explain about direct db attack it is
straightly vulnerable the database and collapse the
original data. Here more attention given to the
injection attack because it has many types of
attacks .

III.SQL INJECTION ATTACK

Sql injection attack is a one of the attack of sql
attack, sql injection attack mean inject the
malicious command with sql queries which can
performed in a different way. Attackers give input
in to application that moves to the database.
Malicious command is integrated with sql query
into the front end and accepts as a valid input,
which is granting permission to access the
database. Finally the databases carry out
application command with the construed data and
generate several result such as database sleaze,
record deletion or operating system compromise

Example of injection attack

Fig 3 : normal query

Fig 4: Inject malformed query and attacked db

Above these figures are describes the injection
basic attack and shows how to attack the database
and mentioned how does it work.

IV.TYPES OF SQL INJECTION ATTACK
Sql injection attack has lots of types, these are
poorly filtered strings, incorrect type handling,

tautologies, union query, illegal /logical incorrect
query, piggy backed queries, malformed encoding.

A) POORLY FILTERED STRINGS

This query call is used to select the password from
the users , this sql injections pedestal on poorly
filtered strings are sourced by user key that is not
cleaned for break out typescript. This proceeds that
a user be able to enter a key variable that may be
accepted on as an SQL proclamation, ensuing in
database input manipulation by the end user.

$pass = $_GET['pass'];$password =
mysql_query ("SELECT password FROM
users WHERE password = '". $pass . "';");

it is most helpful to achieve the sql operation that
can be explained above the format and bellow the
query also indicated

SELECT password FROM users WHERE
password = '' OR 1 = 1 /*

B) INCORRECT TYPES HANDLING

This types of sql injection attack happen while
giving input not ensured the constraints type. For
an example Id field is a numeric, but here filtering
is not placed to check whether given input is
numeric or not, numeric field only accept the
number.

(is_numeric ($_GET['id'])) ? $id =
$_GET['id'] : $id = 1;$news=
mysql_query("SELECT * FROM `news`
WHERE `id` = $id ORDER BY `id`
DESC LIMIT 0,3");

C) TAUTOLOGIES

The main intention of tautologies is to inject
vulnerable code in the provisional statements, these
conditional always execute to true. This kinds of
attack mainly depend on using query result in
inside of application. Bypass authentication and
extracting data most commonly used. In this
method an invader utilize a susceptible input field
that query’s is utilized in the WHERE conditional.

” for entering input data only taken in the
particular field other fields are irrelevant.
The Example : An invader given “ ’ or
1=1 - resulting query is:
SELECT accounts FROM users WHERE
login=’’ or 1=1 -- AND pass=’’ AND
pin=

This provisional logic is enhanced the database
inspects every row in the table. If the restrictive
statements signify a tautology, the database
equivalent and revisits all of the rows in the table

Prakash et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 350

as went up against to bout only one Row, as it
would usually act in the deficiency of injection.

D) ILLEGAL/LOGICALL INCORRECT
QUERIES

This type of attack to allow an attacker to gain the
significant details about the pattern and formation
of the back-end database in the internet
applications. This attack has been considered
As a preliminary step to gaining details for variety
of attacks, by this type of attack, vulnerability is
influenced and server applications return the error
page.

This type attacker main aim is to discover
vulnerable parameter, extracting data. When an
attacker attempt to infuse statements that affect the
syntax structure, this type of fault can reduce data
of the convinced column or expand the data.
Reasonable error often discloses the name of table
and column are affected by the error.

E) PIGGY BACKED QUERIES

it is an another one important type of sql injection
attack, this attack intention is adding or modifying
and extracting the data, this method an attacker can
infuse the extra code with original queries. Here an
attacker not changed anything in the original query,
as an alternatively, attackers are including a new
query with original after that piggy backed on the
permanent query.

Query is normally executed that is the first aim,
which query is the additionally infused query and it
is very harmful, if attack is successful, can inject
various type of sql command.

For an example:
SELECT

accounts FROM users WHERE
login=’doe’ AND
pass=’’; drop table users -- ’ AND
pin=123

This sql rule is explained the piggy backed queries
and attack of the announcement.

F) MALFORMED QUERIES

Union queries and previous queries permit
attackers carry out precise queries or execute exact
instructions on a database, but need a few former
understanding of the database representation,
which is regularly unidentified. Malformed queries
let for conquering this trouble by captivating
benefit of exceedingly vivid fault messages that are
produced by the catalog when a malformed query
is redundant. When these communications are

straightly go backed to the user of the Web
submission, as a substitute of being registered for
repaired by developers, invaders can craft use of
the restoring information to discover susceptible
parameters and conclude the plan of the primary
database. Invaders utilize this condition by infusing
SQL check or waste input that basis the query to
enclose syntax errors, type variances, or reasonable
errors. regarding as our example, an assailant may
perhaps endeavor causing a type disparity error by
introducing the pursuing text into the pin input
field:

Select acct from users where login=’’ and
pin=convert(int,
Select top 1 name from sysobject where
xtype=’u’

The end resulting query causing by the Web
application.

V.SQLIAPREVENTION ECHNIQUES

WASP: To appraise our approach, we enlarged a
sample tool called WASP (Web Application SQL-
injection Preventer). In this method using two
concept of syntax aware evaluation and Positive
tainting , these concept mostly supported to
prevent the attack of sql injection, here we discuss
about both techniques detail.

POSITIVE TAINTING: Positive tainting vary
from conventional tainting (after this, negative
tainting) for the reason that it is supported on the
recognition, scratching, and tracking of hoped,
fairly than untrusted, data. This theoretical
disparity has important suggestions for the
usefulness of our approach, here that it assists
tackle problems caused by incompleteness in the
classification of appropriate data to be noticeable.
imperfectness, which is one of the main disputes
when applying a safety method based on dynamic
tainting, has extremely dissimilar consequences in
negative and positive tainting. In negative tainting,
deficient guide to trusting data that be supposed to
not be trusted and, finally, to false negatives.
Incompleteness may consequently depart the
application susceptible to assaults and can be
incredibly hard to detect, in positive tainting,
imperfectness may direct to false positives, but it
would not at all result in an SQLIA evading
detection. furthermore, as clarified in the
subsequent, the false positives engendered by our
method , if some are possibly to be discovered and
simply abolished early throughout prerelease
testing. Positive tainting utilized a white-list, fairly
than a black-list

SYNTAX-AWARE EVALUATION: Aside from
make surely that taint markings are accurately
formed and maintained through execution, our
technique should be capable to use the taint

Prakash et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 351

markings to discriminate legal from malicious
queries. merely forbidding the utilize of untrusted
data in SQL commands is not a feasible
Solution since it would pennant any query that
holds user input as an SQLIA, leading to lots of
false positives. To address this deficiency,
researchers have introduced the perception of
declassification, which allows the utilize of tainted
input as long as it has been processed by a
sanitizing function. (A sanitizing operation is
naturally filters that execute operations such as
normal expression matching or substring
replacement.) The plan of declassification is stand
on the statement that sanitizing operations are able
to remove or neutralize harmful parts of the input
and make the data safe.
Syntax-aware evaluation does not rely on some
(probably unsafe) suppositions regarding the
successfulness of sanitizing operations used by
developers. It also permits for the utilize of
untrusted input data in a SQL query as long as the
utilize of such data does not root an SQLIA.

Fig 5 ; high level approach overview tools

Fig. explains the high-level structural design of
WASP. As this shape illustrates, WASP consist of
a stored (MetaStrings) and two interior part (
STRING INITIALIZER AND NSTRUMENTER
and STRING CHECKER). The MetaStrings
libraries afford serviceable for allocating trust
markings to strings and accurately spreading the
markings at dynamic. component STRING
INITIALIZER AND INSTRUMENTER
instruments Web applications to facilitate the
utilize of the MetaStrings library

VI.RESULT
Here we see many types of injection attack and
retrieve the data from the database, according to the
attack the needful information can get from the
database by using Sql query. These attacks are
given bellow
This diagram explain about the login user, here we
have two type of user such as administrator and
legitimate user, sometimes attacker can enter as a
legal user and can theft the data from the database

after retrieving they delete the vital information ,
these attacks are totally damaged the back end
database, they enter the front end and attack the
back end data

Fig 6: Attacker enter the front end

Fig 7: Attacker Retrieve Data from backend database

Both fig 6 &7 are shown the front and back end
attack and describe about the attacks .

Wasp technique prevent the attack from the
attacker and gives the protection to the web pages
that given bellow the fig

Fig 8 : Wasp technique

By this method any attacker attempt to enter it can
detect and protect from the attack.

VII.CONCLUSION

This paper present a narrated extremely automated
move toward for guarding Web applications from
SQLIAs. Our technique consists of 1)discovering
the marking data that is coming from trusted
source. 2)Ttrack trusted data at runtime by using
dynamic tainting technique , and 3) only allowing
trusted data to form the semantically significant

Prakash et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 352

parts of queries such as SQL keywords and
operators. Unlike earlier methods based on
dynamic tainting, but our approach is based on
positive tainting, which clearly identifies trusted
(rather than untrusted) data in a program. By this
method, we remove the problem of false negatives
that may possible result from the imperfect
detection of all untrusted data sources. False
positives, even though probable in some cases, can
classically be easily removing through testing. Our
method also afford realistic advantages over the
lots of existing practices whose application
involves customized and composite runtime
environments

REFERENCE

1. Toward Automated Detection of Logic
Vulnerabilities in Web Applications V. Felmetsger,
L. Cavedon, C. Kruegel, and G. Vigna, Proc. Usenix
security symp 2010

2. Anomaly Detection of Web-Based Attacks .C.
Kruegel and G. Vigna Proc. 10th ACM Conf.
Computer and Comm. Security (CCS ’03), Oct. 2003

3. Database Intrusion Detection Using Weighted
Sequence Mining. A. Srivastava, S. Sural, and A.K.
MajumdarJ. Computers.vol. 1,no. 4, pp. 8-17, 2006

4. A novel method for SQL injection attack detection
based on removing SQL query attribute
values,Inyong Lee, Soonki Jeong, Sangsoo Yeo,
Jongsub Moon,29 January 2011

5. WASP: Protecting Web Applications Using Positive
Tainting and Syntax-Aware Evaluation, William G.J.
Halfond, Alessandro Orso, OL. 34, NO. 1,
JANUARY/FEBRUARY 2008

6. A Classification of SQL Injection Attacksand
Countermeasures,William G.J. Halfond, Jeremy
Viegas, and Alessandro OrsoCollege of Computing
Georgia Institute of
Technology{whalfond|jeremyv|orso}@cc.gatech.edu

7. DoubleGuard: Detecting Intrusions in Multitier Web
Applications, Meixing Le, Angelos Stavrou,Member,
IEEE, and Brent ByungHoon Kang, 8.Member,
VOL. 9, NO. 4, JULY/AUGUST 2012

8 . .C. Anley. Advanced SQL Injection In SQL Server
Applications.White paper, Next Generation Security
Software Ltd., 2002.

9 E. M. Fayo. Advanced SQL Injection in Oracle
Databases. Technical report, Argeniss Information
Security, Black Hat Briefings, Black Hat USA, 2005.

10 P. Finnigan. SQL Injection and Oracle - Parts 1 & 2.
Technical Report, Security Focus, November 2002.
http://securityfocus.com/infocus/1644
http://securityfocus.com/infocus/1646.

11 T. O. Foundation. Top Ten Most Critical Web
Application Vulnerabilities, 2005. http:
//www.owasp.org/documentation/topten.html.

12 C. Gould, Z. Su, and P. Devanbu. JDBC Checker: A Static
Analysis Tool for SQL/JDBC Applications. In
Proceedings of the 26th International Conference on
Software Engineering (ICSE 04) – Formal Demos, pages
697–698, 2004.

13 C. Gould, Z. Su, and P. Devanbu. Static Checking of
Dynamically Generated Queries in Database Applications.
In Proceedings of the 26th International Conference on
Software Engineering (ICSE 04), pages 645–654, 2004.

1 4 N. W. Group. RFC 2616 – Hypertext Transfer Protocol –
HTTP/1.1 Request for comments, The Internet Society,
1999.

15 V. Haldar, D. Chandra, and M. Franz. Dynamic Taint
Propagation for Java. In Proceedings 21st Annual Computer
Security

Prakash.R is a PG Scholar of Master of
Technology in Information technology
under Anna university, Chennai
.TamilNadu, India.

