
Padmavathi et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 328

Efficient Hardware Resource Allocation to

Achieve Performance in Multi-tenancy at DBaaS

Padmavathi.S 1, Selvi.S2, Dr.T.Rajendran3

1PG Scholar, CSE Department, Angel College of Engineering and Technology
2 Assistant Professor, CSE Department, Angel College of Engineering and Technology

3Dean , CSE and IT Department, Angel College of Engineering and Technology
1padmaspretty@gmail.com, 2 selvi.me08@gmail.com, 3rajendran_tn@yahoo.com

Abstract-Multi-tenant technology is one of key
competencies for Software as a Service (SaaS) to achieve
higher profit and performance for the cloud users. Multi-
tenancy enables to share resources of a single database
server among multiple tenants. This multi-tenancy enables
cost reduction for the cloud service users. However,
resource sharing can affect a tenant’s performance due to
resource demands of other tenant’s workloads. During the
conditions like number of tenants increase’s, in the
resource utilization and according to their demands.
Database as a Service (DBaaS) is one of the service
delivery model in which resources like (Memory, CPU and
I/O) are accessed remotely by users. The performance of
database server resources depends on the key features
such as CPU, I/O and memory, for each tenant. The
problem occurs when more number of End user’s increase
for a tenant, hence the static database allocation method is
followed. The RDBMS memory storage is mostly used for
storing and retrieving of data’s to number of tenants/end
user’s. While there are many uses of memory in a
relational DBMS, while we allocate static memory to each
tenant (a certain amount), it will not be sufficient enough
when the total number of End user’s exceeds at a session,
hence the usage of the resource, storage varies according
to their application. To overcome this issue, by using the
Resource allocation strategy with Genetic algorithm. And
the process framework involves monitor, analyzer,
predictor and allocator.
General Terms-Multi-tenancy, Tenant, Performance.
Keywords-DBaaS, End Users, Residual Memory.

1. INTRODUCTION

Cloud applications or Software as a Service (SaaS)
applications deliver software as a service over the Internet,
eliminating the need to install and run the application on the
customer's own computers and simplifying maintenance and
support, and equipped with decomposable applications,
managed services, shared hardware /software resources and
Web-based services. Cloud computing platform provides the
scalability, availability and utility computing for services on
Internet.

Software as a Service (SaaS) is a software delivery

model in which software resources are accessed remotely by
users. The SaaS model adopts the “single-instance multi-
tenancy". SaaS (Software as a Service) is a modern approach
to deliver large scalable enterprise software as a service on
Internet.

One of them is multi-tenancy, which allows single instance
of software to serve multiple organizations by accommodating
their unique requirements through configuration at the same time.
Enterprises find SaaS attractive because of its low cost. SaaS
requires sharing of application servers among multiple tenants for
low operational costs. Besides the sharing of application servers,
customizations are needed to meet requirements of each tenant.
Supporting various levels of configuration and customization is
desirable for SaaS frameworks.

[1]Cloud Computing is quickly being adopted by
organizations and businesses alike to help increase profit margins
by decreasing overall IT costs as well as provide clients with faster
implementation of services. The majority of the cloud service
providers offer multi-tenancy to capitalize on the associated
economies of scale which also translates into savings for the end
user. In fact the competitive nature of cloud computing is such that
cloud service providers have to minimize the total cost of
ownership of their IT infrastructure, thus introducing multi-
tenancy is a popular way to reducing total cost of ownership.
Multi-tenancy has made cloud computing popular by allowing
businesses to benefit from reduced costs yet continue to gain
access to data and applications within a cloud environment. In the
multi-tenancy model, many user’s data and resources are located
in the same computing cloud, and are controlled and distinguished
through the use of tagging for the unique identification of
resources owned by individual user. In a typical multi-tenancy
situation, the users are the tenants and are provided with a level of
control in order to customize and tailor software and hardware to
fit their specific needs.

Database-as-a-Service (DBaaS) is gaining significant
momentum with more vendors providing offerings. Amazon RDS
offers the full capabilities of a familiar MySQL database by
running MySQL instances in different EC2 instances (VM
Instances) for different tenants. Here, the DBaaS is effectively
used as SaaS for the memory allocation purpose for the end users

Padmavathi et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 329

in an organization.
The paper is organized as follows. Section 2 discusses

related work, Section 3 holds the concepts of problem description,
followed by Section 4 the proposed system is explained which
includes the resource allocation framework and in Section 5
conclusion is given.

II. RELATED WORK
Multi-tenancy is one of the most important

concepts for any SaaS application. Based on it, real cloud
computing aims for ”better resource utilization” for SaaS
providers and ”Pay as you go” for consumer[4].There are
many ways to develop SaaS application based on hosting
environment, architecture to follow, and available
development skills. One can develop SaaS and deploy it using
proprietory online framework like Salesforce.com, Google
AppEngine, and Microsoft Azure etc. SaaS also can be
developed using core programming framework like JDK for
java and .NET. SaaS application development should be
independent of underlying infrastructure so that application
can be migrated from one cloud to another cloud without
changing the code. It is possible only if the entire player
follow the identical as well defined standard SaaS architecture
[5]. The SaaS provides management facility to administrate
tenants, users of a tenant, services and systems.
SalesForce.com provides appex programming and web base
tool to SaaS providers to develop, integrate and customize its
service based on CRM platform [6].

[3]Generally speaking, web service handles
all the requests equally according to the Best-Effort service
model, which uses First in First out (FIFO) scheduling
strategy. However, the performance improvements realized
by IntServ and DifServ will be seriously affected and unable
to meet the different requirements of various users. For
example, when the load is heavy, it will discard all the
overloaded user requests, or prolong response time without
consideration of prioritization. Such abuse also exists in
multi-tenant oriented services. All SaaS applications share a
high-performance server; therefore failure of any SLA control
may lead to system instability and the decline of server's
overall performance. At present, the research on assurance
mechanisms of service quality has become a hotspot.

Research on service quality oriented
distribution or scheduling mechanism in the area of grid
computing is relatively mature. There's Globus Architecture
for Reservation and Allocation (GARA) [7] which is able to
provide peer-to-peer grid service based on Quality of Service
(QoS). GARA implements a uniform management
mechanism for diverse resources, such as CPU, network,
storage equipment. It also offers several operations on service
quality management, including resource selection,
distribution and release, quality of service assurance, and
point-to-point resource management.Database-as-a-Service
(DBaaS) is gaining significant momentum with more vendors
providing offerings. Amazon RDS offers the full capabilities

of a familiar MySQL database by running MySQL instances
in different EC2 instances (VM Instances) for different
tenants [8]. Microsoft SQL Azure provides a SQL server
database for different tenants in a shared pool of SQL server
instances with a controlled allocation of resources for each
database. For all these different settings, tenants choose from
different SLAs (service level agreements) at different price
points [9]. In RDS, tenants pay $0.11/hour for 1 ECPU with
1.7 GB Mem, and $1.55/hour for 13 ECPU with 34G Mem.
The consumption of resources that exceeds a tenant’s SLA
will be charged at a per usage rate. A key problem in DBaaS
is how to efficiently share resources among tenants while
maintaining SLAs [10].

SLAs guarantee performance isolation to
prevent one tenant from adversely affecting the performance
of other tenants in an unpredictable manner. From the
perspective of the DBaaS provider, SLAs must be met to
avoid SLA violations and penalties [11]. On the other hand, it
is also crucial for the tenant's resource demand varies in the
course of time. While allocating resources compliant with
SLAs is safe, it can lead to lost revenue for the DBaaS
provider and low resource utilization. However, the
inaccuracy of predicting demands for tenants increases the
risk of SLA violations.

III. PROBLEM FORMULATION
A multi-tenant SaaS product should be

efficient enough to scale seamlessly without compromising
on reliability, availability and performance. Large scale
applications which are built with the intention of handling
thousands of users accessing in a concurrent fashion is to be
well equipped and architected to handle a medium sized
customer with few hundreds of users to a large customer with
fairly huge number of active users. When the number of
tenants and users grow, the number of IOs which hits the
database will also increase which is susceptible for
performance degradation.

3.1 Characteristics & Methods

A. Performance: The performance of database server
resources depends on the key features such as CPU, I/O and
memory, for each tenant. The key challenge of a shared
DBMS is static allocation of resources to tenants, while the
occurrence of low overheads and scaling to large numbers of
tenants. The technique should focus to contribute in:
designing mechanisms to support the promised resources and
proposing low-overhead techniques to increase the
performance in multi-tenant environment.

B. Degradation: The performance degradation in SaaS service
occurs during the multi-tenancy. In the case of, hardware
resource allocated to a tenant (e.g. an organization) the
performance should be maintained according to the SLA. In
some case, during the abnormal conditions like overload or

Padmavathi et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 330

bursty condition (i.e.) more number of users is in need of
hardware resource at same time of a tenant. The provider
allocated memory resource to the tenant should be efficiently
scheduled to the “N” number of users, even in the overload
condition also.

C. Method: To achieve the better performance in multi-
tenancy within a tenant. We use the following process:
a) Monitor b) Analyzer c) Predictor d) Allocator.

IV. PROPOSED SYSTEM

In our work, to solve the performance among the tenant and
to allocate the available hardware resources we propose the
Resource allocation framework and to calculate the Residual
memory (available resources) from the other users within a
tenant. Below the section will describe the framework used
and their parameters.

4.1 Prediction of Available Hardware Resource

The Residual resource is calculated and
scheduled to the users. It is calculated by using these steps as
below:
Step1: During the time of more number of users requested
arrives. By using the queue we arrange and order the user
according to the priority, based the FIFO fashion of the user.
Step2: Residual resource is calculated, by analyzing the total
usage of hardware resource and remaining.
Step3: with these details allocate/schedule the resource to the
users according to their request. Monitoring is done overall
the process of request for resources and allocation. Among
the tenants the SLA violation should be avoided.
Note: Residual resource means resources that have not been
allocated to any active tenants. The remaining hardware
resource that is not currently in use to any users, which is
free, is allocated to the requested users.

Cloud service provider

End users
Tenants

Monitoring

Analyzer

Allocator

Predictor

DBaaS

Resource
allocation
algorithm

Figure 1.Architecture Diagram

4.2 Resource Allocation Framework

We perform the dynamic resource allocation by
using Genetic algorithm for the above problem formulation,
the DBaaS resources on the servers need to employ four
components:

A. Monitor: measures the workloads of user’s and
logs the information in the database and holds the details
about each user logins and various services. The Parameters
are User ID,Service type-regarding their application.

B. Analyzer: Analyzer examines monitored data, and
provides input to the Predictor and Allocator. Two jobs are
performed by the Analyzer: (1) counting the number of current
usage memory and resource information; (2) comparing the
observed workloads with the assigned storage in terms of SLA.
The various parameters that used in the analyzer module include
are CPU usage, Memory usage, and Network usage. But currently
we focus on first two parameters. With the help of SLA and tenant
current usage information, can able to calculate the residual
memory. Store the residual memory to database.

C. Predictor: The workload prediction has two purposes:
(1) to decide on the demand pattern of a workload; (2) to make
some model graph/report for the predicated memory. Here, the
inbuilt process takes progress in backend and updated, hence it
takes some time for processing. It includes these parameters: User
ID, Service type and Residual memory. And to generate a report,
we need User ID and Predicted memory.

D. Allocator: A tenant cannot consume resources more
than its allocation. If the real demands of a tenant are more then it
cannot be observed. Likewise, the resource is allocated to the each
user’s. Based on the above module results and by using the
allocation algorithm. If the available memory is greater than or
equal to the user requested memory, it proceeds the allocation else
it notify as SLA violation or need additional resource. The
Parameters used are Available memory (Residual memory), User
ID, Predicted memory and new residual memory (ie), current
available memory which is predicted.

V. SIMULATION RESULTS

To evaluate the performance of our multi-tenancy system
we have simulated the different structures and workloads from
users by using CloudSim 3.0.

CloudSim is a framework for simulation and modeling of
cloud computing environments mainly used for resource
allocation and scheduling. Here in the below table we have taken
4 parameters we consider while allocating to the end users.

Padmavathi et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 331

Table 1. Tenant with its parameters

UID MEMORY CPU RAM

1 350 2 512

2 500 2 2048

3 400 3 1024

4 500 1 512

Figure 2. Analysis of allocation parameters

Here 10 workloads from different users of the same tenant are
considered with a limited SLA based parameters required for
the allocation and further depending upon the prediction of
earlier completion of tasks the workloads are scheduled
subsequently. Experimental results show that the dynamic
algorithm can always achieve higher resource utilization than
static algorithms, although SLA violation events may take
place.

VI. CONCLUSION

In this paper, we proposed a dynamic resource allocation
framework by using genetic algorithm for DBaaS. In the
framework, resources are allocated periodically with the
objective of high resource utilization under SLA violation and
fairness constraints. The memory utilization is better and
faster for the end user and the tenant can effectively allocate
the resource by using the resource allocation framework. The
proposed framework over DBaaS can achieve higher resource
utilization if there is a higher variance in user’s number

among the tenant up to the SLA assigned DBaaS service by
the cloud service provider. The proposed method for
hardware resource allocation over end users among a
particular tenant will enhance the performance and, it is
effective and efficient. In future, we have an idea of applying
effective monitoring algorithms to further improve the
performance of DBaaS allocation. May concentrate on the
individual user priority based on their hit ratio and make the
service avail to them as the SLA favour to tenants.

REFERENCES
[1] Wonjae Lee and Min Choi, “Multitenancy - Security
Risks and Countermeasures”,Fifth International Conference
on Cloud Computing, IEEE computer society, 2012, pp. 970-
971.

[2] Piyush Aghera, Sanjay Chaudhary and Vikas Kumar, “An
Approach to Build Multi-Tenant SaaS Application with
Monitoring and SLA”, International Conference on
Communication Systems and Network Technologies, IEEE
computer society, 2012, pp. 658-66.

[3] Xu Cheng, Yuliang Shi,and Qingzhong Li, “A Multi-
tenant Oriented Performance Monitoring, Detecting and
Scheduling Architecture Based on SLA”, IEEE-2009 , pp.
599-604.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I.
Stoica, and et al., “Above the clouds:A berkeley view of
cloud computing,” Computing,no. UCB/EECS-2009-28,
2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html

[5] G. Liu, “Research on independent saas platform,” in
Information Management and Engineering (ICIME), 2010
The 2nd IEEE International Conference on, April 2010, pp.
110 –113.

[6] C. D. Weissman and S. Bobrowski, “The design of the
force.com multitenant internet application development
platform,” in Proceedings of the 35th SIGMOD international
conference on Management of data, ser. SIGMOD ’09. New
York, NY, USA: ACM, 2009, pp. 889–896. [Online].
Available: http://doi.acm.org/10.1145/1559845.1559942

[7] Foster I. and Kesselman C. "Globus: A Toolkit-Based
Grid Architecture". Foster, 1.and Kesselman, C. (eds.), The
Grid: Blueprint for a New Comput ing Infrastructure. Morgan
Kaufmann, 1999. pp. 259-278.

Padmavathi et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 332

[8]Amazon Rational Database Service
http://aws.amazon.com/rds/

[9]SQL Azure: Database-as-a-Service
http://www.microsoft.com/windowsazure/sqlazure/

[10] A.Stefan, G.Torsten, J.Dean, K.Alfons, R.Jan,
“Multi-tenant databases for software as a service:
schema-mapping techniques,” Proceedings of the 2008
ACM SIGMOD international conference on
Management of data, pp. 1195-1206.

[11] L.Hui, C.Giuliano, E.Tariq, “SLA-driven planning
and optimization of enterprise applications, Proceedings
of the first joint WOSP/SIPEW international conference
on Performance engineering,” 2010, pp. 117-128.

