
Harsh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 419

Feedback Control for Elastic Distributed Storage
in a Cloud Environment

Harsh Thakor#1, Hitesh Patel*2

#1Department of Information Technology, Kalol Institute of Technology, Kalol
1harshthakor27@gmial.com

*2 Head of the Department, Department of Information Technology,
Kalol Institute of Technology, Kalol

2hiteahldit@gmial.com

Abstract— Cloud computing is an ability of a system to scale
up and down (request and release resources) in response to
changes in its environment and workload. Elasticity can be
achieved manually or automatically. Efforts are being made to
automate elasticity in order to improve system performance
under dynamic workloads. In this experience in designing an
feedback controller for a storage service deployed in a Cloud
environment. To design our controller, we have adopted a
control theoretic approach. Automation of elasticity is
achieved by providing a feedback controller that automatically
increases and decreases the number of nodes in order to meet
service level objectives under high load and to reduce costs
under low load. Every step in the building of a controller for
elastic storage, including system identification and controller
design, is discussed. We have evaluated our approach by
using simulation. We have developed a simulation framework
EStoreSim in order to simulate an elastic key-value store in a
Cloud environment and be able to experiment with different
controllers.

Keywords— Cloud Enviroment, cloudservice, types of Feedback
controller, Estore simulation.

I. INTRODUCTION

Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction. This cloud model promotes availability and is
composed of five essential characteristics, three delivery
models, and four deployment models”. NIST - Definition of
Cloud Computing.[1]
On-demand self-service: A consumer with an instantaneous
need at a particular timeslot can avail computing resources
(such as CPU time, network storage, software use, and so
forth) in an automatic (i.e. convenient, self-serve) fashion
without resorting to human interactions with providers of
these resources. [2]
Broad network access: These computing resources are
delivered over the network (e.g. Internet) and used by various

client applications with heterogeneous platforms (such as
mobile phones, laptops, and PDAs) situated at a consumer's
site. [2]
Rapid elasticity: For consumers, computing resources
become immediate rather than persistent: there are no up-front
commitment and contract as they can use them to scale up
whenever they want, and release them once they finish scaling
down. Moreover, resources provisioning appears to be infinite
to them, the consumption can rapidly rise in order to meet
peak requirement at any time. [2]
Resource pooling: A cloud service provider’s computing
resources are 'pooled' together in an effort to serve multiple
consumers using either the multi-tenancy or the virtualization
model, with different physical and virtual resources
dynamically assigned and reassigned according to consumer
demand. The motivation for setting up such a pool-based
computing paradigm lies in two important factors: economies
of scale and specialization. The result of a pool based model is
that physical computing resources become 'invisible' to
consumers, who in general do not have control or knowledge
over the location, formation, and originalities of these
resources (e.g. database, CPU, etc.) . [2]
Measured Service: Although computing resources are pooled
and shared by multiple consumers (i.e. multitenant) the cloud
infrastructure is able to use appropriate mechanisms to
measure the usage of these resources for each individual
consumer through its metering capabilities. [2]
Type of basic cloud service

 IaaS - Infrastructure as a Service- Guest Operating
Systems in the above virtualization based cloud
architecture generally consists of the operating
system images in the system. Developers can code in
such a way that user can access the multiple virtual
machines remotely. Even developers can add virtual
networking devices and other required virtual wares.
Such Infrastructure services can be called as
Infrastructure as a Service. [3]

 PaaS – Platform as a Service- As Explained in
IAAS, developers can further write such a code that
they can combine the different web servers/platform
(Dos etc.) and allow users to use them together in

Harsh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 420

abstract way. Such Services are known as PAAS
(Platform as a service).[3]

 SaaS - Software as a Service-SAAS is same as
normal web application but due to features of cloud
computing it could have the features like elasticity,
support of multiple platforms and many more.
Example of service of cloud computing.[3]

 Anything as Service (Xaas)-

Fig.1: Anything as a Service [4]

Similarly as Explained in (IAAS, PAAS and SAAS),
developers can write the code for any resources which could
be used by users through web interface.[4]

II.CLOUD COMPUTING USE THE FEEDBACK

CONTROL

Feedback control applies to cloud computing system as
well .consider a cloud Computing system with desired output
characteristic. For example-HTTP 2.0 Web service to run at
no greater then 66% utilization. So that if any one of them
fails the other to immediately absorbs the entire load. here the
measured the output is CPU utilization.

HTTP 2.0 Web services, CPU utilization in cloud
computing system, the measured output typically depend on
the nature of the request being served, or workload.

Workload is often characterized in term of the arrival
process (e.g.possion, self similar), and the distribution of
service times for the resource used (e.g., CPU, memory, and
database locks).[5]
Feedback control property
Stable-if for any bounded input, the output is also bounded.
Stability is typically the first property considered in designing
control systems since unstable systems cannot be used for
mission-critical work.
Accurate:-control system is accurate if the measured output
converges to reference input.

Steady-state error:-is the steady-state value of the control
error.
Short settling times:-short settling are particularly important
for Disturbance rejection in the presence of time varying
workload Change.
Not ever shoot:-objective is to maximize throughput subject
to the constraint that response time is less then 1 sec. [5]
Feedback Control characteristics/requirements- Workload
settings could be on-off, predictable or unpredictable bursts.
Decision making system should not require detailed
knowledge of implementation or any modification to the
system implementation/source-code.
Many server-based systems have a single application
environment that has to cater to multiple client classes. [5]

Types of Feedback control system
 Feedback control system
 Feed forward control system

[1] Feedback controllers

Fig: 2Block diagram of a feedback control system[5]
feedback control we typically monitor (measure) the system
output that we want to regulate, which is, in our case, the 99th
percentile of read operations latency over a fixed period of
time (called R99p thereafter).The feedback controller
calculates the error, which is the difference between the set
point, which in our case is the required SLO value of R99p,
and the measured system output as shown in equation.

e (t) = SetpointSLO_R99p − MeasuredR99p (t)

For the control input, an intuitive choice would be to use the
number of storage servers. In other words, to try to find how
changing the number of nodes affects the R99p of the key-
value store. However, there are two drawbacks for this choice
of a model. First, the model does not account for the current
load on the system. By load we mean the number of
operations processed by the store per second (i.e.,
throughput). The latency is much shorter in an under loaded
store than in an overloaded store. In this case, the load is
treated as disturbance in the model. Controllers can be
designed to reject disturbances but it might reduce the
performance of the controller. Using the number of servers

Harsh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 421

(which we can control) as a control input seems to be a natural
choice since we can not control the load on the system as it
depends on the number of clients interacting with our web
application. In the design of the feedback controller for
Eastman, we propose to model the target store using the
average throughput per server answer the control input.
Although we can not control the total throughput on the
system, we can indirectly control the average throughput of a
server by adding/removing servers. Adding servers to the
system reduces the average throughput per server, whereas
removing servers reduces the average throughput per server.
Our choice is motivated by the near linear scalability of elastic
key-value stores. For example, when we double both the load
and the number of servers, the R99p of the store remains
roughly the same as well as the average throughput per
server.[5]

[2]Feed forward controller- The controller uses the model to
reason about the current status of the system and makes
control decisions. If the measured throughput is far below the
line, this indicates that the system is under loaded and servers
(VMs) could be removed and vice versa. When a spike is
detected, the feed forward controller uses the model to
calculate the new average throughput per server. This is done
by calculating the intersection point between the model line
and the line connecting the origin with the point that
corresponds to the measured throughput. The slope of the
latter line is equal to the ratio of the write/read throughput of
the current workload mix. Then the calculated throughput is
given to the actuator, which computes the new number of
servers that brings the storage service close to the desired
operating point where the SLO is met with the minimal
number of storage servers.

Fig: 3Feed Forward Controller
The controller uses the model to reason about the current
status of the system and makes control decisions. If the
measured throughput is far below the line, this indicates that
the system is under loaded and servers (VMs) could be
removed and vice versa. When a spike is detected, the feed
forward controller uses the model to calculate the new average
throughput per server. This is done by calculating the
intersection point between the model line and the line
connecting the origin with the point that corresponds to the
measured throughput. The slope of the latter line is equal to
the ratio of the write/read throughput of the current workload
mix. Then the calculated throughput is given to the actuator,
which computes the new number of servers that brings the

storage service close to the desired operating point where the
SLO is met with the minimal number of storage servers.

Feed forward controller does not measure the R99p
nor does make decisions based on error but relies on the
accuracy of the model to check if the current load will cause
an SLO violation. This makes the feed forward controller
sensitive to noise such as changes in the behavior of the VM
provided by the Cloud.[5]

III. PROBLEM STATEMENT

We are all the generally use the web 2.0 application. Wikis,
social networks, media sharing and rapidly growing number
of users and the amount of user generated data. Problem is the
challenge for storage service batter performance. Every time
maintain Growing number of users and the amount of data
(scalability).How to manage uneven load, user geographically
scattered (low request latency, load balancing). Partial
failures, very high load (high availability). Acceptable data
consistency guarantees (e.g., eventual consistency).

IV. PROPOSED SYSTEM AND SIMULATION
ENVIRONMENT

Fig: 4Controllersusing cloud computing Architecture

The performance model used to predict the performance of the
system given its current state (e.g., current
workload).However, due to the variable performance of Cloud
VMs (compared to dedicated physical servers), it is difficult
to accurately model the performance of the services running in
the Cloud.

To address the challenges of controlling a noisy signal
and variable performance of Cloud VMs, ElastMan consists of
two main components, a feed forward controller and a
feedback controller. ElastMan relies on the feed forward
controller to handle rapid large changes in the workload (e.g.,
spikes). This enables ElastMan to smooth the noisy 99th
percentile signal and use feedback controller to correct errors
in the feed forward system model in order to accurately bring
the 99th percentile of read operations to the desired SLO
value. In other words, the feed forward control is used to

Harsh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 422

quickly bring the performance of the system near the desired
value and then the feedback control is used to fine tune the
performance.
Cloud Instance Component represents an entire storage
instance within a cloud. The component architecture for
instance is shown in Figure.

FIG: 5 CLOUD INSTANCE COMPONENTS

Cloud Provider Component represents an important unit in
the implementation. It is the heart of a simulated Cloud
computing infrastructure and provides vital services to
manage and administer the nodes (VM instances) within the
Cloud. The Cloud provider component architecture.
Feedback Controller represents the controller that can
connect to the Cloud provider and retrieve information about
the current nodes in the system. The main responsibility of the
controller component is to manage the number of nodes
currently running in the Cloud. In other words, it attempts to
optimize the cost and satisfy some SLO parameters. The
overall component architecture is For further information on
EStoreSim please refer.

Fig: 6 Feedback controller

Feed forward /Feedback Proposed Controller Flow Chart
Our elasticity controller ElastMan combines the feed forward
controller and feedback controller. The feedback and feed
forward controllers complement each other. The feed forward
controller relies on the feedback controller to correct errors in

the feed forward model; whereas the feedback controller relies
on the feed forward controller to quickly respond to spikes so
that the noisy R99p signal that drives the feedback controller

is smoothed.

Fig: 7 Proposer Algorithm for Feedback/feed forward
Controller system

The ElastMan elasticity controller starts by measuring the
current 99th percentile of read operations latency (R99p) and
the current average throughput (tp) per server. The R99p
signal is smoothed using a smoothing filter resulting in a
smoothed signal (fR99p). The controller then calculates the
error e. If the error is in the dead zone defined by a threshold
around the desired R99p value, the controller takes no action.
Otherwise, the controller compares the current tp with the
value in the previous round. A significant change in the
throughput (workload) indicates a spike. The elasticity
controller then uses the feed forward controller to calculate
the new average throughput per server needed to handle the
current load. On the other hand, if the change in the workload
is relatively small, the elasticity controller uses the feedback
controller which calculates the new average throughput per
server based on the current error. In both cases the actuator
uses the current total throughput and the new average
throughput per server to calculate the new number for servers.

During the rebalance operation, which is needed in
order to add or remove servers, both controllers are disabled
as proposed by Lim at all. The feedback controller is disabled
because the rebalance operation adds a significant amount of
load on the system that causes increase in R99p. This can
mislead the feedback controller causing it to wrongly add
more resources. However if the storage system supports
multiple rebalance instances or modifying the currently
running rebalance instance, the feed forward controller can

Harsh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 423

still be used. This is because the feed forward controller relies
on the measured throughput of read/write operations (and it
does not count rebalance operations) thus it will not be
affected by the extra load added by the rebalancing operation.

Because the actuator can only add complete servers in
discreet units, it will not be able to fully satisfy the controller
actuation requests which are continuous values. For example,
to satisfy the new average throughput per server, requested by
the elasticity controller, the actuator might calculate that 1.5
servers are needed to be added (or removed). The actuator
solves this situation by rounding the calculated value up or
down to get a discrete value. This might result in oscillation,
where the controller continuously adds and removes one node.
Oscillations typically happen when the size of the storage
cluster is small, as adding or removing a server have bigger
effect on the total capacity of the storage service. Oscillations
can be avoided by using the proportional thresholding
technique as proposed by Limited. The basic idea is to adjust
the lower threshold of the dead zone, depending on the storage
cluster size, to avoid removing a server that will result in SLO
violation and thus will request the server to be added back
again causing oscillation.

V. RESULTS AND ANALYSIS

The instance configurations for these experiments are as
follows:
 CPU frequency: 4 GHz;
 Memory: 8 GB;
 Bandwidth: 1 MB/s;
Number of simultaneous downloads: 70

Results-I for SLO Increasing Work Load:
In this series we conducted two experiments: one with

controller and another without controller. In the results and
figures presented below, they are denoted by w/controller and
w/o controller, respectively. Each experiment starts with
three warmed up instances. By a warmed up instance we mean
that in this instance each data block is requested at least once
thus it resides in the memory of this instance.

Workload that is used for this experiment is of two
levels: normal and high. Under the normal load the time
interval between consecutive requests is selected from a
uniform random distribution in the range [10, 15] seconds that
corresponds to an average request rate of 4.8 requests per
minute. Under the high load the time interval between
consecutive requests is selected from a uniform random
distribution in the range [1, 5] seconds that corresponds to an
average request rate of 20 requests per minute. The
experiment starts with normal load and after 500 seconds the
workload increases to the high level. This is shown in Fig.

Sensing of instance output is done every 25 seconds.
In the case of controller, actuation is performed every 100
seconds. Thus there are 4 sets of measured data at each
actuation time that the controller should consider. In order to
calculate values of the system output, the controller computes
averages of data sets. The duration of each experiment is 200

seconds with warm up of 100 seconds. SLO requirements are
as follows:

Time (s)
Fig: 8 Average response time(s)

Depicts the Average Response Time for the 1 to 10
experiments Response time we mean the time that it takes for
an instance to respond to a request that download is started
and not the actual download time. As it is seen from the
diagram, the average response time for the experiment with
the controller is generally lower than the experiment without
controller.

Time(s)
Fig: 9 Average Bandwidth for Download

Average bandwidth per download. If an instance has a
bandwidth of 4 Mb/s and has two current downloads running,
the bandwidth per download is 2 Mb/s. As can be seen from
the 1 to 10 experiment with controller shows significantly
higher bandwidth per download. This is mainly because the
instances receive high number of requests and bandwidth is
divided among less requests also. This will end up having
higher bandwidth available on each instance.

Harsh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 424

Time(s)

Fig: 10 Average CPU Load (%)

Depicts the Average CPU Load for the aforementioned 1 to
10 experiments. The Average CPU Load is the average of all
nodes’ CPU Loads at each time the sensing is performed. As
one can see in Figure 5.1 CPU loads for the experiment with
the controller is generally lower than the same experiment
without the controller. This is due to the controller that
launches new instances under high workloads causing a huge
drop in average CPU Load.

SLO Violation final result

SLO mines the Service level organization is basically
all the service maintain controller. SLO Violation means the
number of service to check that controller and without
controller. And how to check SLO violation so this equation
see below it.

SLO Violations = 100%×Number of SLO Violations

Total Number of SLO Check

Table SLO VIOLATIONS
SLO violation W/Controller W/O Controller
CPU Load 51% 72%
Response time 4.52 7.0473
Bandwidth 7(MB/s) 4(MB/s)

Table: SLO VIOLATIONS

Fig:
11 SLO VIOLATIONS

VI. CONCLUSION AND FUTURE WORK

Cloud environment and described the steps in
designing it including system identification and controller
design. The controller allows the system to automatically
scale the amount of resources while meeting performance
SLO, in order to reduce SLO violations and the total cost for
the provided service. We also introduced our open source
simulation framework (EStoreSim) for Cloud systems that
allows to experiment with different controllers and workloads.
We have conducted two series of experiments using
EStoreSim. Experiments have shown the feasibility of our
approach to automate elasticity control of a key-value store in
a Cloud using feedback control. We believe that this approach
can be used to automate elasticity of other Cloud based
services.

REFERENCE
[1]NIST, Definition of Cloud Computing, Draft version
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html.
[2] http://en.wikipedia.org/wiki/Cloud_computing.
[3] “Cloud Security Issues”, Balachandra ReddyKandukuri,
Ramakrishna Paturi V, Dr. Atanu Rakshit (2009)
[4]NIST Definition of Cloud Computing, Draft version
http://csrc.nist.gov/groups/SNS/cloud-computing/index.htm.
[5] Feedback control of computing system,Joeph L
Hesllersten.
Book:
[1] EC2LAB- SAAS USING AMAZON ELASTIC CLOUD
COMPUTE, Manisha Gaikwad
DISSERTATIONS THESIS:
[1] Peter Sobeslavsky, “Elasticity in Cloud Computing”,
Joseph Fourier University, 2011

