
Aswadhati et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 202

A New Performance Guarantee Approach for Data Replication in
Data Intensive Scientific Applications

Aswadhati Sirisha#1, M.V.Rajesh*2

#M.Tech Scholar
Department of CSE ,

Pragati Engineering College, Surampalem,
Kakinada, AP, India.

1 aswadhati.sirisha@gmail.com
* Associate Professor & HOD,

Department of IT,
Pragati Engineering College, Surampalem,

Kakinada, AP, India.

Abstract

Replication in computing involves sharing
information so as to ensure consistency between
redundant resources, such as software or
hardware components, to improve reliability, fault-
tolerance, or accessibility. Data replication has
been well adopted in data intensive scientific
applications to reduce data file transfer time and
bandwidth consumption. However, the problem of
data replication in Data Grids, an enabling
technology for data intensive applications, has
proven to be NP-hard and even non approximable,
making this problem difficult to solve. In this
paper, we propose a data replication algorithm that
not only has a provable theoretical performance
guarantee, but also can be implemented in a
distributed and practical manner. Specifically, we
design a polynomial time centralized replication
algorithm that reduces the total data file access
delay by at least half of that reduced by the optimal
replication solution. Based on this centralized
algorithm, we also design a distributed caching
algorithm, which can be easily adopted in a
distributed environment such as Data Grids.
Extensive simulations are performed to validate the
efficiency of our proposed algorithms.

Keywords: Data intensive applications, Data
Grids, data replication, algorithm design and
analysis, simulations.

1. Introduction

Replication is an effective mechanism to
reduce file transfer time and bandwidth
consumption in Data Grids—placing most accessed
data at the right locations can greatly improve the
performance of data access from a user’s
perspective. DATA intensive scientific
applications, which mainly aim to answer some of
the most fundamental questions facing human
beings, are becoming increasingly prevalent in a
wide range of scientific and engineering research
domains. Examples include human genome
mapping [2], high energy particle physics and
astronomy [1], [3], and climate change modeling
[4]. In such applications, large amounts of data sets
are generated, accessed, and analyzed by scientists
worldwide. The Data Grid [5], [6], [7] is an
enabling technology for data intensive applications.
It is composed of hundreds of geographically
distributed computation, storage, and networking
resources to facilitate data sharing and management
in data intensive applications. One distinct feature
of Data Grids is that they produce and manage very
large amount of data sets, in the order of terabytes
and petabytes.

Aswadhati et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 203

Our model is as follows: Scientific data,
in the form of data files, are produced and stored in
the Grid sites as the result of scientific
experiments, simulations, or computations. Each
Grid site executes a sequence of scientific jobs
submitted by its users. To execute each job, some
scientific data as input files are usually needed. If
these files are not in the local storage resource of
the Grid site, they will be accessed from other sites,
and transferred and replicated in the local storage
of the site if necessary. Each Grid site can store
such data files subject to its storage/memory
capacity limitation. We study how to replicate the
data files onto Grid sites with limited storage space
in order to minimize the overall file access time,
for Grid sites to finish executing their jobs.
We formulate this problem as a graph theoretical
problem and design a centralized greedy data
replication algorithm, which provably gives the
total data file access time reduction (compared to
no replication) at least half of that obtained from
the optimal replication algorithm. We also design a
distributed caching technique based on the
centralized replication algorithm, and show
experimentally that it can be easily adopted in a
distributed environment such as Data Grids. The
main idea of our distributed algorithm is that when
there are multiple replicas of a data file existing in
a Data Grid, each Grid site keeps track of (and thus
fetches the data file from) its closest replica site.
This can dramatically improve Data Grid
performance because transferring large-sized files
takes tremendous amount of time and bandwidth
[8]. The central part of our distributed algorithm is
a mechanism for each Grid site to accurately locate
and maintain such closest replica site. Our
distributed algorithm is also adaptive—each Grid
site makes a file caching decision (i.e., replica
creation and deletion) by observing the recent data
access traffic going through it. Our simulation
results show that our caching strategy adapts better
to the dynamic change of user access behavior,
compared to another existing caching technique in
Data Grids [9].

The main results and contributions of our paper
are as follows:

1. We identify the limitation of the current
research of data replication in Data

Grids: they are either theoretical
investigation without practical
consideration, or heuristics-based
implementation without a provable
performance guarantee.

2. To the best of our knowledge, we are the
first to propose data replication algorithm
in Data Grid, which not only has a
provable theoretical performance
guarantee, but can be implemented in a
distributed manner as well.

3. Via simulations, we show that our
proposed replication strategies perform
comparably with the optimal algorithm
and significantly outperform an existing
popular replication technique [9].

4. Via simulations, we show that our
replication strategy adapts well to the
dynamic access pattern change in Data
Grids.

2. Background Theory

In this section, we first review related
works addressing the attention of new researchers
towards the data replication. Replication has been
an active research topic for many years in World
Wide Web [10], peer-to-peer networks [11], ad hoc
and sensor networking [12], [13], and mesh
networks [14]. In Data Grids, enormous scientific
data and complex scientific applications call for
new replication algorithms, which have attracted
much research recently.

The most closely related work to ours is
by Cibej et al. [15]. The authors study data
replication on Data Grids as a static optimization
problem. They show that this problem is NP-hard
and non approximable, which means that there is
no polynomial algorithm that provides an
approximation solution if P ≠ NP. The authors
discuss two solutions: Integer programming and
simplifications. They only consider static data
replication for the purpose of formal analysis. The
limitation of the static approach is that the

Aswadhati et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 204

replication cannot adjust to the dynamically
changing user access pattern. Furthermore, their
centralized integer programming technique cannot
be easily implemented in a distributed Data Grid.
Moreover, Baev et al. [16] show that if all the data
have uniform size, then this problem is indeed
approximable. And they find 20.5-approximation
and 10-approximation algorithms. However, their
approach, which is based on rounding an optimal
solution to the linear programming relaxation of
the problem, cannot be easily implemented in a
distributed way. In this work, we follow the same
direction (i.e., uniform data size), but design a
polynomial time approximation algorithm, which
can also be easily implemented in a distributed
environment like Data Grids.

Raicu et al. [17], [18] study both
theoretically and empirically the resource
allocation in data intensive applications. They
propose a “data diffusion” approach that acquires
computing and storage resources dynamically,
replicates data in response to demand, and
schedules computations close to the data. They
give a O (N M) competitive ratio online algorithm,
where N is the number of stores, each of which can
store M objects of uniform size. However, their
model does not allow for keeping multiple copies
of an object simultaneously in different stores. In
our model, we assume each object can have
multiple copies, each on a different site.

Fig 1. Data Grid Model

As demonstrated by the experiments of
Chervenak et al. [19], the time to execute a
scientific job is mainly the time it takes to transfer
the needed input files from server sites to local
sites. Similar to other work in replica management
for Data Grids [20], [21], [22], we only consider
the file transfer time (access time), not the job
execution time in the processor or any other
internal storage processing or I/O time. Since the
data are read only for many Data Grid applications
[23], we do not consider consistency maintenance
between the master file and the replica files. For
readers who are interested in the consistency
maintenance in Data Grids, please refer to [24],
[25], [26].

3. Data Grid Model and Problem
Formulation

As shown in Fig. 1. A Data Grid consists
of a set of sites. There are institutional sites, which
correspond to different scientific institutions
participating in the scientific project. There is one
top level site, which is the centralized management
entity in the entire Data Grid environment, and its
major role is to manage the Centralized Replica
Catalogue (CRC). CRC provides location
information about each data file and its replicas,
and it is essentially a mapping between each data
file and all the institutional sites where the data is
replicated. Each site (top level site or institutional
site) may contain multiple grid resources. A grid
resource could be either a computing resource,
which allows users to submit and execute jobs, or a
storage resource, which allows users to store data
files.3 We assume that each site has both
computing and storage capacities, and that within
each site, the bandwidth is high enough that the
communication delay inside the site is negligible.
For the data file replication problem addressed in
this article, there are multiple data files, and each
data file is produced by its source site (the top level
site or the institutional site may act as a source site
for more than one data files). Each Grid site has
limited storage capacity and can cache/store
multiple data files subject to its storage capacity
constraint.

Aswadhati et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 205

Data Grid Model: A Data Grid can be represented
as an undirected graph G (V, E), where a set of
vertices V = {1,2, . . . n} represents the sites in the
Grid, and E is a set of weighted edges in the graph.
The edge weight may represent a link metric such
as loss rate, distance, delay, or transmission
bandwidth. In this paper, the edge weight
represents the bandwidth and we assume all edges
have the same bandwidth B (in Section 6, we study
heterogeneous environment where different edges
have different bandwidths). There are p data files D
= {D1, D2,…………….. Dp } in the Data Grid, Dj is
originally produced and stored in the source site Sj
ε V . Note that a site can be the original source site
of multiple data files. The size of data file Dj is sj.
Each site i has a storage capacity of mi (for a
source site i , mi is the available storage space after
storing its original data). We begin this section by
considering an illustrative example which serves as
the basis of our problem statement and will be used
throughout the paper to demonstrate the main
features of our system.

Users of the Data Grid submit jobs to
their own sites, and the jobs are executed in the
FIFO order. Assume that the Grid site i has ni

submitted jobs { ti1 , ti2, …tini }, and each job tik (1 ≤
k ≤ ni) needs a subset Fik of D as its input files for
execution. If we use wij to denote the number of
times that site i needs Dj as an input file.

4. Centralized Data Replication
Algorithm in Data Grids

In this Paper, we have proposed a
Centralized data replication algorithm is a greedy
algorithm. First, all Grid sites have all empty
storage space (except for sites that originally
produce and store some files). Then, at each step, it
places one data file into the storage space of one
site such that the reduction of total access cost in
the Data Grid is maximized at that step. The
algorithm terminates when all storage space of the

sites has been replicated with data files, or the total
access cost cannot be reduced further. Below is the
algorithm.

The total running time of the greedy algorithm of
data replication is O (p2n3m), where n is the
number of sites in the Data Grid, m is the average
number of memory pages in a site, and p is the
total number of data files. Note that the number of
iterations in the above algorithm is bounded by nm,
and at each stage, we need to compute at most pn
benefit values, where each benefit value
computation may take O (pn) time.

Fig 2. Each site i original graph G has mi

memory space; each site in modified G1 has 2mi

memory space.

Aswadhati et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 206

5. Distributed Data Caching
Algorithm in Data Grids

In this section, we design a localized
distributed caching algorithm based on the
centralized algorithm. In the distributed
algorithm, each Grid site observes the local
Data Grid traffic to make an intelligent
caching decision. Our distributed caching
algorithm is advantageous since it does not
need global information such as the network
topology of the Grid, and it is more reactive to
network states such as the file distribution,
user access pattern, and job distribution in the
Data Grids. Therefore, our distributed
algorithm can adopt well to such dynamic
changes in the Data Grids. The distributed
algorithm is composed of two important
components: nearest replica catalog (NRC)
maintained at each site and a localized data
caching algorithm running at each site.

Nearest Replica Catalog (NRC). Each site i in the
Grid maintains an NRC, and each entry in the NRC
is of the form (Dj , Nj) where Nj is the nearest site
that has a replica of Dj. When a site executes a job,
from its NRC, it determines the nearest replicate
site for each of its input data files and goes to it
directly to fetch the file (provided the input file is
not in its local storage). As the initialization stage,
the source sites send messages to the top level site
informing it about their original data files. Thus,
the centralized replica catalog initially records each
data file and its source site. The top level site then
broadcasts the replica catalogue to the entire Data
Grid. Each Grid site initializes its NRC to the
source site of each data file. Note that if i is the
source site of Dj or has cached Dj, then Nj is
interpreted as the second nearest replica site, i.e.,
the closest site (other than i itself) that has a copy
of Dj. The second nearest replica site information
is helpful when site i decides to remove the cached
file Dj. If there is a cache miss, the request is
redirected to the top level site, which sends the site
replica site list for that data file. After receiving
such information, the site will update correctly its
NRC table and sends the request to the site’s
nearest cache site for that data file. Therefore, a
cache miss takes much longer time. The above
information is in addition to any information (such

as routing tables) maintained by the underlying
routing protocol in the Data Grids.

Localized data caching algorithm. Since each site
has limited storage capacity, a good data caching
algorithm that runs distributedly on each site is
needed. To do this, each site observes the data
access traffic locally for a sufficiently long time.
The local access traffic observed by site i includes
its own local data requests, nonlocal data requests
to data files cached at i, and the data request traffic
that the site i is forwarding to other sites in the
network. Before we present the data caching
algorithm, we give the following two definitions:

 Reduction in access cost of caching a
data file.

Reduction in access cost as the
result of caching a data file at a site is the
reduction in access cost given by the
following: access frequency in local
access traffic observed by the
site × distance to the nearest replica site.

 Increase in access cost of deleting a
data file.

Increase in access cost as the result
of deleting a data file at a site is the
increase in access cost given by the
following: access frequency in local
access traffic observed by the
site × distance to the second-nearest
replica site.

Cache replacement policy. With the above
knowledge, a site always tries to cache data files
that can fit in its local storage and that can give the
most reduction in access cost. When the local
storage capacity of a site is full, the following
cache replacement policy is used. Let |D| denote
the size of a data file (or a set of data files) D. If the
access cost reduction of caching a newly available
data file Dj is higher than the access cost increase
of some set D of cached data files where |D| > |Dj|,
then the set D is replaced by Dj.

6. Conclusion

Through this paper, we study how to replicate data
files in data intensive scientific applications, to

Aswadhati et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 207

reduce the file access time with the consideration
of limited storage space of Grid sites. Our goal is to
effectively reduce the access time of data files
needed for job executions at Grid sites. We propose
a centralized greedy algorithm with performance
guarantee, and show that it performs comparably
with the optimal algorithm. We also propose a
distributed algorithm where in Grids sites react
closely to the Grid status and make intelligent
caching decisions. Using GridSim, a distributed
Grid simulator, we demonstrate that the distributed
replication technique significantly outperforms a
popular existing replication technique, and it is
more adaptive to the dynamic change of file access
patterns in Data Grids.

7. Future Enhancement

In the future, we plan to design and develop data
replication strategies in the scientific workflow
[27] and large-scale cloud computing environments
[28]. We will also pursue how provenance
information [29], the derivation history of data
files, can be exploited to improve the intelligence
of data replication decision making.

8. References

[1] The Large Hadron Collider,
http://public.web.cern.ch/Public/ en/LHC/LHC-en.html,
2011.

[2] A. Rodriguez, D. Sulakhe, E. Marland, N. Nefedova,
M. Wilde, and N. Maltsev, “Grid Enabled Server for
High-Throughput Analysis of Genomes,” Proc.
Workshop Case Studies on Grid Applications, 2004.

[3] J.C. Jacob, D.S. Katz, T. Prince, G.B. Berriman, J.C.
Good, A.C. Laity, E. Deelman, G. Singh, and M.-H Su,
“The Montage Architecture for Grid-Enabled Science
Processing of Large, Distributed Datasets,” Proc. Earth
Science Technology Conf., 2004.

[4] M. Mineter, C. Jarvis, and S. Dowers, “From Stand-
Alone Programs towards Grid-Aware Services and
Components: A Case Study in Agricultural Modelling
with Interpolated Climate Data,” Environmental
Modelling and Software, vol. 18, no. 4, pp. 379-391,
2003.

[5] S. Venugopal, R. Buyya, and K. Ramamohanarao, “A
Taxonomy of Data Grids for Distributed Data Sharing,
Management, and Processing,” ACM Computing
Surveys, vol. 38, no. 1, 2006.

[6] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, S.
Tuecke, and I. Foster, “Secure, Efficient Data Transport
and Replica Management for High-Performance Data-
Intensive Computing,” Proc. IEEE Symp. Mass Storage
Systems and Technologies, 2001.

[7] I. Foster, “The Grid: A New Infrastructure for 21st
Century Science,” Physics Today, vol. 55, pp. 42-47,
2002.

[8] A. Chervenak, R. Schuler, M. Ripeanu, M.A. Amer,
S. Bharathi, I. Foster, and C. Kesselman, “The Globus
Replica Location Service: Design and Experience,” IEEE
Trans. Parallel and Distributed Systems, vol. 20, no. 9,
pp. 1260-1272, Sept. 2009.

[9] K. Ranganathan and I.T. Foster, “Identifying Dynamic
Replication Strategies for a High-Performance Data
Grid,” Proc. Second Int’l Workshop Grid Computing
(GRID), 2001.

[10] L. Qiu, V.N. Padmanabhan, and G.M. Voelker, “On
the Placement of Web Server Replicas,” Proc. IEEE
INFOCOM, 2001.

[11] A. Aazami, S. Ghandeharizadeh, and T. Helmi,
“Near Optimal Number of Replicas for Continuous Media
in Ad-Hoc Networks of Wireless Devices,” Proc. Int’l
Workshop Multimedia Information Systems, 2004.

[12] C. Intanagonwiwat, R. Govindan, and D. Estrin,
“Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks,” Proc.
ACM MobiCom, 2000.

[13] B. Tang, S.R. Das, and H. Gupta, “Benefit-Based
Data Caching in Ad Hoc Networks,” IEEE Trans. Mobile
Computing, vol. 7, no. 3, pp. 289-304, Mar. 2008.

[14] S. Jin and L. Wang, “Content and Service
Replication Strategies in Multi-Hop Wireless Mesh
Networks,” Proc. ACM Int’l Conf. Modeling, Analysis
and Simulation of Wireless and Mobile Systems
(MSWiM), 2005.

[15] U. _Cibej, B. Slivnik, and B. Robi_c, “The
Complexity of Static Data Replication in Data Grids,”
Parallel Computing, vol. 31, nos. 8/9, pp. 900-912, 2005.

Aswadhati et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 208

[16] I. Baev and R. Rajaraman, “Approximation
Algorithms for Data Placement in Arbitrary Networks,”
Proc. ACM-SIAM Symp. Discrete Algorithms (SODA),
2001.

[17] I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A.
Chaudhary, and D. Thain, “The Quest for Scalable
Support of Data Intensive Workloads in Distributed
Systems,” Proc. ACM Int’l Symp. High Performance
Distributed Computing (HPDC), 2009.

[18] I. Raicu, Y. Zhao, I. Foster, and A. Szalay,
“Accelerating Large- Scale Data Exploration through
Data Diffusion,” Proc. Int’l Workshop Data-Aware
Distributed Computing (DADC), 2008.

[19] A. Chervenak, R. Schuler, C. Kesselman, S.
Koranda, and B. Moe, “Wide Area Data Replication for
Scientific Collaboration,” Proc. IEEE/ACM Int’l
Workshop Grid Computing, 2005.

[20] M. Lei, S.V. Vrbsky, and X. Hong, “An Online
Replication Strategy to Increase Availability in Data
Grids,” Future Generation Computer Systems, vol. 24,
pp. 85-98, 2008.

[21] F. Schintke and A. Reinefeld, “Modeling Replica
Availability in Large Data Grids,” J. Grid Computing,
vol. 2, no. 1, pp. 219-227, 2003.

[22] D.G. Cameron, A.P. Millar, C. Nicholson, R.
Carvajal-Schiaffino, K. Stockinger, and F. Zini, “Analysis
of Scheduling and Replica Optimisation Strategies for
Data Grids Using Optorsim,” J. Grid Computing, vol. 2,
no. 1, pp. 57-69, 2004.

[23] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman,
R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and
M. Samidi, “Scheduling Data-Intensive Workflows onto
Storage-Constrained Distributed Resources,” Proc.
Seventh IEEE Int’l Symp. Cluster Computing and the
Grid (CCGRID), 2007.

[24] D. Du¨ llmann and B. Segal, “Models for Replica
Synchronisation and Consistency in a Data Grid,” Proc.
10th IEEE Int’l Symp. High Performance Distributed
Computing (HPDC), 2001.

[25] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I.
Foster, and B. Tierney, “File and Object Replication in
Data Grids,” Proc. 10th IEEE Int’l Symp. High
Performance Distributed Computing (HPDC), 2001.

[26] J. Pe´rez, F. Garcı´a-Carballeira, J. Carretero, A.
Caldero´ n, and J. Ferna´ndez, “Branch Replication
Scheme: A New Model for Data Replication in Large

Scale Data Grids,” Future Generation Computer Systems,
vol. 26, no. 1, pp. 12-20, 2010.

[27] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F.
Fotouhi, and J. Hua, “A Reference Architecture for
Scientific Workflow Management Systems and the View
Soa Solution,” IEEE Trans. Services Computing, vol. 2,
no. 1, pp. 79-92, Jan.-Mar. 2009.

[28] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud
Computing and Grid Computing 360-Degrees
Compared,” Proc. Grid Computing Environments
Workshop, pp. 1-10, 2008.

[29] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi,
“Storing and Querying Scientific Workflow Provenance
Metadata Using an Rdbms,” Proc. IEEE Int’l Conf. e-
Science and Grid Computing, 2007.

9. About the Authors

Aswadhati Sirisha is
currently pursuing her M.Tech
in Computer Science &
Engineering at Pragati
Engineering College,
Surampalem, Kakinada. Her
area of interests is Distributed

& Parallel Systems and Networks.

M.V.Rajesh is currently working
as an HOD in Department of
Information at Pragati
Engineering College,
Surampalem, Kakinada. He
completed his M.Tech in
Computers Science His research

interests include the Cloud Computing and
program slicing.

