
Peela et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

202
© 2013 IJAIR. ALL RIGHTS RESERVED

Secure Logging Mechanism of Distributed Accountability
for Data Sharing

Peela Venkata Ganesh#1, Peri Srinivasa Rao*2

#M.Tech Scholar
Department of IT ,
Andhra University,

Visakhapatnam,AP,India.
1 pvganesh91@gmail.com

*Head Of Department
Department of Computer Science and Systems Engineering,

Visakhapatnam,AP,India.
2 peri.srinivasarao@yahoo.com

Abstract

A major feature of the cloud
services is that users’ data are usually processed
remotely in unknown machines that users do
not own or operate. While enjoying the
convenience brought by this new emerging
technology, users’ fears of losing control of their
own data (particularly, financial and health
data) can become a significant barrier to the
wide adoption of cloud services.In this paper ,
we propose an object-centered approach that
enables enclosing our logging mechanism
together with users’ data and policies. We
leverage the JAR programmable capabilities to
both create a dynamic and traveling object, and
to ensure that any access to users’ data will
trigger authentication and automated logging
local to the JARs. To strengthen user’s control,
we also provide distributed auditing
mechanisms. We provide extensive experimental
studies that demonstrate the efficiency and
effectiveness of the proposed approaches.

Keywords: Cloud Computing, accountability,
data sharing.

1. Introduction
Cloud computing enables highly scalable services
to be easily consumed over the Internet on an as-

needed basis. A major feature of the cloud services
is that users’ data are usually processed remotely in
unknown machines that users do not own or
operate. CLOUD computing presents a new way to
supplement the current consumption and delivery
model for IT services based on the Internet, by
providing for dynamically scalable and often
virtualized resources as a service over the Internet.
To date, there are a number of notable commercial
and individual cloud computing services, including
Amazon, Google, Microsoft, Yahoo, and Sales
force [1]. Moreover, users may not know the
machines which actually process and host their
data. While enjoying the convenience brought by
this new technology, users also start worrying
about losing control of their own data. The data
processed on clouds are often outsourced, leading
to a number of issues related to accountability,
including the handling of personally identifiable
information. Such fears are becoming a significant
barrier to the wide adoption of cloud services [2].
To Relieve users’ concerns, it is essential to
provide an effective mechanism for users to
monitor the usage of their data in the cloud. For
example, users need to be able to ensure that their
data are handled according to the service-level
agreements made at the time they sign on for
services in the cloud. Conventional access control
approaches developed for closed domains such as
databases and operating systems, or approaches
using a centralized server in distributed
environments, are not suitable, due to the



Peela et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 203

following features characterizing cloud
environments. First, data handling can be
outsourced by the direct cloud service provider
(CSP) to other entities in the cloud and theses
entities can also delegate the tasks to others, and
so on. Second, entities are allowed to join and
leave the cloud in a flexible manner. As a result,
data handling in the cloud goes through a
complex and dynamic hierarchical service chain
which does not exist in conventional
environments.
To overcome the above problems, we propose

a novel approach, namely Cloud Information
Accountability (CIA) framework, based on the
notion of information accountability [3].
Unlike privacy protection technologies which
are built on the hide-it-or-lose-it perspective,
information account-ability focuses on keeping
the data usage transparent and trackable. Our
proposed CIA framework provides end-to-end
accountability in a highly distributed fashion.
One of the main innovative features of the CIA
framework lies in its ability of maintaining
lightweight and powerful account-ability that
combines aspects of access control, usage
control and authentication. By means of the
CIA, data owners can track not only whether or
not the service-level agreements are being
honored, but also enforce access and usage
control rules as needed. Associated with the
accountability feature, we also develop two
distinct modes for auditing: push mode and
pull mode. The push mode refers to logs being
periodically sent to the data owner or
stakeholder while the pull mode refers to an
alternative approach whereby the user (or
another authorized party) can retrieve the logs as
needed.

The design of the CIA framework presents
substantial challenges, including uniquely
identifying CSPs, ensuring the reliability of the
log, adapting to a highly decentralized
infrastructure, etc. Our basic approach toward
addressing these issues is to leverage and extend
the programmable capability of JAR (Java

Archives) files to automatically log the usage of
the users’ data by any entity in the cloud. Users
will send their data along with any policies such
as access control policies and logging policies
that they want to enforce, enclosed in JAR files,
to cloud service providers. Any access to the
data will trigger an automated and authenticated
logging mechanism local to the JARs. We refer
to this type of enforcement as “strong binding”
since the policies and the logging mechanism
travel with the data. This strong binding exists
even when copies of the JARs are created; thus,
the user will have control over his data at any
location. Such decentralized logging mechanism
meets the dynamic nature of the cloud but also
imposes challenges on ensuring the integrity of
the logging. To cope with this issue, we provide
the JARs with a central point of contact which
forms a link between them and the user. It
records the error correction information sent by
the JARs, which allows it to monitor the loss of
any logs from any of the JARs. Moreover, if a
JAR is not able to contact its central point, any
access to its enclosed data will be denied.

We tested our CIA framework in a cloud
testbed, the Emulab testbed [4], with Eucalyptus
as middleware [5]. Our experiments demonstrate
the efficiency, scalability and granularity of our
approach. In addition, we also provide a detailed
security analysis and discuss the reliability and
strength of our architecture in the face of various
nontrivial attacks, launched by malicious users
or due to compro-mised Java Running
Environment (JRE).

In summary, our main contributions are as
follows:

. We propose a novel automatic and
enforceable logging mechanism in the
cloud. To our knowledge, this is the first
time a systematic approach to data
accountability through the novel usage
of JAR files is proposed.

. Our proposed architecture is platform



Peela et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 204

independent and highly decentralized, in
that it does not require any dedicated
authentication or storage system in
place.

. We go beyond traditional access control
in that we provide a certain degree of
usage control for the protected data after
these are delivered to the receiver.

. We conduct experiments on a real cloud
test bed. The results demonstrate the
efficiency, scalability, and granularity of
our approach. We also provide a detailed
security analysis and discuss the
reliability and strength of our
architecture.

This paper is an extension of our previous
conference paper [6]. We have made the
following new contributions. First, we integrated
integrity checks and oblivious hashing (OH)
technique to our system in order to strengthen
the dependability of our system in case of
compromised JRE. We also updated the log
records structure to provide additional
guarantees of integrity and authenticity. Second,
we extended the security analysis to cover more
possible attack scenarios. Third, we report the
results of new experiments and provide a
thorough evaluation of the system performance.
Fourth, we have added a detailed discussion on
related works to prepare readers with a better
understanding of background knowledge.

2. Background Theory
In this section, we first review related

works addressing the privacy and security issues
in the cloud. Then, we briefly discuss works
which adopt similar techniques as our approach
but serve for different purposes.

2.1 Cloud Privacy and Security
Cloud computing has raised a range of

important privacy and security issues [1], [7],
[2]. Such issues are due to the fact that, in the
cloud, users’ data and applications reside—at
least for a certain amount of time—on the cloud

cluster which is owned and maintained by a
third party. Concerns arise since in the cloud it is
not always clear to individuals why their
personal information is requested or how it will
be used or passed on to other parties. To date,
little work has been done in this space, in
particular with respect to accountability. Pearson
et al. have proposed accountability mechanisms
to address privacy concerns of end users [2] and
then develop a privacy manager [8]. Their basic
idea is that the user’s private data are sent to the
cloud in an encrypted form, and the processing
is done on the encrypted data. The output of the
processing is deobfuscated by the privacy
manager to reveal the correct result. However,
the privacy manager provides only limited
features in that it does not guarantee protection
once the data are being disclosed. In [9], the
authors present a layered architecture for
addressing the end-to-end trust management and
accountability problem in federated systems.
The authors’ focus is very different from ours, in
that they mainly leverage trust relationships for
account-ability, along with authentication and
anomaly detection. Further, their solution
requires third-party services to complete the
monitoring and focuses on lower level
monitoring of system resources.

To the best of our knowledge, the only
work proposing a distributed approach to
accountability is from Lee and colleagues [10].
The authors have proposed an agent-based
system specific to grid computing. Distributed
jobs, along with the resource consumption at
local machines are tracked by static software
agents. The notion of account-ability policies in
[10] is related to ours, but it is mainly focused
on resource consumption and on tracking of sub
jobs processed at multiple computing nodes,
rather than access control.

2.2 Other Related Techniques

With respect to Java-based techniques



Peela et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 205

for security, our methods are related to self-
defending objects (SDO) [11]. Self-defending
objects are an extension of the object-oriented
programming paradigm, where software objects
that offer sensitive functions or hold sensitive
data are responsible for protecting those
functions/data. Similarly, we also extend the
concepts of object-oriented programming. The
key difference in our implementations is that the
authors still rely on a centralized database to
maintain the access records, while the items
being protected are held as separate files. In
previous work, we provided a Java-based
approach to prevent privacy leakage from
indexing [12], which could be integrated with
the CIA framework proposed in this work since
they build on related architectures.

In terms of authentication techniques, Appel
and Felten [13] proposed the Proof-Carrying
authentication (PCA) framework. The PCA
includes a high order logic language that allows
quantification over predicates, and focuses on
access control for web services. While related to
ours to the extent that it helps maintaining safe,
high-performance, mobile code, the PCA’s goal
is highly different from our research, as it
focuses on validating code, rather than
monitoring content. Another work is by Mont et
al. who proposed an approach for strongly
coupling content with access control, using
Identity-Based Encryption (IBE) [14]. We also
leverage IBE techniques, but in a very different
way. We do not rely on IBE to bind the content
with the rules. Instead, we use it to provide
strong guarantees for the encrypted content and
the log files, such as protection against chosen
plaintext and ciphertext attacks.

In addition, our work may look similar to
works on secure data provenance [15], [16],
[17], but in fact greatly differs from them in
terms of goals, techniques, and application
domains. Works on data provenance aim to
guarantee data integrity by securing the data

provenance. They ensure that no one can add or
remove entries in the middle of a provenance
chain without detection, so that data are
correctly delivered to the receiver. Differently,
our work is to provide data accountability, to
monitor the usage of the data and ensure that
any access to the data is tracked. Since it is in a
distributed environment, we also log where the
data go. However, this is not for verifying data
integrity, but rather for auditing whether data
receivers use the data following specified
policies.

3. Problem Statement

We begin this section by considering an
illustrative example which serves as the basis of
our problem statement and will be used
throughout the paper to demonstrate the main
features of our system.

Example 1. Alice, a professional photographer,
plans to sell her photographs by using the
SkyHigh Cloud Services. For her business in
the cloud, she has the following
requirements:

. Her photographs are downloaded only
by users who have paid for her services.

. Potential buyers are allowed to view her
pictures first before they make the
payment to obtain the download right.

. Due to the nature of some of her works,
only users from certain countries can
view or download some sets of
photographs.

. For some of her works, users are allowed
to only view them for a limited time, so
that the users cannot reproduce her work
easily.

. In case any dispute arises with a client,
she wants to have all the access
information of that client.

. She wants to ensure that the cloud
service providers of SkyHigh do not



Peela et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 206

share her data with other service
providers, so that the accountability
provided for individual users can also be
expected from the cloud service
providers.

With the above scenario in mind, we identify
the common requirements and develop several
guidelines to achieve data accountability in the
cloud. A user, who subscribed to a certain cloud
service, usually needs to send his/her data as well
as associated access control policies (if any) to the
service provider. After the data are received by the
cloud service provider, the service provider will
have granted access rights, such as read, write, and
copy, on the data. Using conventional access
control mechanisms, once the access rights are
granted, the data will be fully available at the
service provider. In order to track the actual usage
of the data, we aim to develop novel logging and
auditing techniques which satisfy the following
requirements:

1. The logging should be decentralized in order to
adapt to the dynamic nature of the cloud. More
specifically, log files should be tightly bounded
with the corresponding data being controlled, and
require minimal infrastructural support from any
server.

2. Every access to the user’s data should be
correctly and automatically logged. This requires
integrated techniques to authenticate the entity who
accesses the data, verify, and record the actual
operations on the data as well as the time that the
data have been accessed.

3. Log files should be reliable and tamper proof to
avoid illegal insertion, deletion, and modification
by malicious parties. Recovery mechanisms are
also desirable to restore damaged log files caused
by technical problems.

4. Log files should be sent back to their data
owners periodically to inform them of the current
usage of their data. More importantly, log files
should be retrievable anytime by their data owners
when needed regardless the location where the files
are stored.

5. The proposed technique should not intrusively
monitor data recipients’ systems, nor it should
introduce heavy communication and computation
overhead, which otherwise will hinder its
feasibility and adoption in practice.

4. Cloud Information Accountability (CIA)

The Cloud Information Accountability
framework proposed in this work conducts
automated logging and distributed auditing of
relevant access performed by any entity, carried out
at any point of time at any cloud service provider.
It has two major components: logger and log
harmonizer.

4.1 Major Components

There are two major components of the
CIA, the first being the logger, and the second
being the log harmonizer. The logger is the
component which is strongly coupled with the
user’s data, so that it is downloaded when the data
are accessed, and is copied whenever the data are
copied. It handles a particular instance or copy of
the user’s data and is responsible for logging access
to that instance or copy. The log harmonizer forms
the central component which allows the user access
to the log files. The logger is strongly coupled with
user’s data (either single or multiple data items). Its
main tasks include automatically logging access to
data items that it contains, encrypting the log
record using the public key of the content owner,
and periodically sending them to the log
harmonizer. It may also be configured to ensure
that access and usage control policies associated
with the data are honored. For example, a data
owner can specify that user X is only allowed to
view but not to modify the data. The logger will
control the data access even after it is downloaded
by user X.

The logger requires only minimal support
from the server (e.g., a valid Java virtual machine
installed) in order to be deployed. The tight
coupling between data and logger, results in a
highly distributed logging system, therefore
meeting our first design requirement. Furthermore,
since the logger does not need to be installed on
any system or require any special support from the



Peela et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 207

server, it is not very intrusive in its actions, thus
satisfying our fifth requirement. Finally, the logger
is also responsible for generating the error
correction information for each log record and send
the same to the log harmonizer. The error
correction information combined with the
encryption and authentication mechanism provides
a robust and reliable recovery mechanism,
therefore meeting the third requirement.

The log harmonizer is responsible for
auditing. Being the trusted component, the log
harmonizer generates the master key. It holds on to
the decryption key for the IBE key pair, as it is
responsible for decrypting the logs. Alternatively,
the decryption can be carried out on the client end
if the path between the log harmonizer and the
client is not trusted. In this case, the harmonizer
sends the key to the client in a secure key
exchange.

It supports two auditing strategies: push
and pull. Under the push strategy, the log file is
pushed back to the data owner periodically in an
automated fashion. The pull mode is an on-demand
approach, whereby the log file is obtained by the
data owner as often as requested. These two modes
allow us to satisfy the aforementioned fourth
design requirement. In case there exist multiple
loggers for the same set of data items, the log
harmonizer will merge log records from them
before sending back to the data owner.The log
harmonizer is also responsible for handling log file
corruption. In addition, the log harmonizer can
itself carry out logging in addition to auditing.
Separating the logging and auditing functions
improves the performance. The logger and the log
harmonizer are both implemented as lightweight
and portable JAR files. The JAR file
implementation provides automatic logging
functions, which meets the second design
requirement.

4.2 Data Flow
The overall CIA framework, combining

data, users, logger and harmonizer is sketched in
Fig. 1. At the beginning, each user creates a pair of
public and private keys based on Identity-Based
Encryption [4] (step 1 in Fig. 1). This IBE scheme
is a Weil-pairing-based IBE scheme, which
protects us against one of the most prevalent

attacks to our architecture as described in Section
7. Using the generated key, the user will create a
logger component which is a JAR file, to store its
data items. The JAR file includes a set of simple
access control rules specifying whether and how
the cloud servers, and possibly other data
stakeholders (users, companies) are authorized to
access the content itself. Then, he sends the JAR
file to the cloud service provider that he subscribes
to. To authenticate the CSP to the JAR (steps 3-5 in
Fig. 1), we use OpenSSLbased certificates, wherein
a trusted certificate authority certifies the CSP. In
the event that the access is requested by a user, we
employ SAML-based authentication [18], wherein
a trusted identity provider issues certificates
verifying the user’s identity based on his username.

Fig 1. Overview of CIA Framework

5. Security Discussion

We now analyze possible attacks to our
framework. Our analysis is based on a semi honest



Peela et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 208

adversary model by assuming that a user does not
release his master keys to unauthorized parties,
while the attacker may try to learn extra
information from the log files. We assume that
attackers may have sufficient Java programming
skills to disassemble a JAR file and prior
knowledge of our CIA architecture. We first
assume that the JVM is not corrupted, followed by
a discussion on how to ensure that this assumption
holds true.

6. Conclusion

Through this paper, we proposed innovative
approaches for automatically logging any access to
the data in the cloud together with an auditing
mechanism. Our approach allows the data owner to
not only audit his content but also enforce strong
back-end protection if needed. Moreover, one of
the main features of our work is that it enables the
data owner to audit even those copies of its data
that were made without his knowledge.

7. Future Enhancement

In the future, we plan to refine our approach to
verify the integrity of the JRE and the
authentication of JARs [19]. For example, we will
investigate whether it is possible to leverage the
notion of a secure JVM [20] being developed by
IBM. This research is aimed at providing software
tamper resistance to Java applications. In the long
term, we plan to design a comprehensive and more
generic object-oriented approach to facilitate
autonomous protection of traveling content. We
would like to support a variety of security policies,
like indexing policies for text files, usage control
for executables, and generic accountability and
provenance controls.

8. References:
[1] P.T. Jaeger, J. Lin, and J.M. Grimes, “Cloud
Computing and Information Policy: Computing in a
Policy Cloud?,” J. Information
Technology and Politics, vol. 5, no. 3, pp. 269-283, 2009.

[2] S. Pearson and A. Charlesworth, “Accountability as a
Way Forward for Privacy Protection in the Cloud,” Proc.
First Int’lConf. Cloud Computing, 2009.

[3] D.J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigen-
baum, J. Hendler, and G.J. Sussman, “Information
Accountability,” Comm. ACM, vol. 51, no. 6, pp. 82-87,
2008.

[4]Emulab Network Emulation Testbed,
www.emulab.net, 2012.

[5] Eucalyptus Systems, http://www.eucalyptus.com/,
2012.

[6] S. Sundareswaran, A. Squicciarini, D. Lin, and S.
Huang, “Promoting Distributed Accountability in the
Cloud,” Proc. IEEE Int’l Conf. Cloud Computing, 2011.

[7] T. Mather, S. Kumaraswamy, and S. Latif, Cloud
Security and Privacy: An Enterprise Perspective on Risks
and Compliance (Theory in Practice), first ed. O’ Reilly,
2009.

[8] S. Pearson, Y. Shen, and M. Mowbray, “A Privacy
Manager for Cloud Computing,” Proc. Int’l Conf. Cloud
Computing (CloudCom), pp. 90-106, 2009.

[9] B. Chun and A.C. Bavier, “Decentralized Trust
Management and Accountability in Federated Systems,”
Proc. Ann. Hawaii Int’l Conf. System Sciences (HICSS),
2004.

[10] W. Lee, A. Cinzia Squicciarini, and E. Bertino, “The
Design and Evaluation of Accountable Grid Computing
System,” Proc. 29th IEEE Int’l Conf. Distributed
Computing Systems (ICDCS ’09), pp. 145-154, 2009.

[11] J.W. Holford, W.J. Caelli, and A.W. Rhodes, “Using
Self- Defending Objects to Develop Security Aware
Applications in Java,” Proc. 27th Australasian Conf.
Computer Science, vol. 26, pp. 341-349, 2004.

[12] A. Squicciarini, S. Sundareswaran, and D. Lin,
“Preventing Information Leakage from Indexing in the
Cloud,” Proc. IEEE Int’l Conf. Cloud Computing, 2010.

[13] X. Feng, Z. Ni, Z. Shao, and Y. Guo, “An Open
Framework for Foundational Proof-Carrying Code,” Proc.
ACM SIGPLAN Int’l Workshop Types in Languages
Design and Implementation, pp. 67-78, 2007

[14] M.C. Mont, S. Pearson, and P. Bramhall, “Towards
Accountable Management of Identity and Privacy: Sticky
Policies and Enforceable Tracing Services,” Proc. Int’l
Workshop Database and Expert Systems Applications
(DEXA), pp. 377-382, 2003.



Peela et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 209

[15] R. Bose and J. Frew, “Lineage Retrieval for
Scientific Data Processing: A Survey,” ACM Computing
Surveys, vol. 37, pp. 1- 28, Mar. 2005

[16] P. Buneman, A. Chapman, and J. Cheney,
“Provenance Management in Curated Databases,” Proc.
ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’06), pp. 539-550, 2006.

[17] R. Hasan, R. Sion, and M. Winslett, “The Case of the
Fake Picasso: Preventing History Forgery with Secure
Provenance,” Proc. Seventh Conf. File and Storage
Technologies, pp. 1-14, 2009.

[18] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely,
“Towards a Theory of Accountability and Audit,” Proc.
14th European Conf. Research in Computer Security
(ESORICS), pp. 152-167, 2009.

[19] J.H. Lin, R.L. Geiger, R.R. Smith, A.W. Chan, and
S. Wanchoo, Method for Authenticating a Java Archive
(jar) for Portable Devices, US Patent 6,766,353, July
2004.

[20] Trusted Java Virtual Machine IBM,
http://www.almaden.ibm. com/cs/projects/jvm/, 2012.

9. About the Authors:

Peela Venkata Ganesh is currently pursuing his
M.Tech in (Information Technology) Department
of Computer Science and Systems Engineering at
Andhra University, Visakhapatnam. His area of
interests is Cloud Computing and Networks.

Peri Srinivasa Rao is currently working as an HOD
in Department of Computer Science and Systems
Engineering at Andhra University, Visakhapatnam.
His area of interests is Cloud Computing, Data
Mining, Software Engineering and Networks.


