
Puli / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 786

Implementing Android Application security

1Puli Rushyanth

1
M.Tech Student,Dept of CSE

KLUniversity,Guntur,Andhra Pradesh,India

Abstract:

Android has a unique security model, which

focuses on putting the user in control of the

device. Android devices however, don’t all

come from one place, the open nature of the

platform allows for proprietary extensions and

changes. These extensions can help or could

interfere with security, being able to analyze a

distribution of Android is therefore an important

step in protecting information on that system.

This document takes the reader through the

security model of Android, including many of

the key security mechanisms and how they

protect resources. This background information

is critical to being able to understand the tools

Jesse will be presenting at Black Hat, and the

type of information you can glean from the

tools, and from any running Android distribution

or application you wish to analyze.

1.Introduction:

Android is a Linux platform programmed with

Java and enhanced with its own security

mechanisms tuned for a mobile environment .

Android combines OS features like efficient

shared memory, preemptive multi-tasking,

Unix user identifiers (UIDs) and file permissions

with the type safe Java language and its

familiar class library. The resulting security

model is much more like a multi-user server

than the sandbox found on the J2ME or

Blackberry platforms. Unlike in a desktop

computer environment where a user’s

applications all run as the same UID, Android

applications are individually siloed from each

other. Android applications run in separate

processes under distinct UIDs each with distinct

permissions. Programs can typically neither

read nor-write each other’s data or code, 4 and

sharing data between applications must be

done explicitly. The Android GUI environment

has some novel security features that help

support this isolation. Mobile platforms are

growing in importance, and have complex

requirements including regulatory compliance .

Android supports building applications that use

phone features while protecting users by

minimizing the consequences of bugs and

malicious software. Android’s process isolation

obviates the need for complicated policy

configuration files for sandboxes. This gives

applications the flexibility to use native code

without compromising Android’s security or

granting the application additional rights.

Our popularity-focused security analysis

provides insight into the most frequently used

applications. Our findings inform the following

broad observations.

1. Similar to past studies, we found wide misuse

of privacy sensitive information—particularly

phone identifiers and geographic location.

Phone identifiers, e.g., IMEI, IMSI, and ICC-ID,

were used for everything from “cookie-esque”

tracking to accounts numbers.

2. We found no evidence of telephony misuse,

background recording of audio or video, abusive

connections, or harvesting lists of installed

applications.

Puli / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 787

3. Ad and analytic network libraries are

integrated with 51% of the applications studied,

with Ad Mob (appearing in 29.09% of apps) and

Google Ads (appearing in 18.72% of apps)

dominating. Many applications include more

than one ad library.

Figure 1: The Android system architecture

2 Background

Android: Android is an OS designed for

smartphones. Depicted in Figure 1, Android

provides a sandboxed application execution

environment. A customized embedded Linux

system interacts with the phone hardware and an

off-processor cellular radio. The Binder

middleware and application API runs on top of

Linux. To simplify, an application’s only

interface to the phone is through these APIs.

Each application is executed within a Dalvik

Virtual Machine (DVM) running under a unique

UNIX uid. The phone comes pre-installed with a

selection of system applications, e.g., phone

dialer, address book. Applications interact with

each other and the phone through different forms

of IPC. Intents are typed interprocess messages

that are directed to particular applications or

systems services, or broadcast to applications

subscribing to a particular intent type. Persistent

content provider data stores are queried through

SQL-like interfaces. Background services

provide RPC and callback interfaces that

applications use to trigger actions or access data.

Finally user interface activitiesreceive named

action signals from the system and other

applications. Binder acts as a mediation point for

all IPC. Access to system resources (e.g., GPS

receivers, text messaging, phone services, and

the Internet), data (e.g., address books, email)

and IPC is governed by permissions assigned at

install time. The permissions requested by the

application and the permissions required to

access the application’s interfaces/data are

defined in its manifest file. To simplify, an

application is allowed to access a resource or

interface if the required permission .

3.Android Permissions Review:

Applications need approval to do things their

owner might object to, like sending SMS

messages, using the camera or accessing the

owner’s contact database. Android uses manifest

permissions to track what the user allows

applications to do. An application’s permission

needs are expressed in its AndroidManifest.xml

and the user agrees to them upon install14.

When installing new software, users have a

chance to think about what they are doing and to

decide to trust software based on reviews, the

developer’s reputation, and the permissions

required. Deciding up front allows them to focus

on their goals rather than on security while

using applications. Permissions are sometimes

called ―manifest permissions‖ or ―Android

permissions‖ to distinguish them from file

permissions.

4. Evaluating Android Security

Our Android application study consisted of a

broad range of tests focused on three kinds of

analysis: a) exploring issues uncovered in

previous studies and malware advisories, b)

Puli / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 788

searching for general coding security failures,

and c) exploring misuse/security failures in the

use of Android framework. The following

discusses the process of identifying and

encoding the tests.

4.1 Analysis Specification We used four

approaches to evaluate recovered source code:

control flow analysis, data flow analysis,

structural analysis, and semantic analysis.

Unless otherwise specified, all tests used the

Fortify SCA [2] static analysis suite, which

provides these four types of analysis. The

following discusses the general application of

these approaches. The details for our analysis

specifications can be found in the technical

report .Control flow analysis. Control flow

analysis imposes constraints on the sequences of

actions executed by an input program P,

classifying some of them as errors. Essentially, a

control flow rule is an automaton A whose input

words are sequences of actions of P—i.e., the

rule monitors executions of P. An erroneous

action sequence is one that drives A into a

predefined error state. To statically detect

violations specified by A, the program analysis

traces each control flow path in the tool’s model

of P, synchronously “executing” A on the

actions executed along this path. Since not all

control flow paths in the model are feasible in

concrete executions ofP, false positives are

possible. False negatives are also possible in

principle, though uncommon in practice. Figure

4 shows an example automaton for sending

intents. Here, the error state is reached if the

intent contains data and is sent unprotected

without specifying the target component,

resulting in a potential unintended information

leakage. Init p1 p2 p3 p4 p5 p6

p1 = i.$new_class(...)

p2 = i.$new(...) |

 i.$new_action(...)

p3 = i.$set_class(...) |

 i.$set_component(...)

p4 = i.$put_extra(...)

p5 = i.$set_class(...) |

 i.$set_component(...)

p6 = $unprotected_send(i) |

 $protected_send(i, null)

targeted error

empty has_data

Figure 2: Example control flow specification

Data flow analysis.

 Data flow analysis permits the declarative

specification of problematic data flows in the

input program. For example, an Android phone

contains several pieces of private information

that should never leave the phone: the user’s

phone number, IMEI (device ID), IMSI

(subscriber ID), and ICC-ID (SIM card serial

number). In our study, we wanted to check that

this information is not leaked to the network.

While this property can in principle be coded

using automata, data flow specification allows

for a much easier encoding. The specifi cation

declaratively labels program statements

matching certain syntactic patterns as data flow

sources and sinks. Data flows between the

sources and sinks are violations. Structural

analysis. Structural analysis allows for

declarative pattern matching on the abstract

syntax of the input source code. Structural

analysis specifications are not concerned with

program executions or data flow, therefore,

analysis is local and straightforward. For

example, in our study, we wanted to specify a

bug pattern where an Android application mines

the device ID of the phone on which it runs. This

pattern was defined using a structural rule that

Puli / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 789

stated that the input program called a method

getDeviceId() whose enclosing class was

android.telephony.TelephonyManager. Semantic

analysis. Semantic analysis allows the

specification of a limited set of constraints on

the values used by the input program. For

example, a property of interest in our study was

that an Android application does not send SMS

messages to hard coded targets. To express this

property, we defined a pattern matching calls to

Android messaging methods such

assendTextMessage(). Semantic specifications

permit us to directly specify that the first

parameter in these calls (the phone number) is

not a constant. The analyzer detects violations to

this property using constant propagation

techniques well known in program analysis

literature.

Conclusion:

Android applications have their own identity

enforced by the system. Applications can

communicate with each other using system

provided mechanisms like files, Activities,

Services, BroadcastReceivers, and

ContentProviders. If you use one of these

mechanisms you need to be sure you are talking

to the right entity — you can usually validate it

by knowing the permission associated with the

right you are exercising, While our findings of

exposure of phone identifiers and location are

consistent with previous studies, our analysis

framework allows us to observe not only the

existence of dangerous functionality, but also

how it occurs within the context of the

application.Its provide the security.

References:

[1] Fernflower - java decompiler.

http://www.reversed-java.com/fernflower/.

[2] Fortify 360 Source Code Analyzer (SCA).

https://www.fortify.com/products/fortify360/sou

rce-code-analyzer.html.

[3] Jad. http://www.kpdus.com/jad.html.

[4] Jd java decompiler.

http://java.decompiler.free.fr/.

[5] Mocha, the java decompiler.

http://www.brouhaha.com/~eric/software/mocha

/.

[6] ADMOB. AdMob Android SDK: Installation

Instructions.

http://www.admob.com/docs/AdMob_Android_

SDK_Instructions.pdf. Accessed November

2010.

[7] ASHCRAFT, K., AND ENGLER, D. Using

Programmer-Written Compiler Extensions to

Catch Security Holes. In Proceedings ofthe

IEEE Symposium on Security and Privacy

(2002).

[8] BBC NEWS. New iPhone worm can act like

botnet bsay experts.

http://news.bbc.co.uk/2/hi/technology/

8373739.stm, November 23, 2009.

[9] BORNSTEIN, D. Google i/o 2008 - dalvik

virtual machine internals.

http://www.youtube.com/watch?v=ptjedOZEXP

M.

http://news.bbc.co.uk/2/hi/technology/

