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Abstract— Several studies have expressed different
forms of production functions and frontier
production functions with different distribution
structures of each one of the error term. The
maximum likelihood parameter estimation gives
problems in the estimation due to the non linearity.
Here an attempt is made to use the simulation
exercise in the estimation of parameters. As the
sample size and the replications are increased the
estimates convergeto thereal value.
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|. INTRODUCTION

The theoretical definition of a production
function expressing the maximum amount of
output obtainable from a given input bundles with
fixed technology has been accepted for many
decades. And for amost as long, the researchers
have been using the average production functions.
The concept of frontier production function is
introduced to bridge the gap between the theory
and the empirical work. The latest in this is the
splitting of the error term into two one is set to be
the normal and the other has one - sided
distribution. This has helped to overcome the
shortcoming of the previous research work.

[I. PARAMETRIC FRONTIER MODELS

For a given firm (i*" firm) we write

J"'|'=JF[,I|'-.H} (1
as the production relation. In this y; is the
maximum output obtainable from x;, a vector of
(non- stochastic) inputs, and B is the unknown
parameter vector to be estimated.

The mathematical programming approach of
estimation of B is based on a cross section of N
firmswithin aciven industry. 1t isby minimizing

Dy~ B,

Subjectto ¥ = fla,; B,
WhichisalLPif fix;; ) islinearinf.
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Alternatively if instead of mod we use the sguare
subject to the same constraint, it is quadratic
programming provided fix,; B) islinear.

One major drawback in these is that these are
highly sensitive to outliers. This has made the
researchers to go for the “ Probabilistic” frontiers.
Here the estimation is the same as the mathematical
programming (LP) techniques discussed above, the
only addition is that a specified proportion of
observations is alowed to lie above the frontier.
The selection of this proportion is essentialy
arbitrary, lacking explicit economic or statistical
justification. Another problem involves reconciling
the observations above the frontier with the concept
of frontier with maximum possible output. Thisis
accomplished by appealing to measurement error in
extreme observations. Still, it seems preferable to
incorporate the possibility of measurement error,
and of other unobservable Shocks, in a less
arbitrary fashion.

Since the mathematical programming results do
not sutisfy the slatistical properties, it is decided to
ado a one — sided disturbance to (1) with which
the madzl becomes

yo=flxy; By+g;; i=12,....,N 2

Where £,20 After prescribing the
distribution assumption for €;. the model can be
estimated by the maximum - likelihood techniques.
In the particular case when —€&; has an exponential
distribution it leads to the LF techniques, on the
other hand —~&; is half — normal leads to Quadratic
Programming (QP) technique. The estimates
through the above methods discussed since
¥ = flx;; &), the random variable y depends on
the parameiers to be estimated and hence the
asymptotic properties of the behavior of the
distribution of the parameters cannot be done.
Hence the full knowledge of the frontier after
estimation cannot be done.

For this purpose the same set of Research
group constructed an aternate error structure as
follows:
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f:i—
{E.‘- IN1=8,if €>0, i=12..,N

g /B, if £<0,
(3}

Where €; areindependent normally distributed
random variables with zero mean and constant
variarce *.

For 0<f <1 ; otherwise , ; has either the
negative or positive truncated norinal distribution,
when f# = 1 or # = 0, respectively.

Here the justification is that the firms are
pressured to differ in their ‘production’ of ¥ for a
given set of values for the ‘inputs’ according to
random variation in (1) their ability to utilize ‘best
practice’ ‘echmology, a source of error that is one —
sided ( ;= @). and/or (2) an input quantity or
measurerent efror in ¥ , a symmetric error. The
parameter £ is interpreted as the measure of
‘relative variahility” in those two ertor sources. its
values circumscribing the full frontier funcion
(f# = 1), the ‘average’ function (E‘ = :j , and
intermediate cases of some: interest.

In the above if # — 1, the positive error
component has a large variance and hence it has
small influence in the likelihood function and the
negative error dominates. This gives rise to the
“full™ frontier as the limiting case (# =1). A
similar interpretation follows for # — 0 . When £
= : . the likelihood has the form: of a mixture of

two half-normal’s , each with equal influence.

I, A 21U HASTIC FRONTIER

Here the basic model 15 (2)
¥y=Fflx:B)+E,i=12 .. N (@)
Where £;= 1, +1;

Here 1w is the symmetric disturbance : ieg,
{v;} are assumed to be i.0.d.N{O,a?) . u; is
essumed to be distributed independently of v;, and
to satisfy u; = 0. Here we are particular 1o the case
wherein u; is assumed to be WN{0,s*) which is
truncated about at zero, One other which is also
tenable is the exponential distribution for —u; .
When g = 0, the model becomes a deterministic
frontier modd , @i =10 make it the usua
stochastic production function model.

The non-positive distribution  u;  reflects
the fact that each firm®s output must lic on or
below its frontier [f(x,; )+ v;]. Any such
deviation is the result of factors undei the firms
control , such as technical and economic
inefficiency , the will and effort of the producer and
his employee, and perhaps such factors as defective
and damaged product. But the frontier itself can
vary randomly across firms, or over time for the
same firm. On this interpretation, the frontier is
stochastic, with random distribution v; =-< 0
being the result of favourable as wel as
unfavourable external events such as luck, climate
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topography, and machine performance. Errors of
observation and measurement on ¥ constiiue
another source of 1; =-< 0.

One additionil advantage in this appreach is
that we can estimate the variances of v; and u; , 30
as to get evidence on their relative sizes. Another
implication of this approach is that productive
efficiency should , in principle, he measured by the
ratio

vi ! [fCx B)+w] (5
rather than by the ratio
yi [LfCx; B)], (6)

This simply distinguishes productive
inefficiency from other sources of disturbance that
are beyond the control of the firm’s. For example, a
farmer whose crop is decimated by drought or
storm is unlucky on our measure (5) , but
inefficient by the used measure (6).

To simplify the discussion on the estimates,
we consider the linear model. Mow the equationin
the matrix form is

y=Xg+ , (7)
Instead of (2),now = v+ u.

I\V. ESTIMATION OF THE STOCHASTIC FRONTIER
MOTIET
The density function of € is
m

fle) = ]ffu,EJ du
Where :

£t € 1 —u® (0 +u)?
u,e)= EXp = — —

O, i 2af 2ai
on integration w.r.lo u it gives

Fle) == f* (EJ [1—F (€da)],—ca <
a al ' ' B
= m (B)
Where o’ =g +al A=g, /a,and £'() and
F'(y  are the standard normal density and
distribution functions respectively. This density is
asymmetric around zero and it's mean and
variance are

_ V2
Eie) = E{u) = —= T,
VT
Vie) = Viu) + V(1)
m—2y . !
_( T }arf"'ﬂtfl (9)

Here 4 15 an indication of the refatrve variehility of
the two sources of random error that distinguish
firms from one another. A* - 0 implies g — oo
and /or ae — 0, that is the symmetric error
dominates in the determination of £. In this case
(8) becomes the density of @ N(0,a*) random
variable. Similarly when a? — 0, the one sided
error  becomes the dominated source of random
variation and (5) isthen the negative half-normal.

The estimation is done by maximizing the
likelihood.
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(10)
is the size of the sample. Various solution aigorithms are available for

nt (Y/g.4a®) =N nZ4NIng™ + 3 In(l ~ F'(& Aa)] ~ 75 Bk, &
With respect to a* ., A and 8. Here N

solution.

V. MONTE CARLO APPLICATION

To find some specific information about small sample behavior of the ML estimation already discussed, we
congtructed two limited Monte Carlo experiments fully by using simulation data for each variable within
specified limits.

A. lllustration: |

Themodel consideredisy; = ; (i=12,....,N)

Monte Carlo results for the model ¥; = ;
4 =1845,1.342,0.838

number of replication 200 sample size 100 vaue of

TABLE1
1.845 1.342 0.838
»* =X (0,06) e AHTNTS) o =aE ) 04)
et (23 1-:rn<'rr'¢:3|l]|; 1 oSl I8y
A 1-ESEs _ 3.0021 A= 130 W25 A 0985 _ g0
\.Hm,:i. :: oo 2 (0.02) \.H.uh,%d _”.Ism 1 (0.023) \.Hm,;i U a3 (0.020)

(0.001) 5 =157 5 (0.04
(AR A T = |l[009)

(AR i)

(0.002) & = 5ie 1
Tr CHRT Y, :'LI h'.:'f i )048)

T

(0.0015) " =75 (3(0.038)
TRy g £ [TI'JE:IrtO 058)

qarAEEl 5

1;r11H::“|1b"|'? grnl“':ﬁ"lm?“” ‘;””" 1|1L|Hi"’:? '
4 d 02 hg (02 018 (2
w.ovsy 2 = 0073(0.026) \.nm,-r;f o 0023(0029) | (o2 d -"I’mﬂa(oozs)
(0.005) % == 3(0.044) | (0.004) % == 1(0.049) | (0.003) % =— %0.041)

Same as above with same number of replication and sample size isincreased to 200 with the same model.

TABLE 2
1.845 1.342 0.838
£ = 1iTK 0 14) % = uliTii0,06) f'ﬂ"\ﬁuooa
4n:umr5|_i:,-l”il 4-:Hr.'tr5 H;,”"‘?h 4_-:Hr? -'I
w008y o F=t oo (0.021) LI =50 (0.03) f;wh,g'; = 0002 (0.02)
(0.005) 7 =""—=(0.045) | (0.004)~ ="1.003 {9.051) (0.003)~ =3 (0.04)

Where  isgenerated by (8) with valuesfor o and a? in two different farm data already studied by
two researchers (unpublished Ph.D thesis).
The results and the details of the values of al the para meters used in the ssimulation are reported Table 1. The
results indicate only very small bias and especially a, a; arevery well since MSE isvery low in aimost all
the cases.
In Table 2 since sample sizeis doubled , the precisions are still higher for all , which indicates the importance of
very large samples in simulation studies. One important thing is that no regression is needed.

WValues in parenthesis to the right side of the parameters are the MSE’s. Values in parameters to the left of
Eo@l , a@b are the true values of the parameters used in simulation for all the 4 tables.

TABLE 3
1.845 1.342 0.838

7% =054 (0.08) a7 - 0.031(0.08) T = 0.040(0.07)

:n;:l (LHTY T'T” y (0L MG 'I‘{II:" (.53}
2 o 085 (041) 3 Uz,qil 17} i w0 oz
U.nos) % i = s (0018) ©.002) 7% ¢ ”‘Linrfa 026) | (0.001) ’” = o (0.013)
(. 001)?»—| i ,(O 050) (. 0015)? —n-'mi |[]( 056) (0. 002)? f | ,(0 006)
S Gory Tk By | eI 01k oo

RT3 ) B R RN FFART (0D}
G = 08 (0.15) 3 o 02 (0.23) 2w 03 (0.23)
Un)08) )42 i =0 0014(0015) | (0.006) 2% i =0 b3 (0014) | 0.002) ZE =0 o oL
©.005) 2 =" 00s2) | (000s) F =" 0.081) | (0.008) % =" (0.004)
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Hiustration : 11

Here the experiment is repeated by changing the model to » =u+ ; (i= 12, ...,N). Already
Eig) =0 now the effect of u . the intercept is questionable and the results presented in Table 3 and Table 4
reveal the following:
Monte Carlo results for the model y; =p+ ;: number of replication= 200, sample size is 100.
M=10,A=1845,1.342,0.838*
Same as above with sample number and of replication and sample size is increased to 200 with the same
model.

TABLE4
1.845 1.342 0.838
7= 0068 I'0,047) -F< = 1.043 F€ = 1.048
*'“-1}:-;':;-[]_ 1% (G, (.52} (G (0L36)
2.AHlg 5 1.53y fs L HT S A0
E TosE T o e inol® b (003
A=08 LY aw 08 A0 o0 | A= 250 oan
{1.008) dy =0 (11.006) 5= o7 (0.002) ;1 003t
(0.005) &% =078 10.004) 4y = 0007 (0.003) i ==

In Table 3 the results for A are altered somewhat with some cases of negative bias. Moreover , the additional
parameter has reduced the values of @3 and hence @, In the previous cases the estimates were very sharp and
this change is due to the presence of ji. Ancther important achievement is that when the sample sizeisincreased
thereis not much of changein the results in the error is aso minimized. Now the result are comparable with that
of Aigner Amemiyaand Poirier (1976).

[10] Zellner, A.Kmenta, J. and JDreze, 1966, Specification
V1. CONCLUSION and estimation of Cobb-Douglas, Production Functions,
As illustrated the use of simulation in the Econometric a24, Oct , 784 - 795.
parameter estimation from the ML for the
stochastic  frontier production function is a
possibility with reduced calcul ation.
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