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Abstract– Several studies have expressed different
forms of production functions and frontier
production functions with different distribution
structures of each one of the error term. The
maximum likelihood parameter estimation  gives
problems in the estimation due to the non linearity.
Here an attempt is made to use the simulation
exercise in the estimation of parameters. As the
sample size and the replications are increased the
estimates converge to the real value.
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I. INTRODUCTION

The theoretical definition of a production
function expressing the maximum amount of
output obtainable from a given input bundles with
fixed technology has been accepted for many
decades. And for almost as long, the researchers
have been using the average production functions.
The concept of frontier production function is
introduced to bridge the gap between the theory
and the empirical work.  The latest in this is the
splitting of the error term into two one is set to be
the normal and the other has one – sided
distribution.  This has helped to overcome the
shortcoming of the previous research work.

II. PARAMETRIC FRONTIER MODELS

For a given firm ( firm) we write= ( ; ) (1)
as the production relation.  In this is the
maximum output obtainable from , a vector of
(non- stochastic) inputs, and β is the unknown
parameter vector to be estimated.

The mathematical programming approach of
estimation of β is based on a cross section of  N
firms within a given industry.  It is by minimizing

| − ( ; )| ,
Subject to ≤ ( ; ) ,
Which is a LP if ( ; ) is linear in β.

Alternatively if instead of mod we use the square
subject to the same constraint, it is quadratic
programming provided ( ; ) is linear.

One major drawback in these is that these are
highly sensitive to outliers.  This has made the
researchers to go for the “ Probabilistic” frontiers.
Here the estimation is the same as the mathematical
programming (LP) techniques discussed above, the
only addition is that a specified proportion of
observations is allowed to lie above the frontier.
The selection of this proportion is essentially
arbitrary, lacking explicit economic or statistical
justification. Another problem involves reconciling
the observations above the frontier with the concept
of frontier with maximum possible output.  This is
accomplished by appealing to measurement error in
extreme observations.  Still, it seems preferable to
incorporate the possibility of measurement error,
and of other unobservable Shocks, in a less
arbitrary fashion.

Since the mathematical programming results do
not satisfy the statistical properties, it is decided to
add a   one – sided disturbance to (1) with which
the model becomes= ( ; ) +∈ ; = 1,2, … . , (2)

Where ∈ ≤ 0 . After prescribing the
distribution assumption for ∈ , the model can be
estimated by the maximum – likelihood techniques.
In the particular case when −∈ has an exponential
distribution it leads to the LP techniques, on the
other hand −∈ is half – normal leads to Quadratic
Programming (QP) technique.  The estimates
through the above methods discussed since≤ ( ; ),  the random variable y depends on
the parameters to be estimated and hence the
asymptotic properties of the behavior of the
distribution of the parameters cannot be done.
Hence   the full knowledge of the frontier after
estimation cannot be done.

For this purpose the same set of Research
group constructed an alternate error structure as
follows:
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∈ =∈∗ / √1 − , ∈∗> 0, = 1,2, … ,∈∗ / √ , ∈∗≤ 0,
(3)

Where ∈∗ are independent normally distributed
random variables with zero mean and constant
variance .
For 0 < < 1 ; otherwise , ∈∗ has either the
negative or positive truncated  normal distribution,
when = 1 or = 0 , respectively.

Here the justification is that the firms are
pressured to differ in their ‘production’ of for a
given set of values for the ‘inputs’ according to
random variation in (1) their ability to utilize ‘best
practice’  technology, a source of error that is one –
sided (∈ ≤ 0), and/or  (2) an input quantity or
measurement error in , a symmetric error. The
parameter is interpreted as the measure of
‘relative variability’ in those two error sources, its
values circumscribing the full frontier function( = 1), the ‘average’ function = , and

intermediate cases of some interest.
In the above if → 1 ,  the positive error

component has a large variance and hence it has
small influence in the likelihood function and the
negative error dominates. This gives rise to the
‘‘full’’  frontier as the limiting case ( = 1). A
similar interpretation follows for → 0 . When= , the likelihood has the form of a mixture of

two half-normal’s , each with equal influence.

III. A STOCHASTIC FRONTIER

Here the basic model is  (2)= ( ; ) +∈ , = 1,2, … , (4)
Where ∈ = +

Here is the symmetric disturbance : ie,{ } are assumed to be . . . (0 , ) , is
assumed to be distributed independently of , and
to satisfy ≤ 0. Here we are particular to the case
wherein is assumed to be (0 , ) which is
truncated about at zero. One other which is also
tenable is the exponential distribution for − .
When = 0 , the model becomes a deterministic
frontier model , = 0 make it the usual
stochastic production function model.

The non-positive distribution reflects
the fact that each firm’s output must  lie on or
below its frontier [ ( ; ) + ]. Any such
deviation is  the result of factors under the firms
control , such as technical and economic
inefficiency , the will and effort of the producer and
his employee, and perhaps such factors as defective
and damaged product.  But the frontier itself can
vary randomly across firms, or over time for the
same firm.  On this interpretation, the frontier is
stochastic, with random distribution >∕< 0
being the result of favourable as well as
unfavourable external events such as luck, climate

topography, and machine performance.  Errors of
observation and measurement on constitute
another source of >∕< 0.

One additional advantage in this approach is
that we can estimate the  variances of and , so
as to get evidence on their relative sizes. Another
implication of this approach is that productive
efficiency should , in principle, he measured by the
ratio ∕ [ ( ; ) + ] , (5)
rather than by the ratio∕ [ ( ; ) ] , (6)

This simply distinguishes productive
inefficiency from other sources of disturbance that
are beyond the control of the firm’s. For example, a
farmer whose crop is decimated by drought or
storm is unlucky on our measure (5) , but
inefficient by the used measure (6).

To simplify the discussion on the estimates,
we consider the linear model. Now the equation in
the matrix form is= + ∈ , (7)
Instead of  (2) , now ∈ = + .

IV. ESTIMATION OF THE STOCHASTIC FRONTIER

MODEL

The density function of ∈ is(∈) = ( , ∈)
Where( , ∈) = 1 exp −2 − (∈ + )2
on integration w.r.to u it gives(∈) = 2 ∗ ∈ [1 − ∗ (∈ σ )] , −∞ ≤∈≤ ∞ (8)
Where = + . = / and ∗(∙) and∗(∙) are the standard normal density and
distribution functions respectively. This density is
asymmetric around zero and it’s mean and
variance are (∈) = ( ) = − √2√(∈) = ( ) + ( )= − 2 + (9)
Here is an indication of the relative variability of
the two sources of random error that distinguish
firms from one another. → 0 implies → ∞
and  / or → 0 , that is the symmetric error
dominates in the determination of ∈. In this case
(8) becomes the density of a (0 , ) random
variable.  Similarly when → 0, the one sided
error  becomes the dominated source of random
variation and (5) is then the negative half-normal.

The estimation is done by maximizing the
likelihood.
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ln , , = ln √√ + ln + ∑ ln[1 − ∗(∈ )] − ∑ ∈ (10)

With respect to , and . Here is the size of the sample. Various solution algorithms are available for
solution.

V. MONTE CARLO APPLICATION

To find some specific information about small sample behavior of the ML estimation already discussed, we
constructed two limited Monte Carlo experiments fully by using simulation data for each variable within
specified limits.

A. Illustration: I

The model considered is = ∈ ( = 1,2, … . , )
Monte Carlo results for the model = ∈ ; number of replication 200 sample size 100 value of= 1.845 , 1.342 , 0.838 ∗

TABLE 1

1.845 1.342 0.838
(0.063) = 0.058 (0.06)

=1.854 (0.23)
(0.003) = 0.0026 (0.02)
(0.001) = 0.0015 (0.04)

(0.057) =0.058 (0.05)
= 1.360 (0.021)

(0.002) = 0.0025 (0.023)
(0.0015) = 0.0018(0.038)

(0.051) =0.048 (0.04)
= 0.912 (0.018)

(0.001) = 0.0015 (0.020)
(0.002) = 0.0023(0.035)

(0.087) = 0.071 (0.09)
=1.856 (0.21)

(0.008) = 0.0028 (0.026)
(0.005) = 0.0018 (0.044)

(0.079) = 0.063 (0.058)
=1.368 (0.021)

(0.006) = 0.0028 (0.029)
(0.004) = 0.0021 (0.049)

(0.073) =0.051 (0.048)
= 0.840 (0.023)

(0.002) = 0.0020 (0.026)
(0.003) = 0.0034(0.041)

Same as above with same number of replication and sample size is increased to 200 with the same model.

TABLE 2

1.845 1.342 0.838
(0.087) = 0.78 (0.14)

=1.86 (0.20)
(0.008) = 0.007 (0.021)
(0.005) = 0.004 (0.045)

(0.079) = 0.070 (0.06)
=1.39 (0.025)

(0.006) = 0.004 (0.03)
(0.004) = 0.003 (0.051)

(0.073) = 0.059 (0.05)
= 0.841

(0.002) = 0.0019 (0.02)
(0.003) = 0.0028 (0.04)

Where ∈ is generated by (8) with values for and in two different farm data already  studied by
two researchers (unpublished Ph.D thesis ).
The results and the details of the values of all the parameters used in the simulation are reported Table 1. The
results indicate only very small bias and  especially , are very well since  MSE is very low in almost all
the cases.
In Table 2 since sample size is doubled , the precisions are still higher for all , which indicates the importance of
very large samples in simulation studies. One important thing is that no regression is needed.

 Values in parenthesis to the right side of the parameters are the MSE’s. Values in parameters to the left of, , are the true values of the parameters used in simulation for all the 4 tables.

TABLE 3

1.845 1.342 0.838
(0.063) = 0.054 (0.08)

=1.841 (0.87)̂ = 0.88 (0.11)
(0.003) = 0.006 (0.018)
(0.001) = 0.005 (0.050)

(0.057) = 0.051 (0.08)
=1.346 (0.86)̂ = 0.83 (0.17)

(0.002) = 0.005 (0.026)
(0.0015) = 0.006 (0.056)

(0.051) = 0.040 (0.07)
=1.912 (0.84)̂ = 0.71 (0.20)

(0.001) = 0.003 (0.013)
(0.002) = 0.009 (0.006)

(0.087) = 0.061 (0.013)
=1.91 (0.93)̂ = 0.84 (0.18)

(0.008) = 0.0014 (0.015)
(0.005) = 0.0010 (0.032)

(0.079) = 0.058 (0.072)
=1.57 (0.089)̂ = 0.82 (0.25)

(0.006) = 0.0023 (0.014)
(0.004) = 0.0020 (0.031)

(0.073) = 0.051 (0.030)
=0.847 (0.06)̂ = 0.71 (0.23)

(0.002) = 0.004 (0.011)
(0.003) = 0.008 (0.004)
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Illustration : II

Here the experiment is repeated by changing the model to = +∈ ( = 1,2, … . , ). Already(∈) = 0 now the effect of , the intercept is questionable and the results presented in Table 3 and Table 4
reveal the following:

Monte Carlo results for the model y = μ +∈ ;  number of  replication= 200 , sample size is 100.μ = 1.0 , λ = 1.845 , 1.342 , 0.838*
Same as above with sample number and of replication and sample size is increased to 200 with the same

model.

TABLE 4

1.845 1.342 0.838
(0.087) = 0.068 (0.047)

=2.00 (1.11)̂ = 0.88 (0.017)
(0.008) = 0.004
(0.005) = 0.008

(0.079) = 0.043
=1.53 (0.82)̂ = 0.93 (0.019)

(0.006) = 0.002
(0.004) = 0.007

(0.073) = 0.048
=0.87 (0.36)̂ = 0.62 (0.039)

(0.002) = 0.0011
(0.003) = 0.0039

In Table 3 the results for are altered somewhat with some cases of negative bias. Moreover , the additional
parameter has reduced the values of and hence . In the previous cases the estimates were very sharp and
this change is due to the presence of ̂ . Another important achievement is that when the sample size is increased
there is not much of change in the results in the error is also minimized. Now the result are comparable with that
of Aigner Amemiya and  Poirier (1976).

VI. CONCLUSION

As illustrated the use of simulation in the
parameter estimation from the ML for the
stochastic frontier production function is a
possibility with reduced calculation.
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