

Subashini et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 669

Abstract - Now-a-days pervasive middleware systems

tends to increased a lot and used in many application

areas like home, health, retail shop, transport, mobile

etc., to use the environment in a smarter way. In the

existing system, middleware has been proposed for each

and every application separately. To use different

middleware for different applications, a generic

middleware is proposed in this paper, so that this

architecture framework can be used in different

applications. To propose a new middleware architecture

framework, a set of pervasive systems architectural

features relevant to all the applications are collected

and corresponding component diagrams are generated

according to the feature selection. At last by the

selection of features, new reference architecture is

generated automatically that does not compromise the

quality of the architecture designed by human

architects.

Keywords – Pervasive Computing, Pervasive

Middleware, Context Awareness, Component Diagram

I. INTRODUCTION

The thought at the back of pervasive computing

is to surround ourselves with computers that are

carefully tuned to put forward an unremarkable

support as we navigate through our work and

personal lives. [1] Pervasive Computing also referred

to as Ubiquitous Computing abbreviated to

“ubicomp” refers to a new sort of computing in

which the computer completely involve into the life

of the users. In pervasive computing, computers are

useful but invisible force, supporting the user in

meeting his or her needs without getting in the way.

Mark Weiser, the father of Ubiquitous

Computing, described it as “The highest ideal is to

make a computer so imbedded, fitting, so natural, that

we use it without even thinking about it.”
Additionally, this computing infrastructure is

supposed to be able to sense the context in which

particular situations takes place and adapt to them

according to its location of use, the people and

objects that are around, and changes of those entities

over time.

The main component of this computing

infrastructure is Context Awareness which describes

a model of computing in which users intermingle

with many different mobile and immobile

computers and categorize a context-aware systems as

one that can adapt according to its location of use, the

group of nearby people and things, as well as the

changes to those things over the course of the day.

The assurance of context-awareness is that computers

will be able to recognize enough of a user’s current

situation to suggest services, resources, or

information appropriate to the particular context. The

features of context to a particular situation may vary

and include the user’s current location, current role,

past movement, and affective state. Further than the

above the feature include the current date and time,

and other things and people in the surroundings.

The most important component in pervasive

architecture is the pervasive middleware. Middleware

can be considered as software which provides a set of

enabling services that exist in between applications

and the basic operating systems, network protocol

stacks and hardware.[2] It allows multiple processes

running on one or more hosts to interact visibly

across a network and can also allow and shorten the

integration of heterogeneous software and hardware

components.

The main concept of this paper is to create a

generic middleware architecture that fits for all type

of pervasive applications in a much easier and

efficient way. This generic architecture uses

reusability concept from Software Engineering

approach called Software Product Line (SPL). It aims

the growth of software components that share a

common and managed set of features. The basics of

the Software Product Line approach are divided

between Domain Engineering, Application

Engineering and variability and commonality

management. Domain Engineering is the

advancement of core assets to be used in the product

Feature Based Generic Middleware

V. Subashini
1
, R. Vivadha

2
, J. Madhusudanan

3

1
 PG Student, Computer Science and Engineering, Sri Manakula Vinayagar Engineering College, Puducherry, India.

2
PG Student, Networking, Sri Manakula Vinayagar Engineering College, Puducherry, India.

3
Research Scholar, Pondicherry University, Puducherry, India.

1 suba89.v@gmail.com, 2 vivadha.tech@gmail.com

mailto:suba89.v@gmail.com
mailto:vivadha.tech@gmail.com

Subashini et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 670

line, while Application Engineering is disturbed with

building the final products on top of the product line

infrastructure. They are loosely coupled and are

coordinated by platform releases. Domain

engineering addresses development for reuse while

application engineering addresses development with

reuse. Variability and commonality management is

for configuring the Software Product Line, adding

new core assets, or enhancing existing ones.

In coming sections we are going to discuss about

the basics of middleware, features of middleware

systems, the proposed work and how it is working

with a scenario.

II. MIDDLEWARE

Middleware is a class of software technologies

designed to help manage the complexity and

heterogeneity inherent in distributed systems. It is a

type of software layer that provides services to

software applications ahead of those available from

the operating system. It is present in between the

operating system the application program on both the

sides of the distributed computing in a network which

provides a common programming abstraction across

a distributed system.[3] Middleware acts as an

abstraction layer that hides detail about the software

used in an application or the hardware devices used.

A middleware layer is used for bridging the back end

systems and the user.

Generally middleware should be easy to use and

should provide language transparency, location

transparency and message integrity.[10] It makes

things visible to the end user, provides consistency,

security, privacy, and capabilities.

Traditional middleware has some common

requirements like network communication,

coordination, heterogeneity, reliability, scalability.

To overcome some of the limitations in existing

middleware solutions and to increase the range of

applicability of middleware, next-generation

middleware gratifies one or more of the following

requirements: dynamic reconfiguration, adaptivity,

context-awareness, asynchronous communication and

lightweight design.

III. FEATURES OF PERVASIVE

MIDDLEWARE SYSTEMS

The optimization of quality is critical for

pervasive systems as they involve invisible operation

that causes them to be miniature in size and work

with limited memory. In order to have a pervasive

computing environment, it is essential to have the

following features like ubiquitous access, context

awareness, intelligent interaction and natural

interaction. Let us discuss in detail about the above

features.

A. Ubiquitous Access

Ubiquitous access is the sensors and the

actuators that transfer input and output between the

real world and the virtual world based on wireless

communication infrastructures.
[4]

 Owing to the

mixture of hardware and software capabilities, a

communication infrastructure is necessary for

preserving knowledge about device characteristics

and organizing consistent device interactions.

B. Context Awareness

Context awareness refers to the ability of the

system to recognize and localize objects as well as

people and their intentions. It also includes tracking

other objects and organizing the activities with

respect to and relative to other objects.[4]

C. Intelligent Interaction

Intelligent interaction refers to the ability of the

technology-rich environment in the pervasive

systems to adapt to people dealing with it.[5]

D. Natural Interaction

Natural interaction refers to the interaction

between the humans and the surrounding

environment and how the surrounding environment

receives inputs from the user and acts upon it.[6]

IV. PROBLEM STATEMENT

This paper mainly focuses on generating an

automatic pervasive middleware architecture that can

be used for any type of application by selecting

features according to the prescribed environment. In

the existing system, for each and every application,

the user has to choose different middleware

architecture to be used in a smarter way. By using

Software Product Line approach from software

engineering, we move to generic architecture instead

of using different architecture for different

Subashini et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 671

environment. [9] Product lines have mainly been

specified for application families that are

distinguished by their multi-layer systems. Analysis

is made for existing pervasive middleware

architectures and a suitable enough reference

architecture has been created that can be used as a

guide for building any type of systems.

Commonality and variability approach is used to

collect set of features from different applications. By

displaying all the features, the designers may select

the needed features according to the environment. By

selecting features, the pervasive architecture is

generated automatically to be used. These

automatically generated architectures are compared

with human designed architecture.

V. PROPOSED APPROACH

The process of generating pervasive middleware

architecture automatically is splitted into three

modules for implementation purpose. In the first

module, the pervasive middleware has to be defined

and main features of pervasiveness have to be

achieved. The features of pervasiveness are discussed

in above section. The second module focuses on

grouping different features from various middleware

architectures and categorizes them according to the

environment. The third module focuses on generating

component based architectures that best matches the

selected features. At last the comparison is done by

automatically generated architecture with human

designed architecture.

VI. IMPLEMENTATION PROCESS

Initially, the features are categorized according

to the environment presented. The needed features

are selected by the designers which have been

displayed in a tree view form. Any type of features

can be added or removed by checking availability the

criteria.

Secondly, the component diagrams are generated

automatically according to feature selection. These

selected features and the component diagrams are

exported in the form of XML documents. The cause

behind using XML throughout the architecture

generation process is that XML is easier and

improved way for normalizing among the tools used

in our approach.

Thirdly, using Visual Studio 2008, programs

have been developed that maps each selected features

to corresponding set of components in XML format.

A tool called RA generator for architecture

generation is designed in order to remove the

unnecessary connections and to glue the unconnected

components that come from different categories

according to a pre-defined lookup table.

Figure 1: Implementation Process

The lookup table is developed by collecting the

similar components together from the different

categories and checking if there could be any relation

among them.

XML Conversion
Gluing

components

XML Conversion

Collected

Features

Component

Diagrams

RA

Generator

Lookup

Table

Final

Architecture

Subashini et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 672

Figure 2: Architecture generation according to feature

selection

At last, a final architecture is generated

according to the designer’s need. By using this

middleware architecture, the designer can use the

living environment in a smarter way.

VII. THE CASE STUDY

A scenario has been worked out for generating

architecture relating to retail shop, banking and

healthcare, in a smarter way.

A. Retail Scenario

The customer enters the retail shop and selects a

shopping cart outfitted with Radio Frequency

IDentification (RFID) readers and Personal Digital

Assistant (PDA). He/ She recognizes to the system

using her RFID enabled loyalty card where the

customer ID is read into the PDA and transmitted to

the authentication server on the cart and gains right of

entry by entering her personal identification number

(PIN). [7] The system logs him/ her in, act in

response with a welcome message and then proceeds

to present a shopping list.

Figure 3: Product details and location

The shopping cart consists of a screen to display

items in the shop as well as items present in the cart.

When the customer chooses an item, details about the

product location is also displayed. While the

customer adds items in the cart, he/ she can see the

item description, manufacturer date, expiry date, and

price of the item. It also shows the total cost of all the

items present inside the cart. If the customer wants to

remove an item from the cart, the system rescans and

the total amount is calculated again.

B. Banking Scenario

After all the items are selected and placed in the

cart, the total amount of the cart is displayed in the

screen and displays options to pay the amount

through direct cash or through internet banking or via

credit card. The customer checks the needed option

and pays the amount. If he/ she selects internet

banking or credit card means, the customer logs into

his/ her personal shopping account to pay the amount

accordingly.

Subashini et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 673

Figure 4: Payment options to pay the cart amount

C. Healthcare Scenario

While walking in the shop, a need might happen

to check for health condition.[8] If a customer

suddenly faces with a certain health condition, he/

she should be reported to physician in nearby hospital

according to the circumstances.

Figure 5: Notifying the health status to physician

The sensor senses the patient’s blood pressure,

temperature and pulse and suggest for drugs reported

by the physician.

VIII. CONCLUSION

We finally conclude that new automatically

generating middleware architecture has been

proposed by feature selection process that meets all

the user requirements in a smarter way. This

approach will not compromise the quality of the

middleware architecture. We have discussed a case

study of retail shop with the requirements, and

indicated how this approach can be used to generate a

pervasive architecture.

This work can be extended by adding new

features and removing the current unnecessary

features for different applications. It should be

extended by including an automated mechanism in

order to sense if there are any inconsistency or

redundancy between the selected features exist. And

at last evaluation is done by comparing the

automatically generated architecture with human

designed architecture with some evaluation metrics

that should not compromise with one another.

Subashini et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 674

REFERENCES

[1] R. Jason Weiss, “Ubiquitous Computing”, Development

Dimensions International, J. Philip Craiger, University of

Nebraska–Omaha,April 2002 Volume 39 Number 4.

[2] “Middleware Issues”, Nato Otan, RTO-TR-IST-030, 2008.

[3] David E. Bakken, “Middleware”, Washington State
University, 2003.

[4] Ferscha. A, “Coordination in pervasive computing

environments”, Proceedings of the Twelfth International

Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE’03). Washington, DC:

IEEE Computer Society, June 2003. Pages: 3 - 9.

[5] Sherif G. Aly, Sarah Nadi, Karim Hamdan, “A Java-Based

Programming Language Support of Location Management in
Pervasive Systems”, International Journal of Computer

Science and Network Security (IJCSNS). Vol. 8 No. 6 pp.

329-336, June 2008.

[6] Yared, Rami and Défago, Xavier, “Software architecture for
pervasive systems”, In Journées Scientifiques Francophones

(JSF), Tōkyō, Japan, November 2003.

[7] Panos Kourouthanasis, George Roussos, “Consumers and

Pervasive Retail”, ELTRUN-Athens University of
Economics and Business, Birkbeck College, 2003.

[8] D. Vassis, P. Belsis, C. Skourlas, G. Pantziou, “A pervasive

architectural framework for providing remote medical

treatment”, Proceedings of the 1st international conference
on PErvasive Technologies Related to Assistive

Environments, July 16-18, 2008.

[9] Javier Munioz, Vicente Pelechano, Carlos Cetina, “Software

Engineering for Pervasive Systems- Applying Models,

Frameworks and Transformations”, IEEE International
Conference on Pervasive Services, 2007.

[10]Vaskar Raychoudhury, Jiannong Cao, Mohan Kumar, Daqiang

Zhang, “Middleware for Pervasive Computing: A Survey”,
2011.

