
Satheesh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 642

Efficient Mac Enforcement Approach For
Intruders In Commercial Operating System

Mr.J.Satheesh kumar#1 B.E.,(M.E), Mr.V.Dinesh,*2M.E.,
#1 Student, Department of CSE, RatnaVel Subramaniam College of Engineering and Technology,

Dindigul Dt,Tamilnadu,India.
#1inspiration.vdm@gmail.com

*2 Assistant Professor, Department of CSE, RatnaVel Subramaniam College of Engineering and Technology,
Dindigul Dt,Tamilnadu,India.
*2dinesh640@gmail.com

ABSTRACT- The firmest barriers to apply MAC to
defeat malware programs are the incompatible and
unusable problems in existing MAC systems. It’s
difficult to avoid malware problem in the commodity
os enforce a practical access control approach to
tackle the malware problems. Design a novel MAC
enforcement approach, named Tracer, which
incorporates intrusion detection and tracing in a
commercial operating system. The approach
conceptually consists of three actions: detecting,
tracing, and restricting suspected intruders. The other
is that, rather than restricting information flow as a
traditional MAC does, it traces intruders and restricts
only their critical malware behaviors, where intruders
represent processes and executables that are potential
agents of a remote attacker. Our prototyping and
experiments on Windows show that Tracer can
effectively defeat all malware samples tested via
blocking malware behaviors while not causing a
significant compatibility problem.

IndexTerms- AccessControl, Precip, Malware,
IntrusionDetection

I.INTRODUCTION

Although protecting confidential
information has long been recognized as one of the
most important security problems,never before has
the demand for its practical solutions been so
imperative. A recent study by Webroot revealed that
about 89% of computers it scanned were infected
with spyware, with an average of 30 instances per
machine This threat can be mitigated by the
techniques which aim at preventing spyware from
being installed or detecting and disinfecting spyware-
riddled hosts However,reliance on these techniques
as the only defense is risky, as evasion of them leaves
confidential information completely unprotected.
Therefore, it is crucial to enable a host to contain

spyware surveillance, preventing data from being
stolen even after attackers manage to breach other
layers of defense. Unfortunately, this cannot be
achieved by the access control mechanisms running
in current commercial systems: for example, though
mainstream word processing software such as
Microsoft Word offers password and encryption
protection to sensitive files, a keylogger can easily
get around such defense by recording the password
used by an authorized party to access these files.
Fundamentally,these mechanisms are designed to
regulate access to resources, not to control
propagation of the information released from the
resources Complementary to these mechanisms are
the technologies for information flow security The
idea is to track and manage sensitive data to prevent
them from flowing into unauthorized parties.
Research in this area started with the famous Bell-
LaPadula (BLP) model The BLP model is designed
to regulate the information flows between subjects
(e.g., processes) and objects (e.g., files) with different
sensitivity levels. Informally, the model forbids a
subject from reading objects with higher sensitivity
levels, or writing objects with lower sensitivity
levels.However, these properties can be too
restrictive for many commercial systems, in which
most applications are multitasked and expected to
work concurrently on the objects with various
sensitivity levels. Moreover, BLP does not model the
resources and input devices shared between sensitive
subjects and public subjects (e.g., clipboard, screen
and keyboard), which are widely used by spyware to
gather sensitive information from the user. More
recent research on information flow security focuses
on tracking and controlling information flows within
a program Many proposals require modifying source
code to enhance it with information-flow policies.
However, the source code of commodity software is
usually not publicly available. we propose a novel
MAC enforcement approach, Tracer, which consists
of three actions: detection, tracing, and restriction.
Each process or executable has two states, suspicious

Satheesh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 643

or benign. An executable in this paper represents an
executable file with a specific extension, such as
.EXE, .COM, .DLL, .SYS,.VBS,.JS, .BAT, or a
special type of data file that can contain executable
codes, say a semi executable, such as .ZIP,
.RAR,.DOC, .PPT, .XLS, and .DOT. The actions of
detection and tracing change the state of a process or
executable to suspicious if it is suspected to be
malicious, and the entity marked as suspicious is
called a suspicious intruder. The action of restriction
forbids a suspicious intruder to perform malware
behaviors in order to maintain
confidentiality,integrity, and availability of the
system, as well as to stop malware propagation. To
be precise, once detecting a suspicious process or
executable, Tracer labels it to be suspicious and
traces its descendent and interacted processes,as well
as the executables it generates. Tracer does not
restrict any operations of benign processes.
Meanwhile,it permits suspicious processes to run as
long as possible but only forbids their malware
behaviors.The novelty of Tracer is that, it
incorporates light-weight intrusion detection and
tracing techniques for configuring security labels,
i.e., labeling suspicious OS entities, which is often
done manually. Moreover, rather than restricting
information flow as a traditional MAC does, it traces
suspected intruders and restricts the malware
behaviors of suspected intruders, i.e., processes and
executables that are potential agents of remote
attackers. These novelties lead to two advantages.
First, Tracer is able to better identify potentially
malicious OS entities and regulate their
behaviors,which in turn significantly reduces the FP
rate which is the root cause of incompatibility in
existing MACenforced systems. Second, Tracer is
able to label OS entities automatically to tackle the
low usability problem which is the other major issue
of existing MAC systems [2].We have implemented
Tracer on Windows and have been using evolving
prototypes of the Tracer system in our lab for a few
months. Our experiments on the function of Tracer
with a set of real-world malware samples
demonstrate that it can effectively block malware
behaviors while offering good compatibility to
applications and good usability to normal
users.Moreover, we have added another experiment
to compare Tracer with existing practical online
malware defense technology. The result shows that
Tracer causes much fewer FPs than commercial
antimalware tools and Mandatory Integrity Control
(MIC) which is a MAC mechanism on Windows
Vista.We investigate the root reasons of
incompatibility and low usability problems of
existing MACs. Although not all the observations are
brand new, we believe that understanding these

reasons more comprehensively and illustrating them
through the design of an actual system are useful for
other MAC researchers.

II. Related Work
Access

The ability to make use of information
stored in computer system. Used frequently as a verb,
to the horror of grammarians.

Access control list
A list of principals that are authorized to

have access to some object.

Authenticate
To verify the identity of a person (or other

agent external to the protection system) making a
request.

Authorize
To grant a principal access to certain

information.CapabilityIn a computer system, an
unforgeable ticket, which when presented can be
taken as incontestable proof that the presenter is
authorized to have access to the object named in the
ticket.

Certify
To check the accuracy, correctness, and

completeness of a security or protection mechanism.
Complete isolation.A protection system that separates
principals into compartments between which no flow
of information or control is possible.

Confinement
Allowing a borrowed program to have

access to data,while ensuring that the program cannot
release the information.

Descriptor
A protected value which is (or leads to) the

physical address of some protected object.

Discretionary
(In contrast with nondiscretionary.) Controls

on access to an object that may be changed by the
creator of the object.

Domain
The set of objects that currently may be

directly accessed by a principal.

Encipherment
The (usually) reversible scrambling of data

according to a secret transformation key, so as to

Satheesh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 644

make it safe for transmission or storage in a
physically unprotected Environment.

Grant
To authorize (q. v.).

Hierarchical control
Referring to ability to change authorization,

a scheme in which the record of each authorization is
controlled by another authorization, resulting in a
hierarchical tree of authorizations.

List-oriented
Used to describe a protection system in

which each protected object has a list of authorized
principals.

Password
A secret character string used to authenticate

the claimed identity of an individual. Permission
A particular form of allowed access, e.g., permission
to READ as contrasted with permission to WRITE.
Prescript A rule that must be followed before access
to an object is permitted, thereby introducing an
opportunity for human judgment about the need for
access, so that abuse of the access is discouraged.

Principal
The entity in a computer system to which

authorizations are granted; thus the unit of
accountability in a computer system.

Privacy
The ability of an individual (or organization)

to decide whether, when, and to whom personal (or
organizational) information is released.

Propagation
When a principal, having been authorized

access to some object, in turn authorizes access to
another principal.

Protected object
A data structure whose existence is known,

but whose internal organization is not accessible,
except by invoking the protected subsystem (q.v.)
that manages it.

Protected subsystem
A collection of procedures and data objects

that is encapsulated in a domain of its own so that the
internal structure of a data object is accessible only to
the procedures of the protected subsystem and the
procedures may be called only at designated domain
entry points.

Protection
1) Security (q.v.).
2) Used more narrowly to denote

mechanisms and techniques that control the access of
executing programs to stored information.

Protection group
A principal that may be used by several

different individuals.

Revoke
To take away previously authorized access

from some principal.

Security
With respect to information processing

systems, used todenote mechanisms and techniques
that control who may use or modify the computer or
the information stored in it.

Self control
Referring to ability to change authorization,

a scheme in which each authorization contains within
it the specification of which principals may change it.

Ticket-oriented
Used to describe a protection system in

which each principal maintains a list of unforgeable
bit patterns,called tickets, one for each object the
principal is authorized to have access.

User
Used imprecisely to refer to the individual

who is accountable for some identifiable set of
activities in computer system.

III Existing Methods

Mandatory Access Control (MAC) works
without relying on malware signatures and blocks
malware behaviors before they cause security
damage. Even if an intruder manages to breach other
layers of defense, MAC is able to act as the last
shelter to prevent the entire host from being
compromised. However, as widely accepted existing
MAC mechanisms built in commercial operating
systems (OS) often suffer from two problems which
make general users reluctant to assume them. One
problem is that a built-in MAC is incompatible with a
lot of application software and thus interferes with
their running and the other problem is low usability,

Which makes it difficult to configure MAC
properly .Thus, enforcing a practical MAC on
commercial OS to defend against malware is a
promising but challenging task. All malware samples
break into hosts through two entrances, network and

Satheesh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 645

removable drive. Most breaking are via network
through frequently used protocols such as HTTP and
POP3. Malware behaviors can impose multiple forms
of damages, i.e., resulting in problems in
confidentiality, integrity, and availability. Besides,
we consider malware propagation as another type of
damage since it can indirectly cause the former three
forms of damages and eventually lead the entire host
to be taken over.

For example, the behavior “Copy itself”
does not directly hurt security but is an essential step
toward propagating itself and then executing
malicious behaviors on a host. Therefore, we evaluate
the damages of each behavior and record them, using
C, I, A, and P to represent the damages related to
confidentiality, integrity, availability, and
propagation, respectively. Malware samples from the
network have two attack patterns. One is that, most
malware samples exploit bugs in network-facing
daemon programs or client programs to compromise
them, then immediately spawn a shell or back-door
process. Next, an attacker typically tries to download
and install attacking tools and rootkits, as well as
performs some other adversary behaviors.The other
attack pattern is that, malware samples increasingly
use social engineering methods to lure users into
downloading and launching them. After started, a
malware sample usually copies itself and makes itself
a resident in a host.

Limitations of existing system

 Less usability
 Original users are also blocked
 False positives increases
 Higher delay due to increase of false

positves

IV Designing Method

Introduce Tracer, a novel MAC enforcement
approach which integrates intrusion detection and
tracing techniques to disable malware on a
commercial OS in a compatible and usable manner.
Through implemented Tracer on Windows OS to
disable malware timely without need of malware
signatures.

Developing a prototype on Windows is
important, because most of the over 236,000 known
malware items are designed for the attacks in the
Windows environment, only about 700 malware
items target for the attack of various Unix/Linux
distributions.Based on the analysis of 2,600 malware

samples, we extract 30 critical malware behaviors
and summarize three useful malware characteristics,
which will benefit future antimalware researches and
investigate the root reasons of incompatibility and
low usability problems of existing MACs. Although
not all the observations are brand new, believe that
understanding these reasons more comprehensively
and illustrating them through the design of an actual
system are useful for other MAC researchers.

Malware samples

Malware contribute to most Internet security
problems. Antimalware companies typically receive
thousands of new malware samples every day. An
analyst generally attempts to understand the actions
that each sample can perform, determines the type
and severity of the threat that the sample constitutes,
and then forms detection signatures and creates
removal procedures. Symantec Threat Explorer is
such a publicly available database which stores the
analysis results of thousands of malware samples
from various sources and is thus valuable to malware
researchers. To have a thorough understanding of the
philosophies behind malware design spent
considerable amount of time analyzing the behaviors
of malware programs. Specifically, since 2008, read,
recorded, and analyzed the technical details of 2,600
malware samples of a wide range of formats and
varieties, such as viruses, worms, backdoors, root
kits, and Trojan horses.

As taking many samples from the same
malware family might make the analysis results
biased, have intentionally not chosen multiple
samples of a polymorphic malware or similar
malware. Malware behaviors can impose multiple
forms of damages, i.e., resulting in problems in
confidentiality, integrity, and availability. Besides,
we consider malware propagation as another type of
damage since it can indirectly cause the former three
forms of damages and eventually lead the entire host
to be taken over. For example, the behavior “Copy
itself” does not directly hurt security but is an
essential step toward propagating itself and then
executing malicious behaviors on a host. Therefore,
we evaluate the damages of each behavior and record
them in confidentiality, integrity, availability, and
propagation, respectively.

Tracer detection

The detecting action is responsible for
identifying all potential intruders. We do not intend
to design a complex intrusion detection algorithm to
achieve a low FP rate at the cost of heavy overhead.

Satheesh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 646

Instead, we design a light-weight intrusion detection
algorithm that can identify all potential intruders but
may have a relatively higher FP rate at the initial
step. However, even if the detecting action wrongly
The non dangerous protocols are difficult to be
exploited by malware programs, because they are not
permitted by firewalls since benign software rarely
uses them.

Here, assume a “deny” default action for
firewalls, thus any traffic not specifically allowed by
firewall rules are denied. Nevertheless, in order to
completely monitor all the network traffic, we denote
a process as suspicious if it receives network traffic
through a non dangerous protocol and then exhibits
any of the malware behaviors. Instead of only
checking non dangerous network protocols, further
checking malware behaviors can reduce the extra
high FP rate.

The Attack-Characteristics summarized in
this point. That is, a process exploited by a malware
program from the network necessarily executes at
least one critical malware behavior, e.g., launching a
shell process or downloading an executable, to
propagate the malware program within the system.
Although a carefully crafted malware program that
subverts a process through a non dangerous protocol
can perform some behaviors before performing a
malware behavior, it is difficult for the process to
make significant damages on the system.

The reason is that the malware behaviors
monitored by Tracer include all of the behaviors that
can cause significant damages, let alone that malware
programs are difficult to attack a host through non
dangerous protocols which are usually blocked by
firewalls. The other type of entrances through which
malware programs get into the system is removable
drives according to the Entrance-Characteristics,
hence we denote a process as suspicious when it
opens or loads an executable from a removable drive.

Tracing intruders

To track intruders within an operating
system, one can use OS-level information flow as
done in However, a major challenge for leveraging
OS level information flow to trace suspicious entities
is that, file and process tagging usually leads the
entire system to be A process receiving data from a
suspicious process through a dangerous IPC;

A process reading a semi executable or
script files with a suspicious label. For tagging
processes, we observed that the excessive number of
tags mainly come from tracing Inter process
Communication i.e., marking a process as suspicious
if it receives IPC data from a suspicious process, just
as the approaches assumed in To address this issue,
Tracer only tags a process receiving data from
dangerous IPCs that can be exploited by a malware
program to take control of the process to perform
arbitrary malicious behaviors. Note that, dangerous
IPCs do not include the other types of vulnerable
IPCs that can be used to launch denial-of-service
attack, or disclose sensitive information, escalate the
privileges of the processes which send IPC data.
Moreover, a dangerous IPC only involves the local
IPCs instead of the IPCs over the network.

Since the detection at entrance can mark a
process that receives IPC data from the network as
suspicious. In order to identify the dangerous IPCs,
we investigated Microsoft Security bulletins a
database storing information about security
vulnerabilities on Windows family OS and other
Microsoft software. As malware programs usually
exploit these vulnerabilities to compromise Windows
hosts, Microsoft Security Bulletins become primary
sources for analyzing attack vectors of Windows OS
as done in Concretely, analyzed all vulnerabilities
recorded in security bulletins related to named-pipes,
local procedure calls, shared memories, mail slots,

Satheesh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 647

and Windows messages from 1998 to 2009, as these
IPCs send free-formed data that can be crafted to
exploit bugs in the receiving process. However,
among all of the security bulletins, only found one
dangerous IPC, i.e., MS03-025 . The result reveals
that in reality it is quite difficult to propagate
malware through local IPCs within a Windows OS
since people could only find one dangerous IPC over
the period of 11 years. Consequently, Tracer employs
a Dangerous-IPC-List to record and trace each type
of dangerous IPC since there should be a very limited
number of dangerous IPCs in a Windows OS.

Restricting intruders

In order to disable malware programs on a
host, the restricting action monitors and blocks
intruders’ requests for executing critical malware
behaviors listed in the principle of complete
mediation for building a security protection system,
Tracer further restricts two extensive behaviors,
called generic malware behaviors, to protect security
more widely.The first one is “Steal confidential
information,” which represents all illegal reading of
confidential information from files and registry
entries. The other is “Damage system integrity,”
which represents all illegal modifications of the files
and registry entries that require preserving integrity.
In addition, other behaviors that can be used to
bypass Tracer mechanism also need to be monitored
and restricted, including “Change file attributes,”
“Change registry entry attributes,” “Execute non
executable files,” and “Execute Tracer special system
calls.”The behavior “Change file attributes”
represents changing file extension names to
executable or changing file DAC information. To
efficiently restrict these malware behaviors, two
issues need to be addressed. The first is how to
determine the generic malware behaviors. Also
identify behaviors “Steal confidential information”
and “Damage system integrity” by monitoring illegal
reading on read-protected objects and illegal writing
on write-protected objects, respectively.

However, it is difficult to identify the
objects that need protection among a large number of
candidates in a Windows OS in order to recognize the
generic malware behaviors. A traditional MAC
requires users to give every object a security label to
identify whether the object needs protection, which in
turn becomes a heavy burden on general users. In
Tracer, we use the DAC information of an object to
determine whether it is protected. To be specific, a
file, directory, or registry key is treated as read-
protected when the user group “users” does not have
a read permission on it. A file, directory, or key not
readable by “users” means that it should not be
readable by the world, and thus should be read-
protected. Similarly, a file, directory, or key not
writable by “users” is treated as write-protected. For
other types of objects, e.g., IPC objects and system
devices, we use “everyone” group to recognize
protected objects.

Access controlled data usage

If the detection is purely based on known
malware characteristics and behaviors, a detector
may not be able to function effectively in the long
run as new malware characteristics and behaviors
may emerge over the time. To address this limitation
a novel extensible mechanism is implemented in
Tracer so it can dynamically add in new behaviors to
monitor. A behavior consists of operation, object, and
parameter.An operation is an abstract of one or
several system calls with similar functions. For
example, the operation create_ file corresponds to
two system calls: NtOpenFile and NtCreateFile. In
contrast, a single system call may contain more than
one operation. For example, NtOpenFile contains
four operations: read_file, write_file, create_file, and
delete_ file.

The object and parameter of a behavior are
extracted from a related system call. to dynamically
add malware behaviors. In each concerned system
call, we set up one or more checkpoints, each of
which is responsible for checking the behaviors
belonging to the same operation with the support of a
modifiable behavior list in memory. The new
malware behaviors are read from a configuration file
and distributed to proper behavior lists corresponding
to different operations in memory.

At each checkpoint, Tracer searches for the
object and parameter currently requested in the
corresponding list to determine whether the current
access forms a malware behavior.

Satheesh et al. / IJAIR Vol. 2 Issue 5 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 648

Advantages:

Tracer is able to better identify potentially
malicious OS entities and regulate their behaviors,
which in turn significantly reduces the FP rate which
is the root cause of incompatibility in existing MAC
enforced systems.

Tracer is able to label OS entities
automatically to tackle the low usability problem
which is the other major issue of existing MAC
systems.

V Conclusion

A novel MAC enforcement approach that
integrates intrusion detection and tracing to defend
against malware in a commercial OS. We have
extracted 30 critical malware behaviors and three
common malware characteristics from the study of
2,600 real-world malware samples and analyzed the
root reasons for the incompatibility and low usability
problems in MAC, which will benefit other
researchers in this area.

Based on these studies, we propose a novel
MAC enforcement approach, called Tracer, to disable
malware timely without need of malware signatures
or other knowledge in advance. It detects and traces
suspected intruders so as to restrict malware
behaviors. The novelty of Tracer design is twofold.
One is to use intrusion detection and tracing to
automatically configure security labels. The other is
to trace and restrict suspected intruders instead of
information flows as done by traditional MAC
schemes. Tracer doesn’t restrict the suspected

intruders right away but allows them to run as long as
possible except blocking their critical malware
behaviors.

This design produces a MAC system with
good compatibility and usability. We have
implemented Tracer in Windows OS and the
evaluation results show that it can successfully
defend against a set of real-world malware programs,
including unknown malware programs, with much
lower FP rate than that of commercial antimalware
techniques.

REFERENCES

[1] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda,
“Panorama: Capturing System-Wide Information Flow for
Malware Detection and Analysis,” Proc. 14th ACM Conf.
Computer and Comm. Security (CCS ’07), pp. 116-127, 2007.

[2] N. Li, Z. Mao, and H. Chen, “Usable Mandatory Integrity
Protection for Operating Systems,” Proc. IEEE Symp. Security and
Privacy (SP ’07), pp. 164-178, 2007.
[3] T. Fraser, “LOMAC: Low Water-Mark Integrity Protection for
COTS Environments,” Proc. IEEE Symp. Security and Privacy (SP
’00), pp. 230-245, 2000.

[4].Microsoft,MandatoryIntegrityControlhttp://en.wikipedia.org/wi
ki/Mandatory_Integrity_Control, 2012.

[5] X. Wang, Z. Li, J.Y. Choi, and N. Li, “PRECIP: Towards
Practical and Retrofittable Confidential Information Protection,”
Proc. 15th Network and Distributed System Security Symp., 2008.

[6].Symantec,Inc.,http://www.symantec.com/business/security_res
ponse/threatexplorer/threats.jsp, 2012.

[7] W. Sun, R. Sekar, G. Poothia, and T. Karandikar, “Practical
Proactive Integrity Preservation: A Basis for Malware Defense,”
Proc. IEEE Symp. Security and Privacy (SP ’08), 2008.

[8] K.J. Biba, “Integrity Considerations for Secure Computer
Systems,” Technical Report MTR-3153, MITRE, Apr. 1977.

[9] L. Badger, D.F. Sterne, D.L. Sherman, K.M. Walker, and S.A.
Haghighat, “Practical Domain and Type Enforcement for UNIX,”
Proc. IEEE Symp. Security and Privacy (S&P), pp. 66-77, 1995.

[10] P.-C. Cheng, P. Rohatgi, C. Keser, P.A. Karger, G.M.
Wagner, and A.S. Reninger, “Fuzzy Multi-Level Security: An
Experiment on Quantified Risk-Adaptive Access Control,” Proc.
IEEE Symp. Security and Privacy, pp. 222-230, 2007.

[11] M. Howard, Fending Off Future Attacks by Reducing Attack
Surface, http://msdn.microsoft.com/en-us/library/ms972812. aspx,
2003.

[12] M.Oers, OSX Malware Not Taking Off Yet,http://www.
avertlabs.com/research/blog/index.php/2007/03/20/ osxmalware-
not-taking-off-yet/, 2007.

[13] J. Saltzer and M. Schroeder, “The Protection of Information in
Computer Systems,” Comm. ACM, vol. 17, no. 7, 1974.

