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Abstract

It has been widely accepted that iris biometric systems are not
subject to a template aging effect. Recently presented the first
published evidence of a template aging effect, using images
acquired from 2004 through 2008 with an LG 2200 iris imaging
system, representing a total of 13 subjects (26 irises). We report
on a template aging study involving two different iris recognition
algorithms, a larger number of subjects (43), a more modern
imaging system (LG 4000), and over a shorter time-lapse (2
years). We also investigate the degree to which the template
aging effect may be related to pupil dilation and/or contact
lenses. We find evidence of a template aging effect, resulting in
an increase in match hamming distance and false reject rate.

1. Introduction
The assumption that the appearance of the iris is stable

throughout a person’s lifetime has been accepted by the research
community since the beginnings of iris biometric research.
Daugman’s statement, “As an internal (yet externally visible)
organ of the eye, the iris is well protected and stable over time”
has been echoed in similar form in many publications [5-9].

It is important to make a distinction between the terms
“template aging effect” and “iris aging effect.” A template aging
effect occurs when the quality of the match between an enrolled
biometric sample and a sample to be verified degrades with
increased elapsed time between the two samples. In our
experiment, we test for the presence of a template aging effect
over an approximately two-year time lapse, and find that one
does exist. An “iris aging effect,” on the other hand, would be
some definite change in the iris texture pattern due to human
aging. An iris aging effect would generally imply a template
aging effect in the field of iris biometrics. However, observing a
template aging effect would not necessarily imply that an iris
aging effect exists. For example, if the average pupil dilation
changes over time, this might affect the observed iris texture in a
way that causes, at least partially, a template aging effect. We
explore the possibility of a template aging effect both including
and independent of dilation as well as several other factors.

1.1. Related work

At present evidence of a significant effect of time-lapse
between images on iris recognition. Their experiments used
images taken by an LG 2200 camera from data acquisitions in
2004 through 2008, acquired approximately weekly throughout
the semester. The dataset used in their experiments contains

images from only 13 different subjects, or only 26 irises. They
use statistical tests on the means of their Hamming distance
distributions to make their analyses, but do not present false
reject rates over a range of feasible decision thresholds. The
LG 2200, which at the time of their data acquisition may have
been considered a state-of-the-art system, is no longer
marketed. Also, because of the technology used in the system,
as Bowyer and Flynn document, there is a possibility of
interlace artifacts in the images taken if there is significant
subject motion during image acquisition.

Our experiments improve on these aspects of the report by
Baker et al. [1]. We test our data on two different segmentation
and matching algorithms. We use an LG 4000 system which is
currently state-of-the-art and is based on more modern
technology than the LG 2200. Our dataset contains over three
times the number of subjects as that of . We present the false
reject rates at a fractional Hamming Distance decision
threshold ranging from 0.28 to 0.34 and Verify eye match
scores between 30 and 120. We also use statistical tests
analogous to their methods and compare images with
approximately two years time-lapse rather than four.

Finally, we treat other possible factors for degradation of
match quality in a different manner than Baker et al.. In their
work, they reported no correlation between the mean change in
hamming distance from short to long time-lapse and the mean
change in dilation difference of



Figure 1: Subject 02463 enrollment image from 2008.

Figure 2: Subject 02463 verification image from 2008. The short
time-lapse comparison with the image in Figure 1 resulted in a
normalized HD of -0.0126378 and a VeriEye match score of 933.

Figure 3: Subject 02463 verification image from 2010. The long
time-lapse comparison with the image in Figure 1 resulted in a
normalized HD of 0.0447158 and a Verify Eye match score of 775.

match comparisons from short to long time lapse. Instead of
looking at correlation between dilation difference and
hamming distance, we screen for dilation difference by
analyzing a subset of images with small dilation difference.
Baker et al. also cite the effects of contact lenses on the match
distribution, but simply report the number of subjects with or
without contacts. We analyze a subset of images containing
only those subjects who did not wear contacts in any session.

2. Experimental Stuff

The images used in this experiment were all acquired using
the same LG 4000, in the same laboratory, following the same
image acquisition procedure. Images from 43 participants, or 86

irises, were used. Of these subjects, 22 were male and 21 were
female, and 39 were Caucasian, 2 were Asian, 1 was Hispanic,
and 1 did not provide information on ethnicity. The ages of
subjects ranged from 21 to 63 years as of 2010, with an average of
31. Images were taken approximately weekly during 6 sessions
in the spring semester of 2008 and approximately biweekly
during 4 sessions in the spring semester of 2010. Of 1830 total
images, 1042 were acquired in 2008 and 788 in 2010.

We use two different iris recognition systems. The first is
our own implementation of software based on IrisBEE , using
a Canny edge detector, Hough transform, and 1-D log-Gabor
filters to segment and then analyze the texture of the iris. The
software also contains improvements described . The second
software implementation is the VeriEye SDK, developed by
Neurotechnology.

The calculation of the accuracy of a comparison of two iris
images differs between the two algorithms. Iris BEE generates
fractional Hamming distances (HDs), which range from 0 to 1,
with 0 being a perfect match. Verify Eye generates a match
score ranging from 0 to 3235, with 3235 being a perfect match
and 0 being a no match comparison.

3. Experimental Method

We define a long time-lapse comparison as a comparison
between one image from 2008 and one from 2010. A short
time-lapse comparison is a comparison between two images
from the same year. Images of the same iris taken on the same
day are not compared against each other. The dates of
acquisition are such that the short time-lapse comparisons
range from 5 to 51 days apart, and the long time-lapse
comparisons range from 665 to 737 days apart.
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3.1. Analysis of false reject rates Table 1: Match and non-match comparison counts.

The image dataset is analyzed to generate match and non-
match distributions for both the short time-lapse case and the
long time-lapse case. For each subset described below, there are
N1 comparisons in the match distribution for the short time-lapse
case and N2 comparisons in the match distribution for the long
time- lapse case. There are N3 comparisons in the non-match
distribution for the short time-lapse case and N4 comparisons in
the non-match distribution for the long time-lapse case. These
four values can be found in Table 1. We calculate the false reject
rates for the two different match distributions over a range of
possible decision threshold values. These false reject rates are
tabulated to show their difference between the short time-lapse
case and the long time-lapse case.

3.2. Screening on difference in pupil dilation

The degree of dilation of an eye affects the distribution of
match scores. A comparison of two images of high dilation ratios
produces a higher HD than a comparison of two images of small
dilation ratios. A comparison of two images of large delta, or
difference in dilation, will have a higher HD than that of small
delta. We create a subset of the original set of data, eliminating
comparisons with a delta greater than 0.1. In the small delta
subset, three iris subjects were eliminated due to a lack of long
time-lapse comparisons within the subject, leaving this subset
with 83, rather than  iris subjects.

While it may be possible to control for dilation during
enrollment, it is likely impractical to attempt to control this
during verification. Analyzing a subset of matches that
correspond to only those with small difference in dilation does
not correspond to actual operation of any iris biometric system
that we are aware of. Nor are we proposing that this is a practical
restriction to enforce for typical applications. Our goal is simply
to investigate the degree to which a change in the difference in
pupil dilation may be involved in the template aging effect.

3.3. Screening on presence of contact lenses

Contact lenses have been shown to degrade match quality . In
our dataset, 29 subjects did not wear contacts in any session.
Nine wore contacts in all participating sessions for both years,
two of which changed contact type between years. Five subjects
wore contacts in some sessions but not others. We also analyze
subsets of the previously mentioned datasets with only those
subjects who did not wear contacts in any session. We note in
this case also that it would be difficult in a real-world
implementation of an iris recognition system to control for the
presence of contact lenses.

3.4. Adjustment for number of iris code bits
used

In order to account for the number of bits used in
comparisons of two iris codes, we implement Daugman’s
square root score normalization technique across all sets of
data. Some very low raw hamming distances can become
negative after normalization, as shown in Figures 4 and 6. The
scaling parameter for this dataset, the average number of bits
used per comparison, was 904. Note that this adjustment only
applies for the Iris BEE data, and not the Verify Eye data.

3.5. Statistical tests on the means

The tabulation of false reject rates across a range of feasible
decision thresholds is a more practically useful result, but it is
important to consider how this is related to results of statistical
tests such as those of Baker et al. . These tests follow the
experimental method used by Baker et al.. The tests are
performed using the same methodology for both Iris BEE and
Verify Eye data, but so as not to be redundant, we will describe
our methods only in terms of Hamming Distance and not the
Verify Eye match score. We consider the null hypothesis that
the fractional Hamming Distance (HD) for matches between
long time-lapse images is not greater than that for matches
between short time-lapse images, and the alternative that the
HD for long time-lapse comparisons is greater than that of
short time-lapse comparisons. We take the average match HDs
for each subject from the short time-lapse and subtract them
from those of the long time-lapse. We perform a sign test on
these differences with the null hypothesis that a positive
difference occurs as often as a negative difference, and the
alternative that a positive difference occurs more often than a
negative. When the data is found to be approximately normal
using a chi-square goodness-of-fit test, we also perform a t-test
on the differences of means with the null hypothesis that the
differences come from a distribution with mean zero, and the
alternative that the distribution has a mean greater than zero.

Short
Matches

Long
Matches

Short Non-
matches

Long Non-
matches

Original 8631 9837 673640 811259

Small Delta 8443 7769 418573 485019

No Contacts 6432 7326 337225 400131

No Contacts,
Small Delta

6292 5722 202854 226653



4. Results
4.1. Original dataset

0.1 0.2 0.3 0.4 Hamming Distance
Figure 4: The match distribution for the long time-lapse is clearly
shifted right on the short lapse distribution, while the non-match
distributions have no apparent difference.

4.1.1. Iris BEE The match and non-match distributions for
our original short time-lapse and long time-lapse datasets are
plotted in Figure 4. There is no discernible difference in the
non-match distributions. However, there clearly is a difference
in the match distributions. The false reject rates for the two
distributions, computed for a range of decision thresholds from
0.28 to 0.34, are in Table 2. The FRR for the short time-lapse

distribution varies from 1.9% at a threshold of 0.28 to 0.4% at
0.34. In comparison, the FRR for the long time-lapse
distribution varies from 4.9% at 0.28 to 1.5% at 0.34. The
increase in FRR from short to long time-lapse ranges from
approximately 157% at 0.28 to 305% at 0.34. This increase is
relatively stable between thresholds of 0.30 to 0.32, varying
between 215% and 210%. From these results, it is clear that
there is a sizeable increase in false reject rate between the short
and long time-lapse distributions over the entire range of
feasible decision threshold values. Thus, Figure 4 shows clear
evidence of a template aging effect for iris biometrics.

Verify Eye Match Score Figure 5: The
match distribution for long time-lapse is clearly shifted to the left
of the short time-lapse distribution. For Verify Eye, higher scores
indicate a better match between images.

Table 2: False reject rates of all sets of images for both short and long time-lapse, using the Iris BEE algorithm.
Threshold HD Original Short Original Long % Increase No Contacts

Short
No Contacts

Long

% Increase

0.28 0.0192 0.0493 156.8 0.0230 0.0601 161.3

0.29 0.0152 0.0393 158.6 0.0176 0.0475 170.0

0.30 0.0102 0.0321 214.7 0.0115 0.0386 235.7

0.31 0.0081 0.0255 214.8 0.0090 0.0300 233.3

0.32 0.0068 0.0211 210.3 0.0073 0.0246 236.7

0.33 0.0053 0.0179 237.7 0.0053 0.0202 281.1

0.34 0.0038 0.0154 305.3 0.0036 0.0168 466.7

Threshold HD Small Delta
Short

Small Delta Long % Increase No Contacts
Small Delta

Short

No Contacts
Small Delta Long

% Increase

0.28 0.0167 0.0366 119.2 0.0205 0.0433 111.2

0.29 0.0131 0.0295 125.2 0.0157 0.0343 118.5

0.30 0.0086 0.0245 184.9 0.0103 0.0278 169.9

0.31 0.0069 0.0198 187.0 0.0083 0.0218 162.7

0.32 0.0060 0.0167 178.3 0.0072 0.0182 152.8

0.33 0.0046 0.0143 210.9 0.0052 0.0149 186.5

0.34 0.0031 0.0130 319.4 0.0035 0.0131 274.3



Table 3: False reject rates of all sets of images for both short and long time lapse, using the VeriEye algorithm.
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4.1.2. Verify Eye The match distributions for the original short
and long time-lapse datasets are plotted in Figure 5. The non-
match distributions are not plotted because over 80% of the
data have scores of 0, and do not show on the graph. A clear
shift in the match distributions is visible. The false reject rates
for the two distributions over a match score threshold ranging
from 30 to 120 are compiled in Table 3. The FRR for short
time-lapse varies from 0.02% at a threshold of 30 to 0.07% at
120. The FRR for long time-lapse varies from 0.09% at 30 to
0.4% at 120. The increase in FRR from short to long time-lapse
ranges from 195% at a threshold of 30 to 370% at 120, with a
maximum of 457% at 90. It is clear that there is a significant
increase in false reject rate between short and long time-lapse
distributions over the range of feasible threshold values.

4.2. Dataset screened on pupil dilation

4.2.1. Iris BEE The false reject rates for the short time- lapse
distribution ranged from approximately 1.7% at a decision
threshold of 0.28 to 0.3% at 0.34. Comparatively, the long
time-lapse FRRs ranged from 3.7% to 1.3% across that span.
The increase in FRR from short to long time-lapse varies from
119% at 0.28 to 319% at 0.34. Like the original set in section
4.1, the increase in FRR for the set experienced relative
stability between thresholds of 0.30 and 0.32, varying between
178% and 187%. The plots of the match and non-match
distributions for both short and long time-lapse can be found in

Figure 6.
Distribution of HDs - Small Delta

Threshold
Score

Original
Short

Original
Long

% Increase No Contacts
Short

No Contacts
Long

% Increase

30 2.32E-04 9.17E-04 194.7 0 0 nan

40 2.32E-04 0.0010 238.6 0 1.37E-04 inf

50 2.32E-04 0.0010 238.6 0 1.37E-04 inf

60 2.32E-04 0.0010 238.6 0 1.37E-04 inf

70 2.32E-04 0.0011 282.4 0 2.73E-04 inf

80 2.32E-04 0.0011 282.4 0 2.73E-04 inf

90 2.32E-04 0.0015 457.9 0 8.20E-04 inf

100 3.48E-04 0.0022 443.3 1.56E-04 0.0018 940.6

110 5.81E-04 0.0029 291.2 4.67E-04 0.0025 326.4

120 6.97E-04 0.0040 370.2 6.23E-04 0.0038 414.2

Threshold
Score

Small Delta
Short

Small Delta Long % Increase No Contacts
Small Delta

Short

No Contacts
Small Delta Long

% Increase

30 2.37E-04 0.0012 289.1 0 0 nan

40 2.37E-04 0.0013 343.5 0 1.75E-04 inf

50 2.37E-04 0.0013 343.5 0 1.75E-04 inf

60 2.37E-04 0.0013 343.5 0 1.75E-04 inf

70 2.37E-04 0.0013 343.5 0 1.75E-04 inf

80 2.37E-04 0.0013 343.5 0 1.75E-04 inf

90 2.37E-04 0.0017 506.5 0 7.00E-04 inf

100 3.56E-04 0.0025 488.4 1.59E-04 0.0018 899.3

110 5.93E-04 0.0031 321.7 4.78E-04 0.0025 313.0

120 7.12E-04 0.0037 325.4 6.37E-04 0.0032 294.7
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Figure 6: Again, the non-match distributions lie on top of each
other while the match distributions are clearly separated.



Table 4: Results of statistical tests for each dataset, using Iris BEE.
Match Comparison HD Non-match Comparison HD # Irises w/

Increased HD

p-values

Dataset Short Long Change Short Long Change Sign Test T-Test

Original 0.0900 0.1250 0.0350 0.4481 0.4482 0.0001 84/86 9.67E-23 N/A

Small Delta 0.0884 0.1113 0.0229 0.4483 0.4483 0.0000 79/83 4.00E-19 N/A

No Contacts 0.0964 0.1317 0.0353 0.4483 0.4483 0.0000 56/58 1.19E-14 7.91E-14

No Cont., Sm. Del. 0.0950 0.1177 0.0227 0.4486 0.4485 -
0.0001

52/55 1.54E-12 7.67E-11

4.2.2. Verify Eye The false reject rates for short time-lapse
ranged from approximately 0.02% at a threshold of 30 to
0.07% at 120. In comparison, the long time-lapse FRRs ranged
from 0.1% at 30 to 0.4% at 120. The increase in FRR from
short to long time-lapse varied from 289% at 30 to 325% at
120, with a maximum of 507% at a threshold of 90. The plots
of the match distributions for short and long time-lapse are
displayed in Figure 7.

Verify Eye Match Score Figure 7:
The long time-lapse distribution for the small delta dataset is
shifted significantly to the left of the short time-lapse distribution.

4.3. Dataset screened on contact lenses

4.3.1. Iris BEE The false reject rates for the short time-
lapse case for this dataset ranged from 2.3% at a threshold of
0.28 to 0.4% at a threshold of 0.34. The long time-lapse false
reject rates ranged from 6.0% to 1.7%. The increase in FRR
from short to long time-lapse varies from 161% at 0.28 to
467% at 0.34. Similar increases in false reject are observed
between thresholds of 0.30 and 0.32, varying between 233%
and 237%. The match distribution plots for this and future
cases, for both IrisBEE and VeriEye, are similar to the
previous datasets, and are not included due to space limits.

4.3.2. VeriEye The false reject rates for the short time-
lapse ranged from 0.02% at a threshold of 100 to 0.06% at 120. No
match comparisons had a score of 90 or below. The long time-
lapse FRRs ranged from 0.01% at 40 to 0.4% at 120, with no

match comparisons yielding a score of 30 or below. The

4.3.3. measurable increases in FRR for thresholds of 100, 110
and 120 were 941%, 326%, and 414%, respectively.

4.4. Dataset screened on dilation and contacts

4.4.1. Iris BEE The false reject rates for the final dataset
ranged from 2.1% at a decision threshold of 0.28 to 0.4% at a
threshold of 0.34 in the short time-lapse case. The long time-
lapse FRRs varied between 4.3% at 0.28 to 1.3% at 0.34. The
observed increase in FRR differs between 111% and 274%.
Between thresholds of 0.30 and 0.32, where relative stability
has been noted in previous sections, the FRRs ranged from
153% to 170%.

4.4.2. Verify Eye The false reject rates for the short time-
lapse case ranged from 0.02% at a threshold of 100 to 0.07% at 120.
No match comparisons had a score of 90 or below. The FRRs
for long time-lapse ranged from 0.02% at 40 to 0.3% at 120,
with no match comparisons yielding a score of 30 or lower. The
measurable increases in FRR for thresholds of 100, 110, and
120 were 899%, 313%, and 295%, respectively.

4.5. Statistical tests on the means

The results of the statistical tests described in Section 3.6 are
as follows. For Iris BEE, all four datasets rejected the null
hypothesis of the sign test. Of the two whose distributions of
mean HDs were found to be approximately normal, both also
rejected the null hypothesis of the t-test. The p-values of those
statistical tests, as well as the overall mean HDs of the
distributions, can be found in Table 4. Similar results were
found for the tests using VeriEye. In the sign test, all four
datasets rejected the null hypothesis. None of the distributions
were found to be normal, so t-tests were not performed. These
results can be found in Table 5.



Table 5: Results of statistical tests for each dataset, using VeriEye.
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Match Comparison HD Non-match Comparison HD # Irises w/
Deer. Score

p-values

Dataset Short Long Change Short Long Change Sign Test T-Test

Original 670.4 566.3 -104.1 0.981 0.962 -0.019 82/86 5.76E-20 N/A

Small Delta 673.7 599.0 -74.7 0.943 0.926 -0.017 78/83 6.40E-18 N/A

No Contacts 620.3 519.1 -101.2 0.858 0.846 -0.012 54/58 3.17E-12 N/A

No Cont., Sm. Del. 623.7 551.0 -72.7 0.792 0.777 -0.015 52/55 1.54E-12 N/A

5. Summary and discussion

We report on the results of an experimental investigation of
template aging in iris biometrics. Here, a “template aging
effect” is defined as an increase in the false reject rate with
increased elapsed time between the enrollment image and the
verification image. We find that a template aging effect does
exist. We also consider controlling for factors such as
difference in pupil dilation between compared images and the
presence of contact lenses, and how these affect template aging,
and we use two different algorithms to test our data.

While our experimental results support those of Baker et al.
[1] in concluding that a template aging effect does exist in iris
biometrics, our work is distinguished from that of Baker et al.
[1] in several respects. First, our iris image dataset represents a
larger number of different subjects and irises (86 irises vs. 26), and
is acquired using a more modern iris imaging system (LG 4000
vs. LG 2200). Second, we consider an elapsed time interval that
is shorter than that considered by Baker et al. (~2 years vs. ~4
years). Thirdly, we take a different approach to handling
potential confounding factors such as pupil dilation and contact
lenses. We create data subsets with only those comparisons
with a difference in dilation between images of 0.1 or less,
whereas Baker et al. simply report that there is no linear
correlation between dilation difference and hamming distance
across time- lapse. We also create subsets with only those
subjects who did not wear contact lenses in any session; Baker
et al. only report the number of contact wearers. Finally, we use
two different algorithms, Iris BEE and Verify Eye, to test our
data.

Our primary experimental result involves an image dataset
representing 86 different irises. For each iris, match and non-
match distributions were created for a short time-lapse case (5 to
51 days elapsed) and a long time-lapse case (665 to 737 days
elapsed). We observe no significant difference in the non-match
distribution between the short time-lapse data and the long
time- lapse data. However, we do observe a shift in the match
distribution, such that there is an increase in false reject rate
across the range of potential decision threshold values. Using a
threshold fractional Hamming Distance of 0.32 for the
experiments run using IrisBEE, the observed false reject rate
increases by 210% from the short time-lapse match distribution to
the long time-lapse match distribution. The increase in false
reject rate ranges from 157% at a threshold of 0.28 to 305% at
0.34. Note that the false reject rate is in the area in the tail of the
match distribution, so it naturally decreases as the decision

threshold moves further toward the tail. Because the amount of
data in the tail of the distribution also decreases with increased
values of the decision threshold, we can expect that the
estimated magnitude of increase in false reject rate between the
two match distributions is more subject to noise. The
experiments run using the VeriEye algorithm yielded similar
results. The observed false reject rate increases from short to
long time-lapse by 195% at a threshold of 30 and up to 457% at a
threshold of 100. As described above, the tail of the
distribution, in this case lower scores, is subject to noise due to
limited data, however, it is clear from these results that a
template aging effect is present.

Following this initial result, we investigated factors that
could possibly contribute to the observed increase in false reject
rate. One possible confounding factor is the difference in pupil
dilation between two images in a comparison. We found that for
IrisBEE, restricting the dataset to image comparisons that had
only a small difference in pupil dilation resulted in a smaller
increase overall in FRR. The results from VeriEye showed a
slightly larger increase in FRR overall. Thus, depending on the
algorithm, pupil dilation may or may not be a significant
confounding factor for measuring a template aging effect.
Another potential factor is the presence of contact lenses. We
found that after using only those subjects who did not wear
contacts in any session, the results of both algorithms showed a
larger increase in false reject rate than the original dataset.
However, this comparison involved a large decrease in the
number of irises represented, and both the sets controlling for
contacts and those controlling for dilation experienced a large
decrease in the number of match comparisons, which may make
these sets of results less reliable.

Based on the above results, we conjecture that iris biometric
systems that are able to restrict comparisons to images with a
small difference in dilation may be subject



to a somewhat smaller template aging effect. Also, screening for
this factor as well as the presence of contact lenses is partially
additive; that is, restriction to small dilation difference and the
absence of contact lenses lead to slightly better performance
across a longer time lapse than pupil dilation alone.

It is not possible from our current results to give a precise
estimate of the magnitude of the template aging effect to expect
in a practical application or a specific correlation between
template aging and elapsed time for iris biometrics in general.
The observed increase in false reject rate naturally varies with a
number of factors. These include, likely among other important
reasons, the decision threshold of the system, the inherent
accuracy of the segmentation algorithms, the variation in pupil
dilation, and the presence of contact lenses. A better estimate of
the magnitude of the general template aging effect and of all its
underlying causes requires additional research using larger
datasets.

The existence of a template aging effect should not prevent
iris biometrics from practical use. Much like other identification
methods such as drivers’ licenses are renewed after a set period
of time, a subject could be reenrolled into the system, once an
acceptable time frame is determined. Further research on the
changes in iris texture over time will also increase our
understanding of both the nature and location of such changes.
In some sense, these findings place iris biometrics on equal
ground with other biometric areas in which the existence of a
template aging effect has already been acknowledged. We
know of no studies that present any conclusion about the
relative speed of template aging in different biometrics.
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