
Amritpreet et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

©IJAIR./ All Rights Reserved 557

Testing of Aspect Oriented Programming with UML

sequence flow diagrams
Amritpreet Kaur

#1
, Janpreet Singh

*2

#Mtech Scholar, Computer Science Department, Lovel professional University

Project.1198@gmail.com
*Asst.Profssor, Computer Science Department, Lovely Professional University

 janpreet.s@gmail.com

Abstract— Aspect-Oriented Programming is a software

engineering paradigm that offers new constructs, such as join

points, pointcuts, advices, and a spects in order to improve

separation of crosscutting concerns. The new constructs bring

new types of programming faults with respect to crosscutting

concerns, such as incorrect pointcuts, advice, or aspect

precedence. In fact, existing object-oriented testing techniques

are not adequate for testing aspect-oriented programs. As a

result, new testing techniques must be developed. In this paper,

an approach based upon UML activity diagram for testing

aspect-oriented programs is presented. The proposed approach

focuses on the testing of Aspect oriented programs with UML

activity diagram including activity and sequence diagrams from

UML process. Particularly for testing we will use AGRO UML

tool. In our research we will focus on faults finding for Aspect

Oriented Programs with help of flow diagram based on activity

and sequence of UML.

Keywords— Aspect oriented programming, Unified modeling

language, Sequence diagram, Agro UML, Aspect j, Activity

diagram.

I. INTRODUCTION

Aspect-Oriented Programming is a software engineering

paradigm that offers new constructs, such as join points, point

cuts, advices, and aspects in order to improve separation of

crosscutting concerns. The new constructs bring new types of

programming faults with respect to crosscutting concerns,

such as incorrect point cuts, advice, or aspect precedence. In

fact, existing object-oriented testing techniques are not
adequate for testing aspect-oriented programs. In Figure 1, we

can see the structure of Aspect Oriented Language.

Aspect Oriented Programming (AOP) is an emerging

discipline in Software Engineering. AOP is a programming

paradigm which isolates secondary functions from the main

program’s logic. The definition given by Gregor Kiczales

“Modular units that cross-cut the structure of other modular

units.” The central idea of AOP as an emerging discipline of

post-object technology is to provide strong support to the

separation of the repeated, scattered or entangled concerns at

every stage of software development, introducing a new
modular unit to encapsulate them to facilitate extensibility,

changeability and reuse.ite. In the context of software

engineering a concern is defined as a property or interest point

of a system. Concerns, from the system point of view, are

defined as those interests belonging to the system and its

operation, or other aspects which are critical or important for

the stakeholders. That is to say, a concern is a kind of

requirement needed by the system. Some concerns can be

easily encapsulated within classes or modules, according to

the chosen implementation language; however, others whose

functionality affects several modules, are called crosscutting

concerns and they are not easy to separate. They cannot be

easily encapsulated into new functional units as “implicit

functionality" because they crosscut the whole system and are

implemented in many classes or modules producing an
entangled or scattered code, difficult to understand and

maintain. The goal of AOP is to encapsulate them into a

modular unit, called aspect, to handle these requirements at

implementation level. AOP is an extension of Object oriented

programming and it is a future programming technique

 Fig. 1 Structure of Aspect Oriented programming

A use case illustrates a unit of functionality provided by the

system. The main purpose of the use-case diagram is to help

development teams visualize the functional requirements of a

system, including the relationship of "actors" (human beings

who will interact with the system) to essential processes, as
well as the relationships among different use cases. Generally

When we use use to develop Aspect programming the we face

different type of complexity which could also leads to uneven

behavior of programs which leads to the requirement of

testing of the Aspect Oriented programming with unified

modeling language with various operations of oriented

langauge.

II. UNIFIED MODELING LANGUAGE DIAGRAMS

A use case illustrates a unit of functionality provided by the

system. The main purpose of the use-case diagram is to help

development teams visualize the functional requirements of a

Amritpreet et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

©IJAIR./ All Rights Reserved 558

system, including the relationship of "actors" (human beings

who will interact with the system) to essential processes, as

well as the relationships among different use cases. Use-case

diagrams generally show groups of use cases -- either all use

cases for the complete system, or a breakout of a particular

group of use cases with related functionality (e.g., all security

administration related use cases) [1] [2]. To show a use case

on a use-case diagram, you draw an oval in the middle of the

diagram and put the name of the use case in the center of, or

below, the oval. To draw an actor (indicating a system user)

on a use-case diagram, you draw a stick person to the left or
right of your diagram (and just in case you're wondering,

some people draw prettier stick people than others). Use

simple lines to depict relationships between actors and use

cases, as shown in Figure 2.

 Fig 2 Relationship in UML diagram [1]

A use-case diagram is typically used to communicate the

high-level functions of the system and the system's scope. By
looking at our use case diagram in Figure 1, you can easily tell

the functions that our example system provides. This system

lets the band manager view a sales statistics report and the

Billboard 200 report for the band's CDs. It also lets the record

manager view a sales statistics report and the Billboard 200

report for a particular CD. The diagram also tells us that our

system delivers Billboard reports from an external system

called Billboard Reporting Service [1][2].

.

A. Class Diagram

The class diagram shows how the different entities (people,

things, and data) relate to each other; in other words, it shows

the static structures of the system. A class diagram can be

used to display logical classes, which are typically the kinds

of things the business people in an organization talk about --

rock bands, CDs, radio play; or loans, home mortgages, car

loans, and interest rates [2]. Class diagrams can also be used

to show implementation classes, which are the things that

programmers typically deal with. An implementation class

diagram will probably show some of the same classes as the
logical classes’ diagram. The implementation class diagram

won't be drawn with the same attributes, however, because it

will most likely have references to things like Vectors and

Hash Maps [2]. A class is depicted on the class diagram as a

rectangle with three horizontal sections, as shown in Figure 2.

The upper section shows the class's name; the middle section

contains the class's attributes; and the lower section contains

the class's operations (or "methods").

 Fig 2 Sample class object in a class diagram [2]

B. Activity Diagram

Activity diagrams show the procedural flow of control

between two or more class objects while processing an

activity. Activity diagrams can be used to model higher-level

business process at the business unit level, or to model low-

level internal class actions. In my experience, activity

diagrams are best used to model higher-level processes, such

as how the company is currently doing business, or how it

would like to do business [2]. This is because activity

diagrams are "less technical" in appearance, compared to

sequence diagrams, and business-minded people tend to

understand them more quickly. An activity diagram's notation
set is similar to that used in a state chart diagram. Like a state

chart diagram, the activity diagram starts with a solid circle

connected to the initial activity [3].

Figure 3: Activity diagram, with two swim lanes to indicate control of activity

by two objects: the band manager, and the reporting tool [3].

The activity is modeled by drawing a rectangle with rounded

edges, enclosing the activity's name. Activities can be

connected to other activities through transition lines, or to

decision points that connect to different activities guarded by
conditions of the decision point. Activities that terminate the

modeled process are connected to a termination point (just as

in a state chart diagram) [3]. Optionally, the activities can be

grouped into swim lanes, which are used to indicate the object

that actually performs the activity, as shown in Figure 3.

Amritpreet et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

©IJAIR./ All Rights Reserved 559

III. COMPONENTS OF ASPECT PROGRAMMING

Testing of aspect oriented programs is a new programming

paradigm. Many researchers had contributed their research in

the field of testing AOP. Mutation testing is an emerging area

of research in testing of aspect oriented programming. The
effectiveness of mutation testing depends on finding fault

types and designing of mutation operators on the basis of

faults identified. Therefore the effectiveness of testing

depends upon the quality of these mutation operators. We

already have the mutation operators for procedural and object

oriented languages, but for aspect oriented language only a

few researchers have contributed.

C. Components

Crosscutting Concern: These are the aspects of a program

which affect other concerns. For eg. If writing an application

for handling medical records, The bookkeeping and indexing

of such records is a core concern while logging a history of

changes to the record, database or user database or an

authentication system would be crosscutting concern.

Join Points: These are well defined points in the execution of

a program. For eg. Execution of a method call is a join point.

Point Cuts: A point cut picks out join points. Join points are

described by point cut declaration. Point cuts can be defined

in classes or in aspects and can be named or be anonymous.

Advice: Advice is code that executes at each join point picked

out by a point cut. Advice is a function.

Introduction: An introduction is a member of an aspect but it

defines or modifies a number of another type or class. With

introduction we can add method to an existing class, add

fields to existing class and implement an interface in an

existing class.

Aspect:- The combination of point cut and advice.

D. Metrics

WOM: Weighted operations in module counts number of

operations or methods in a given module. The number of

operations and the complexity of operations involved is a

predictor of how much time and effort required to develop and

maintain the module. Modules with large number of
operations limit the possibility of reuse.

DIT: Depth of inheritance of a class is its depth in the

inheritance tree, if multiple inheritance is involved. Maximum

path from the node representing the class to the root. The

deeper a module is in the hierarchy, the greater the number of

operations it is likely to inherit, making it more complex to

predict its behavior.

NOC: Number of children is a number of immediate

subclasses or sub-aspects of a given module. Greater the

number of children then greater the reuse due to inheritance,

improper abstractions of parent module, misuse of sub

classing and requires more testing.

CDA: Crosscutting degree of an aspect is a number of

modules affected by the point cuts and by the introductions in

a given aspect. This gives overall impact, an aspect has on the

other modules.

CMC OR CBM: Coupling on method call is a number of

modules or interfaces declaring methods that are possibly

called by a given module.

RFM: Response for a module is number of methods and

advices potentially executed in response to a message received

by a given module.

LCO: Lack of cohesion in operations is number of pairs of
operations working on different class fields minus pairs of

operations working on common fields. When all methods

don't access to any field, then LCO = 0. Low cohesion

increases complexity, thereby increasing the likelihood of

errors during the development process.

CAE: Coupling on advice execution is a number of aspects

possibly triggered by the execution of operations in a given

module. There is a dependence of the operation from the

advice.

CFA: Coupling on field access is a number of modules or

interfaces declaring fields that are accessed by given module.
CFA measures the dependency of given module on other

modules but in terms of accessed fields.

IV. PROPOSED WORK

A. Problem Definition

Aspect-Oriented Programming is a software engineering

paradigm that offers new constructs, such as join points,

pointcuts, advices, and aspects in order to improve separation

of crosscutting concerns. The new constructs bring new types

of programming faults with respect to crosscutting concerns,
such as incorrect pointcuts, advice, or aspect precedence. In

fact, existing object-oriented testing techniques are not

adequate for testing aspect-oriented programs. As a result,

new testing techniques must be developed. In our research, an

approach based upon UML activity diagram based on the flow

of diagrams for testing aspect-oriented programs will be

presented.

Our research will focus on the testing of aspect programs by

generating test sequences based on activity diagrams which

will validate the correct working and starting malfunctioning

(errors). Further aspect model will be generated and integrate

with basic aspect model with flow activity diagrams in UML
activity diagrams.

In particular we have done some experimentation on Aspect

Oriented Programming by developing aspect class with

enhancement to object oriented programming. We have define

the following aspect instructions in our experimentation.

aspect Check{

 pointcut check(Handel h): target(h) &&

(execution (public * intToHex(..)) || execution

(public*floatToHex(..)));

Amritpreet et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

©IJAIR./ All Rights Reserved 560

Above we have defined the point cut for aspect programming.

B. Objectives

 To find the faults that specific to aspectual structures.

 Provide solution for incorrect advice type, strong or

weak pointcut expressions, and incorrect aspect

precedence.

C. Research Methodology
This research will focus on providing solution for said

problem by testing the aspect oriented programs with activity

flow diagrams.
This research will be focused on the Flow of the activity

diagrams to test the aspect oriented codes. This flow will be

used in accordance with the aspect oriented programs.

Our research will focus on the testing of aspect programs by

generating test sequences based on activity diagrams which

will validate the correct working and starting malfunctioning

(errors). Further aspect model will be generated and integrate

with basic aspect model with flow activity diagrams in UML

activity diagrams.
Particularly for testing we will use AGRO UML tool. In our

research we will focus on faults finding for Aspect Oriented

Programs with help of flow diagram based on activity and

sequence of UML. Flow for activity diagram will be decided

according to example set on which we will work and the

according to generated flow, testing of aspect codes will be

considered.

V. CONCLUSIONS

Our experimentation is in process for finding faults in

Aspect Oriented Programming with different UML styles.

Particularly we have developed some codes and we have
started our testing experimentation. In near future we will test

the different metrics of Aspect Oriented Programming with

UML.

.

REFERENCES

[1] http://www.uml.org -- The official UML Web site.

[2] http://www.rational.com/uml/resources/documentation/index.jsp --Offer

several different versions of the actual UML specification.

[3] http://argouml.tigris.org --Information on Argo UML, an .open source

UML modeling tool built in Java.

[4] Mayank Singh, Shailendra Mishra” Mutant Generation for Aspect

Oriented Programs”, Indian Journal of Computer Science and

Engineering, Vol 1, No 4, pp 409-415, 2011.

[5] Somayeh Madadpour, Seyed-Hassan Mirian-Hosseinabadi, Vahdat

Abdelzad,” Testing Aspect-Oriented Programs with UML Activity

Diagrams”, International Journal of Computer Applications, Volume

33, No-8, pp 23-29, November 2011.

[6] Reza Meimandi Parizi, Abdul Azim Abdul Ghani, Rusli Abdullah, and

Rodziah Atan,” On the Applicability of Random Testing for Aspect-

Oriented Programs”, International Journal of Software Engineering and

its Applications, Vol. 3, No. 4, October, 2009.

[7] Swati Tahiliani, Pallavi Pandit,” A Survey of UML-Based approaches to

Testing”, International Journal Of Computational Engineering

Research, Volume. 2, Issue. 5, pp 1396, September 2012.

[8] Philippe Massicotte, Linda Badri, Mourad Badri,” Towards a Tool

Supporting Integration Testing of Aspect-Oriented Programs”, Journal

of Object Technology, Vol. 6, No. 1, January-February 2007.

[9] Deepali A. Bhanage, Sachin D. Babar,“ Analyzing effect of Aspect

Oriented concepts in design and implementation of design patterns

with case study of Observer Pattern”, International Journal of

Engineering Research & Technology (IJERT), Vol. 1 Issue 3, May -

2012.

[10] http://www.omg.org/gettingstarted/what_is_uml.htm#12DiagramTypes

and the dictionary http://softdocwiz.com/UML.html, Summary of the

UML Diagrams, Originated May 9, 2002; Use case and sequence

diagram info added Feb 3, 2005.

[11] Suresh Chand Gupta, Prof Ashok Kumar,” Smart Environment for

Component Reuse”, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 2, Issue 2,

February 2012.

[12] Dr.R.V.Krishnaiah, Banda Shiva Prasad,” Analysis of object Oriented

Metrics”, International Journal of Computational Engineering Research

(ijceronline.com) Vol. 2 Issue. 5, pp 1474, September 2012.

