
K. Vanathi et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 337

Ontology Based Online Knowledge
K.Vanathi1, D.Muthusankar2

1PG Scholar, K.S.Rangasamy College of Technology, Tiruchengode, India.
Email: vanathi.vanu@gmail.com, Mobile No: +91 9003831771.

2Assistant professor (Academic), K S Rangasamy College of Technology, Tiruchengode, India.
Email: muthusankar@ksrct.ac.in

Abstract-- A key goal of the Semantic Web is to shift social
interaction patterns from a producer-centric paradigm to a
consumer-centric one. Treating customers as the most
valuable assets and making the business models work better
for them are at the core of building successful consumer-
centric business models. It follows that customizing business
processes constitutes a major concern in the realm of a
knowledge-pull-based human semantic Web. This work
conceptualizes the customization of service-based business
processes leveraging the existing knowledge of Web services
and business processes. It is represented with this the
conceptualization as a new Extensible Markup Language
(XML) markup language Web Ontology Language-Business
Process Customization, based on the de facto semantic
markup language for Web-based information Web Ontology 2
DL Language (OWL 2DL)]. Furthermore, it is reported with a
framework, built on OWL-BPC, for customizing service-based
business processes, which supports customization detection
and enactment. Customization detection is enabled by a
business-goal analysis, and customization enactment is
enabled via event–condition–action rule inference. Our
solution and framework have the following capabilities in
dealing with inconsistencies and misalignments in business
process interactions: 1) resolve semantic mismatch of process
parameters; 2) handle behavioral mismatches which may or
may not be compatible; and 3) process misaligned rendezvous
requirements. Such capabilities are applicable to business
processes with heterogeneous domain ontology. We present an
architectural description of the implementation and a walk-
through of an example of solving a customization problem as a
validation of the proposed approach.

Keywords— Information system, ontology, Web Ontology
Language, OWL 2DL, XML.

I. INTRODUCTION

An ontology formally represents knowledge as a set of
concepts within a domain, and the relationships among
those concepts. It can be used to reason about the entities
within that domain and may be used to describe the
domain.

In theory, an ontology is a "formal, explicit specification
of a shared conceptualisation". An ontology renders shared
vocabulary and taxonomy which models a domain with the
definition of objects and / or concepts and their properties
and relations.

Ontologies are the structural frameworks for organizing
information and are used in artificial intelligence, the
Semantic Web, systems engineering, software engineering,
biomedical informatics, library science, enterprise
bookmarking, and information architecture as a form of
knowledge representation about the world or some part of
it. The creation of domain ontologies is also fundamental to

the definition and use of an enterprise architecture
framework.

Web mining techniques have shown promising
performance in research experiments. Their actual
deployment in live Web data, in contrast, has been fairly
limited due to a lack of background semantics required for
processing the text data, links, and other elements in Web
pages. In this respect, an ontology which gives a conceptual
description of the background semantics can serve as a very
useful input to the Web mining problems. An ontology
refers to a set of concepts and the relationships, together
known as ontology entities, describing the information
within an application domain.

When an ontology is used in solving a Web
classification or extraction problem, the results obtained
can be associated with the ontology entities making them
easier to understand. This is a big advantage because each
ontology often represents knowledge agreed upon by users
and applications of a domain. For example, within the
University domain, {Professor, Student, Course} and
{Teach, Register, Supervise} are the common concepts and
relationships respectively. University Web pages are likely
to centered around these concepts and related concept
instances are likely to be linked in one way or another. As
the languages for defining ontologies and using the latter in
marking up Web content become well accepted [8], we see
an increasing use of ontology in Web mining. In this paper,
we will give an overview of ontology-based Web mining. In
ontology-based Web mining, we are often interested in
discovering the instances of concepts and relationships in a
given ontology, or using them to discover other useful
knowledge. These Web mining techniques can potentially
be deployed in a digital library system to enhance the
access to Web content.

In this work, we offer a technique that solves the
problems identified in the last paragraph for OWL 2
ontologies. The technique introduces 1) a formal contract
that captures designer’s assumptions he/she made about an
ontology during development of the business logic; 2)
process of its validation; and 3) transactional support aimed
at keeping the ontology consistent and optimizing the
access to the ontology. Furthermore, our approach allows
competencies to be clearly distinguished in the application
development process. Ontology and formal contract
maintenance is the responsibility of the knowledge engineer
educated in ontologies, but not necessarily having sufficient
programming skills. On the other hand, the application
developer(s) need not to be educated in ontological
reasoning and knowledge engineering. Hence, this

K. Vanathi et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 338

approach tends to significantly reduce the application
development costs.

Furthermore, our approach makes use of an object-
ontology mapping, similarly to approaches. However, on
comparison with them, our approach brings two novel
features:
1) explicit formal contract between the application and the
ontology that enables applications to run over an evolving
ontology;
2) transaction support that optimizes access to the ontology
and ensures the application does not cause ontology
inconsistency.

In this work it is proposed with a novel algorithm
for generating knowledge in the web using an algorithm
called OWL2-DL Language which includes the following
features.

1) Contract stability—The contract has to be static or
slowly evolving comparing to the ontology. The interface
shall survive most ontology refinements.

2) Contract maintainability—The contract between an
ontology and the respective object model has to be easy to
establish and maintain.

3) Non-restrictive—The interface has to provide full access
to the ontological knowledge, that includes entailment
checking and query answering.

4) Validation—The interface has to ensure that
modification of the ontology by the application violates
neither the consistency of the ontology nor the contract
between the application and the ontology.

In a service-based business process, customization may
be enabled by automatically adapting the process to match
the business partner’s practice indicated by their business
processes. Such practice includes service interface
specifications, Web Ontology Language (OWL)-service
profiles, process models, and grounding. We would like to
point out that, in this paper, we focus on the business
scenarios where the business processes can be supported by
dynamic and automatic service composition. In such
scenarios, the instantiation of business processes allows a
certain degree of flexibility in selecting business partners
and adjusting the process parameters for the partners. In
other words, here, we will only discuss service based
business processes where the idea of automation of
adaptation is applicable. We do not address many other
circumstances where the choreography between processes
must be well defined before execution in order to avoid any
unacceptable conflict and loss.

Our experience proves that the decision to use OWL
syntax for ontological axioms and integrity constraints at
the same time is an advantage as it significantly simplifies
integrity constraint authoring and management by the usage
of state-of-the-art OWL tools, provided the original OWL
ontology. For example in Protege, the integrity constraint
designer creates a new OWL document for storing integrity
constraints for the developed application. Then, by the

usage of the import mechanism of OWL the original
ontology is imported and new integrity constraints could be
easily constructed that is based on the vocabulary and
ontological axioms of the original ontology. In our
methodology, integrity constraints are stored in a different
OWL document than ontological axioms and, additionally,
are distinguished using OWL annotations.

To ensure stability of the interface, the contract should
be designed with as few integrity constraints as possible for
proper application functionality. The more integrity
constraints the contract contains, the less stable the contract
is, resulting in more frequent object model revision.

Two important elements that enable an automatic way of
processing business process customization are upper
ontology of a business process and upper ontology of the
process customization. Both upper ontologies have to
interface with domain ontology during the inference by an
inference engine.

Basically, three types of integrity constraints with regard to
their relation to the object model and their evaluation
strategy can be distinguished.

1) Compile-time constraints: They are those that can be
compiled into the object model of the OO language under
consideration. These constraints have the form α1 and α2.
Integrity constraints of this type restrict the type of OO
data field L(S) within an OO class L(A1):
a) when both α1 and α2 are present, the data field L(S)
is of type L(A2),
b) when only α1 is present, the type of L(S) is a set of
L(A2),
c) when only α2 is present, the type of L(S) is L(T).

2) Run-time constraints: They cannot be compiled directly
into the object model, but their validation can be optimized
in run-time by cheap procedural prechecks within the object
model without the need to evaluate a DCQNOT query (see
Section II). Currently considered run-time constraints have
the form of cardinality constraints α3 and α4 from Table II,
but we anticipate extending the run-time integrity constraint
types as well as further optimizations of currently
considered run-time constraint evaluation.

3) Reasoning-time: These constraints are all other integrity
constraints that cannot be reduced4 to integrity constraints
of aforementioned types. Reasoning-time integrity
constraints cannot be cheaply checked by the OPL itself,
but have to be evaluated by the usage of the DCQnot query
engine.

Note that prechecking run-time cardinality constraints by
simple counting of individuals introduced earlier fails
whenever two or more individuals could be inferred to be
the same, i.e., O |= i1 = i2 for different individuals i1 and i2
, (in addition to asserted i1 = i2 axioms). Fortunately, run-
time cardinality restrictions are allowed in integrity
constraints only in aforementioned option 2), which
enforces the ontology to be at most SRI. In this case, no
individuals can be inferred to be the same (as the Merge

K. Vanathi et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 339

operation in the SROIQ tableau algorithm is not
applicable), except individuals in the transitive closure of
the = relation (i.e., assertions of type i1 = i2). This
transitive closure is maintained by OPL and used to
distinguish same individuals during cardinality restrictions
checking.

The upper ontology of services, such as OWL-S, refers to
the types of knowledge about a service such as what the
service provides for prospective clients and how it is used.
For a service-based business process, the classes and
properties defined within the upper ontology of services
directly convey all important information of a business
process. Together with the structural constructs of the
process, they facilitate the automation of executing the
business process. Furthermore, with an upper ontology on
business process customization like OWL-BPC, automatic
customization of business processes is made possible due to
the presence of a machine-understandable knowledge
framework on what, when, and how customization should
be performed.

To provide expressive query language for accessing
ontological knowledge from ontology access layer, we
propose the SPARQL − DLNOT language. Its advantage to
other OWL query languages is that it is a direct extension
of DCQNOT that supports additionally undistinguished
variables (i.e., variables that do not need to be matched
against existing individuals in the ontology, but to the
inferred ones) and expressive meta-query atoms that allow
us to retrieve OWL classes and properties in addition to
individuals. An example of such query atoms are
SubPropertyOf(x, y) for retrieving all sub property pairs, or
DisjointWith(x, y) for retrieving pairs of disjoint classes.

II. ONTOLOGY ACCESS LAYER

The ontology access layer executes ontological
queries / updates requested by the application logic. The
main task of the layer is to provide transactional access to
the ontology, with respect to the ACID (atomicity,
consistency, isolation, durability) requirements. Atomicity,
consistency and isolation is ensured by the transaction
processing mechanism. Durability is ensured by creating a
simple transaction log. As all object model changes can be
expressed in terms of 1) OWL axiom additions, or 2) OWL
axiom removals, the transaction log can be just a list of
change records of these

Since ontology consistency checking and evaluation
of ontology queries is time consuming, the front-end layer
optimizes integrity constraint checking (FA2 and FA3) and
keeps cached the ontology changes that are propagated to
the ontology at transaction commit (FS4). Because of the
time and space complexity of the ontology consistency
check, it is not feasible that each transaction owns a
separate instance of an OWL reasoned for its whole life
duration.

To handle this problem, all transactions share one
instance R of an OWL reasoner. During the commit phase,
at the beginning of BA3, a new reasoner instance R_ is
created. When the commit succeeds (the changes violate

neither integrity constraints nor ontology consistency), data
are propagated to the ontology, R_ becomes shared (the
back-end layer benefits from serialized transactions, thus
also achieving transaction isolation), replaces R (BA5), and
all pending transactions are informed about reasoner
change (BS3). On the other hand, transaction rollback
causes R_ to be disposed.

The transaction scenario requires that all queries in a
transaction are evaluated (FR2, FS2, BR2, BA2, BS1, FR3,
and FS3) before the first data modification (FR5) in the
object model to prevent reading outdated data—for the
majority of practical scenarios, this restriction is not
serious, as data-editing clients fetch data first, provide them
to a user interface and take back changed data to be stored
in the ontology.

There are currently two back-end OWLAPI-based
implementations:
1) a simple implementation that accesses ontologies in
OWL files, and
2) a database-backed implementation that uses OWLDB9
to store OWL ontologies in a relational database. In both
variants, any OWLAPI-compliant OWL2-DL reasoner can
be used to check consistency, validate integrity constraints,
and evaluate SPARQL − DLNOT queries (flow from FR2
to FS3, although Pellet [19] is currently preferred as it
provides built-in optimized SPARQL − DLNOT support. In
case of another OWL reasoner is used, we provide our out-
of box SPARQL − DLNOT implementation
OWL2Query10 as a part of JOPA. It can be used on top of
any OWL2-DL reasoner to validate DCQNOT integrity
constraints and evaluate SPARQL − DLNOT queries.

III. CONCLUSION

In this paper, we have presented a conceptualization of
customizing service-based business processes according to
the discrepancies and misalignments discovered in their
business process description documents. We have also
presented an ontology, i.e., the OWL 2-BPC, which we
have developed for this purpose. Our main contribution in
this paper is to tackle the problem of possible
inconsistencies of collaborating business processes,
including the following:

1) possible semantic inconsistency such as semantic
mismatching on process parameters,

2) behavioral mismatches which may or may not be
3) compatible and
4) misaligned rendezvous requirements.

This ontology is used to build our framework for detecting
and performing service-based business process
customization. We have presented the detailed algorithm of
the framework and its architecture.

REFERENCES

[1] Carroll. J. J, Dickinson. I, Dollin. C, Reynolds. D, Seaborne. A, and
Wilkinson. K, (2004) “Jena: Implementing the semantic web
recommendations,” in Proc. WWW, pp. 74–83.

[2] Ermolayev. V, Keberle. N, and Matzke. W. E, (2008) “An upper
level ontological model for engineering design performance
domain,” in ER, (Lecture Notes in Computer Science Series). Berlin:
Springer, pp. 98–113.

K. Vanathi et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 340

[3] Horridge. M and Bechhofer. S, (2011). The OWL API: A java API
for OWL ontologies. Semantic Web [Online]. 2(1), pp. 11–21.
www.semanticwebjournal.net/sites/default/files/swj107_2.pdf

[4] Maedche. A, Motik. B, Stojanovic. L, Studer. R, and Volz. R, (2003)
“Ontologies for enterprise knowledge management,” Intell. Syst.,
IEEE, vol. 18, no. 2, pp. 26–33.

[5] Motik. B, Patel-Schneider. P. F, and Grau. P. C, Eds. (2009 Oct.).
OWL

[6] Story. H, (2008). “Semantic Object (Medata) Mapper,” (cited
6Oct.2010). [Online].Available:http://sommer.dev.java.net/sommer.

[7] Tran. T, Haase. P, Lewen. H, O´Mun˜oz-Garc´ıa, Go´mez-Pe´rez. A,
and Studer. R, (2007) “Lifecycle-support in architectures for
ontology-based information systems,” presented at the Int.
SemanticWeb Conf./Asian Semantic Web Conf., Berlin, Heidelberg,
Germany: Springer-Verlag, pp.508–522.

[8] Von Malottki. J, (2009) “Java OWL APIs.” (cited 6 Oct. 2010).
[Online]. Available: http://wiki.yoshtec.com/java-owl-api

[9] Wang. Y, Liu. X, and Ye. R, (2008) “Ontology evolution issues in
adaptable information management systems,” in Proc. IEEE Int.
Conf. e-Business Engineering. Los Alamitos, CA: IEEE Computer
Society, pp. 753– 758.

[10] Web Ontology Language Direct Semantics, ser. W3C
RecommendationW3C.
[Online].Available:http://www.w3.org/TR/2009/REC-owl2 direct-
semantics- 20091027/

[11] (2007) [Online]. Available: http://protege.stanford.edu

