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Abstract: The data distributors work is to give sensitive data to a set of presumably trusted third party agents. The data
i.e., sent to these third parties are available on the unauthorized places like web and or some ones systems, due to data
leakage. The distributor must know the way the data was leaked from one or more agents instead of as opposed to having
been independently gathered by other means. Our new proposal on data allocation strategies will improve the probability
of identifying leakages along with Security attacks typically result from unintended behaviors or invalid inputs. Due to
too many invalid inputs in the real world programs is labor intensive about security testing. The most desirable thing is to
automate or partially automate security-testing process. In this paper we represented Predicate/ Transition nets approach
for security tests automated generation by using formal threat models.
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INTRODUCTION

Our consideration about applications where the
Original sensitive data can’t be perturbed. For this the
application must detect when the sensitive data got
leaked and if possible from where. Before sending
the sensitive data to the agents we need to convert it
to low sensitive data by using the most useful
technique perturbation. For example, one can add
random noise to certain attributes, or one can replace
exact values by ranges [1]. In some critical cases
there is no need of altering the original distributor’s
sensitive data. For example, the alteration of bank
account number and salary information not needed if
an outsourcer is doing our payroll. In medical field
also the researchers need accurate information about
patients. Traditionally, leakage detection is handled
by water -marking, e.g., a unique code is embedded
in each distributed copy. The leaker can identify
easily in the hands of the unauthorized party where
the copy is discovered later. In some cases this
watermarks technique also useful, but it involves
some modification of the original sensitive data. If
the data recipient is malicious the watermarks can
also be destroyed. In this paper, the leakage of a set
of objects or records will detect by using the study
unobtrusive techniques. The following is the special

scenario we will study: the distributor founds same
objects in unauthorized place those are distributed to
the agents, after distribution. By this moment, the
distributor will acquires the information about leaked
data where it came from either one or more agents,
neither gathered independently by other means. For
example a cookie is stolen from a cookie jar, if
distributor catches Ram with a single cookie; he can
argue that a friend gave him the cookie. But if we
catch Ram with five cookies, it is too hard to him to
argue that his hands were not in the cookie jar. In
(Stanford, 2008) If the distributor sees “enough
evidence” that an agent leaked data, he may stop
doing business with him, or may initiate legal
proceedings.

Security testing needs to target the “presence of an
intelligent adversary bent on breaking the system”
[10]. The threat model will provide a basis for
effective security testing because threat models
describe security threats from the standpoint of how
the adversary would attack or exploit a system.
Although threat modeling has become a viable
practice for secure software development, security
testing with implicit and informal threat models has
very limited ability to automatically generate security
tests (Lijo Thomas). The Predicate/ Transition (PrT)
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netsare used for automated security testing by using
formal threat models represented. PrT nets are high-
level Petri nets, which are a well-studied
mathematically-based method for modeling and
verifying distributed systems. To achieve secure
design, wehave used PrT nets as a unified formalism
for modelingsystem functions, security threats, and
security features.Presence (or absence) of the threats
can be verified againstthe functions before (or after)
the security features areapplied. Recently, we have
implemented an animator forstepwise simulation of
attack behaviors. Based on this work,this paper aims
at automated security testing with PrT net-based
threat models.

Our developed model will acquire the agent’s guilt.
To identify the leaker of whom we sent the objects,
we present the algorithms also. We also add the fake
objects to the original objects. Such objects will
appear related to the agents but do not correspond to
real entities. The fake objects will act as a watermark
for the entire set, without modifying any individual
members. If it turns out that an agent was given one
or more fake objects that were leaked, then the
distributor can be more confident that agent was
guilty.

Section 2 explains our problem setup and the used
notation. The 4 & 5Sections will represent a model
for calculating data leakage “guilt” probabilities. The
data allocation strategies will be explained in
Sections 6 and 7. Section 8 will explains the way we
evaluate the strategies to identify the leaker in
different data leakage scenarios.

2.  PROBLEM SETUP AND NOTATION

2.1 Entities and Agents

A district but or owns a setT¼ft1;...; tm of valuable
data objects. The set of agents U1;U2;…;Un, the
distributor wants to share some of the objects, but
leakage of objects to the other third parties are not
interested. The objects in T could be of any type and
size, e.g., they could be tuples in a relation, or
relations in a database.

In (Panagiot is Papadimitriou)Ri T is a subset of
objects is received by agent Ui. determined either by
a sample request or an explicit request:

Sample request Ri ¼SAMPLEðT; miÞ: Any
subset of mi records from T can be given to
Ui
Explicit request Ri ¼EXPLICITðT; Cond
iÞ: Agent Ui receives all To bisects that
satisfy Cond i

For example: Say thatTcontains customer records for
a given companyA. One company C1hires a
marketing agency M1 to do an online survey of
customers. If any customer wants to do the
survey,agency M1 requests a sample of 1,000
customer records. At the same time, company C1
subcontracts with agent M2 to handle billing for all
Mumbai customers. Thus, M2receives all T records
that satisfy the condition “state is Mumbai.” Our
model for a sample of object requests can easily be
extended to satisfy a condition (e.g., an agent wants
any 100 Mumbai customer records). Also note that
we need not concern ourselves with the randomness
of a sample.

2.2 Guilty Agents

T is a set of objects leaked from agents is discovered
by the distributor after distribution of objects. The
third party called the target has been caught in jump
to S. For example, the target website displays that it’s
Son the main website, or perhaps as part of a legal
discovery process, the target turned over S to the
distributor. Based on this we can say that the data
was leaked because the agentsU1;...; Un have some
of the data. And data S were obtained through other
way by the target. For example, (Panagiot is, 2011) X
is the customer S in the objects, and also a customer
of some other company, and that company provided
the data to the target.

Our aim is to found that the leaked data came from
the agents compare to other sources. Intuitively, the
agents may argue that they dint leak anything to third
party is very hard. Similarly, it is hard to get that the
objects obtained by other means to the targeted. Our
aim is not only to estimate the likelihood of leaked
data from the agents, but also like to find out the
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leaker in particular more likely. For the moment of
time, in S object one is only given to the agentU1,
and the other objects were given to all other agents,
we may doubt onU1 more. The model we present
next captures this intuition. We can say that an agent
Ui is guilty due to his contribution on the objects
leakage to the target. The agent Ui is guilty by Gi and
the event that agent Ui is guilty for leakage of set S
by Gi jS. The next step is to estimate Prf Gi jSg, i.e.,
the probability that agent Ui is guilty given evidence
S.

RELATED WORK

Our proposed detection of guilt approachis related to
the data provenance problem [2]: tracing the lineage
of S objects implies essentially the detection of the
guilty agents. Tutorial [3] provides a good overview
on the research conducted in this field. Suggested
solutions are domain specific, such as lineage tracing
for data ware-houses [4], and assume some prior
knowledge on the way a data view is created out of
data sources. Our problem formulation with objects
and sets is more general and simplifies lineage
tracing, since we do not consider any data
transformation from Ri sets to S.

How many times the data allocation strategies are
concerned, our work is relevant to watermarking
technique will establish original ownership of
distributed objects. Watermarks were initially used in
images [5], video [6], and audio data [6] whose
digital representation includes considerable
redundancy. Our approach is similar as watermarking
that provides agents some receiver identifying
information. By its nature, a watermark modifies the
item being watermarked. If the object is watermarked
it cannot be modified, and another watermark cannot
be inserted. In such cases, attaching watermarks to
the distributed data are not applicable.

Other works are also there to allow authorized user
access control to access sensitive data through access
control policies. Those approaches will prevent in
sense the data leakage by sharing information only
with trusted parties. However, these policies
impossible to satisfy agents’ requests.

The main focus in this paper is on automated
generation of executable security test code from
Threat Model-Implement Description (TMID)
specifications. A TMID specification consists of a
threat model (i.e., PrT net) and a Model-
Implementation Mapping (MIM) description. A
threat model describes how toattack to violate a
security goal. A MIM description maps the individual
elements of a threat model to their implementation
constructs. Given a TMID specification, our
approach can generate all attack paths from the threat
model and then convert them into executable code
according to the MIM description. As such, the
security tests generated from the threat model can be
executed automatically. We have implemented our
approach in Integration and System Test Automation
(ISTA), a framework for automated test code
generation from PrT nets [12]. Currently, ISTA uses
either HTML/Selenium IDE or C as the target
language of test code for generating security tests
from TMID specifications. Selenium 2 is a Firefox
plug-in for creating, recording, and replaying test
cases for web applications.

We have built comprehensive threat models
according to the threat classification system STRIDE
(spoofing identity, tampering with data, repudiation,
information disclosure, denial of service, and
elevation of privilege) [10], [13]. STRIDE has been
widely used for threat modeling [46]. The security
tests generated from the threat models of these
systems have revealed security vulnerabilities and
risks in each system. While all attack paths are
generated automatically from the threat models,
about 95 percent of them are converted to executable
test code and can be performed automatically. To
further evaluate the vulnerability detection capability
of the security tests, we have applied them to the
security mutants of the above systems. Each mutant
is a variation of the original version with one
vulnerability injected deliberately. A mutant is said to
be killed if at least one of the security tests is a
successful attack against the mutant.

Our experiments shows that the security tests
generated from the security models are very effective
they have killed about 90 percent of the mutants. The
contribution of this paper is twofold. First, our
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approach can generate executable security tests from
rigorous threat models that capture various security
attacks, such as spoofing, tampering with data,
information disclosure, denial of service, and
elevation of privilege. It is recognized that security
testing of software applications needs to be
performed from the adversary’s perspective, i.e., how
the adversary might attack the system under test
(SUT).

The existing security testing techniques primarily use
implicit threat models (e.g., thoughts in security
tester’s mind) or informal threat descriptions (e.g.,
represented by attack trees). However, security
testing with informal threat specifications (e.g., attack
trees) has very limited ability to automate test
generation or test execution [14], [15]. In this paper,
threat modeling is based on a rigorous formalism,
PrT nets, from an effective approach to secure
software design [45]. By using PrT nets to model
system functions, security threats, and security
features, presence (and absence) of the security
threats can be verified against the system functions
before (and after) the security features are applied.
Threat models resulted from such a design process
can be leveraged to generate security tests for
validating the resultant implementation. In addition,
the existing research on model-based testing has
focused on test generation from intended behavior
models [16], not from rigorous threat models.
Second, we used security mutation (i.e., injection of
various security vulnerabilities) for evaluating the
effectiveness of our approach.

Traditional mutation testing research focuses on fault
injection by making syntactic changes to a target
program or specification [13], such as modification
of && (and) to jj (or) in a condition. Obviously, such
mutants are unlikely security vulnerabilities because
they have not taken the semantics into consideration.
The existing work on security mutation analysis
focuses on vulnerability injection for particular types
of attacks (e.g., injection, XSS, and buffer over flow)
and fault injection for role-based access control
(RBAC) policies [16].

THREAT MODELS FOR SECURITY TESTING

This section introduces TMID, the front-end input
language for automated security testing. A TMID
specification includes a threat model and a MIM
specification. A threat model describes how attacks
can be performed against the SUT, whereas a MIM
specification maps the elements of a threat model to
implementation-level constructs. The for merits used
to generate security tests and the latter is used to
convert them into executable code.

Threat Models:

Definition 1 (PrT net).A PrT net N is a tuple
<P;T;F;I;P;L; ’;M0>, where1. Pis a set of places (i.e.,
predicates), T is a set of transitions, F is a set of
normal arcs, and Iis set of inhibitor arcs.

2.P is a set of constants, relations (e.g., equal to and
greater than), and arithmetic operations (e.g., addition
and subtraction).

3. L is a labeling function on arcs F[I. L(f) is a label
for arc f. Each label is a tuple of variables and/or
constants inP

4. ’is a guard function on T:’ðtÞ;t’s guard condition,
is built from variables and the constants, relations,
and arithmetic operations inP.5. M0¼Sp2PM0ðpÞis
an initial marking, hereM0ðpÞ is the set of tokens in
place p. Each token is a tuple of constants in P.

A simplified version of traditional PrT nets [8]. This
formalism has been applied successfully to threat
modeling in a formal method for secure software
design [15]. It is also supported by an efficient
verification technique [18].Suppose each variable
starts with a lower case letter or question mark (?)
and each constant starts with an uppercase letter or
digit.<6c>denotes the zero-argument tuple for a token
or default arc label if an arc is not
labeled.pðV1;...;VnÞ denotes token<V1;...;Vn>in
place p. Places and transitions are represented by
circles and rectangles ,respectively. An arrow
represents a normal arc; a line segment with a small
solid diamond on both ends represents an inhibitor
arc. Fig. 1 shows an example.
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Transitions legal Attempt and illegal Attempt have
formal parameters ð?U;?pÞ. Illegal Attempt also has
a guard condition? u6¼0000. Let p be a place and t
be a transition. P Is called an input(or output) place of
t if there is a normal arc from p to t(or from t to p). p
is called an inhibitor place if there is an inhibitor arc
between p and t. Let? x=V be a variable binding,
where ?x is bound to value V. A substitution is a set
of variable bindings. In substitution
f?u=ID1;?p=PSWD1g, ?u and ?p are bound to ID1
and PSWD1,respectively. Let be a substitution
andlbe an arc label .l= denotes the tuple (or token)
obtained by substituting eachvariable inl for its bound
value in
.Ifl¼<?u;?p>and¼f?u=ID1;?p=PSWD1g,thenl=¼<ID
1;PSWD1>.

Transition t is said to be enabled or firable by under a
marking if 1) each input placep of t has a token that
matches l=, where l is the normal arc label from p to
t;2) each inhibitor placep of t as no token that
matches l=,where l is the inhibitor arc label; and 3)
the guard condition of t evaluates to true according
to.

Suppose M0¼fp1;p2ðID1;PSWD1Þ;p3ðIDn
þ1;PSWDnþ1Þgfor the net in Fig. 1. Legal Attempt is
enabledby¼f?u=ID1;?p=PSWD1gbecausep1 has a
token (i.e.,<6c>) and p2 have a
token<ID1;PSWD1>that matches<?u;?p>=. Illegal
Attempt is not enabled under M0 becausep2, as an
inhibitor place, has a token that can be unified with

the arc label <?u1;?p1>. Inhibitor arcs represent
negation.

Firing an enabled transition t with substitution
underM0 removes the matching token from each
input place and adds new token l=to each output
place, where l is the arc label from t to the output
place. This leads to a new markingM1. Firing
tð?x1;...;?xnÞ ith¼f?x1=V1;...;?xn=Vngisdenoted
bytor tðV1;...;VnÞ:M0;t11;M1...tnn;Mn,orsimply
t11;...;tnn, is called a firing sequence, wheretið1inÞis
a transition, ið1inÞis the substitutionfor firingti, and
Mi ð1inÞis the marking after tifires ,respectively. A
marking M is said to be reachable from M0if there is
such a firing sequence that transforms M0 to M. Note
that evaluation of a guard condition for transition
firing may involve comparisons,arithmetic
operations, andbinding of free variables to values.
For example, evaluationofz¼xþ1wherexis bound to
two will first computexþ1and then bind z to three.
Therefore, a firing sequence can imply a sequence of
data transformations.

Definition 2 (Threat model or net).A PrT
net<P;T;F;I;P;L;’;M0>is a threat model or net if This
one or more attack transitions (suppose the name of
each attack transition starts with “attack”). The firing
of an attack transition is a security attack or a
significant sign of security vulnerability.

Fig 2. A threat net for SQL injection attacks.

The net in Fig. 2 models a dictionary attack against a
system that allows only n invalid login attempts for
authentication. It describes that the adversary tries to
makesnþ1login ttempts.p2holdsninvalid<user id;
password>pairs andp3 holds one invalid<user id;
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password>pair.SupposeM0¼fp0;p2ðID1;PSWD1Þ;p
2ðID2;PSWD2Þ;p2ðID3;PSWD3Þ;p3ðIDnþ1;PSWD
nþ1Þg:Then, the following firing sequence violates
the authentication policy of a system that allows only
three invalid login attempts:

Result Analysis

Both case studies have used a structured process to
build threat models by applying the STRIDE
classification to the system functions. STRIDE helps
identify threats to all security goals, including
confidentiality, integrity, avail-ability, authentication,
authorization, and non-repudiation.

The threat nets for each case study have covered all
systems functions and threat types. Through threat
modeling, a security tester can gain an in-depth
understanding about the SUT. Threat models
document the tester’s thoughts on the goals and
processes of security attacks. This is critical to
effective security testing. To achieve an attack goal, a
real-world adversary may only need one or few ways
to break into the system. Security testing, however,
must consider as many potential attacks as possible.

In both studies, attack paths are all generated
automatically from the threat nets. Majority of them
are successfully converted into executable code in
that the MIM specifications can be developed.
Whether the MIM for a threat net can be specified
depends on whether the individual actions and
conditions are programmable. 95.1(98/103) and 94.7
percent (72/76) of the tests can be fully or partially
automated for Magento. Respectively. Although the
prior work on testing with attack trees [18] can
generate attack paths automatically, these attack
paths are usually ambiguous because the attack
actions and conditions originated from the attack
trees are described in plain text. Transformation of
the attack paths to executable tests can only be done
by hand. In comparison, our new approach allows for
a high degree of automation for security testing.

Both studies show that security testing with for mal
threat models is very effective. The security tests
have found vulnerabilities in each system. They have
killed 88.9(56/63) and 92.1 percent (35/38) of the
security mutants, respectively. The overall

vulnerability detection rate is91=101¼90percent. The
main reason for the effectiveness is that the threat
models are built as if the tester were an intelligent
adversary. The tests generated from the threat models
are directly on the target, i.e., vulnerabilities that can
be exploited by attacks. Nevertheless, testing with
threat models also has limitations. It is difficult to
reveal vulnerabilities that are not anticipated by the
threat models.

DATA ALLOCATION PROBLEM

Our main focus in this paper is problem in data
allocation: the way the distributor can“ intelligently”
distribute the data to the agents to improve the
chances of finding a guilty agent? Fig. 2 explains that
the problem address four instances, depending on the
agents request on data and whether “fake objects” are
allowed .We handle two types of requests here were
defined in Section 2: sample and explicit. The Fake
objects are generated by the distributor that is not in
set T. The fake objects are designed to look like real
objects, and are distributed to agents together with T
objects,(A kshy) in order to increase the chances of
detecting agents that leak data.

Fig. 3 Leakage problem instances

Fig. 3 shows that the representation of our four
problem instances with the names EF, EF, SF, and
SF, where E stands for explicit requests, S for sample
requests, F for the use of fake objects, and F for the
case where fake objects are not allowed.

For simplicity, we assume that problem instances in
E, all agents’ requests are done by explicitly, while in
the instances S, all requests are sample. We extended
this to handle mixed cases also, with some explicit
and sample requests. For example how mixed case
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handled, but not elaborates further. Assume that we
have two agents with requests R1¼EXPLICITðT;
cond1Þ andR2¼SAMPLEðT0; 1Þ, whereT0
¼EXPLICITðT; cond2Þ.

Further, say thatcond1 is “state¼CA” (objects have a
statefield). If agentU2has the same
conditioncond2¼cond1, wecan create an equivalent
problem with sample data requests on set T0. That
is, our problem will be how to distribute theCA
objects to two agents, withR1¼SAMPLEðT0;
jT0jÞand R2¼SAMPLEðT0; 1Þ.If insteadU2 uses
condition“state¼NY,” we can solve two different
problems for setsT0 and T1. In each problem, we will
have only one agent. Finally, if the conditions
partially overlap.

For distributed data also the distributor will add fake
objects it improves effectiveness in detecting guilty
agents. However, fake objects may impact the
correctness of what agents do, so they may not
always be allowable.

Fig. 4 Guilt probability as a function of the guessing
probability p(a) and the overlap between SandR2 (b)-
(d). In all scenarios, it holds thatR1\S¼SandjSj¼16.
(a)jR2\SjjSj ¼0:5, (b) p¼0:2, (c) p¼0:5, and (d)
p¼0:9.

To detect leakage of data is not a new idea called the
perturbing. However, in most cases, individual
objects are perturbed, e.g., by adding random noise to
sensitive salaries, or adding a watermark to an image.
In our case, we are perturbing the set of distributor
objects by adding Fig. 4. Guilt probability as a
function of the guessing probabilityp(a) and the
overlap betweenSandR2 (b)-(d). In all scenarios, it
holds thatR1\S¼SandjSj¼16. (a)JR2\SjjSj ¼0:5, (b)
p¼0:2, (c) p¼0:5, and (d) p¼0:9.

ALLOCATION STRATEGIES

This section illustrates the allocation strategies those
involved to solve exactly or approximately the scalar
versions of (8) for the different instances presented in
Fig. 3. Where we cannot solve the optimization
problem there we place the approximate solutions.
The proofs of theorems that are stated in the
following sections are available in [14].

Explicit Data Requests

In EF class problems the distributor is not allowed to
add fake objects to the distributed data. So, the data
allocation is fully defined by the agents’ data
requests. Therefore, there is nothing to optimize.

The objective values are initialized in EF problems,
by agents’ data requests. Say, for example, that
T={t1; t2}and there are two agents with explicit data
requests such that R1={t1; t2} and R2={t1}. The
value of the sum-objective is in this case the
distributor cannot remove or alter theR1 orR2 data to
decrease the overlap R1\R2. However, say that the
distributor can create one fake object (B=1) and both
agents can receive one fake object (b1=b2=1). In this
case, the distributor can add one fake object to
eitherR1 orR2 to increase the corresponding
denominator of the summation term. Assume that the
distributor creates a fake object f and he gives it to
agentR1. Agent U1 has nowR1={t1; t2;
f}andF1=ffgand the value of the sum-objective
decreasesto13þ11¼1:33<1:5.

If the distributor is able to create more fake objects,
he could further improve the objective. We present in
Algorithms 1 and 2 a strategy for randomly allocating
fake objects. Algorithm 1 is a general “driver” that
will be used by other strategies, while Algorithm 2
actually performs the random selection. We denote
the combination of Algorithm 1 with 2 random. We
will use e-random as our baseline in our comparisons
with other algorithms for explicit data requests.

Algorithm 1.Allocation for Explicit Data Requests
(EF)

Input: R1;…;Rn, cond1;…; condn, b1;…;bn, B

Output: R1;…;Rn, F1;…;Fn

1: R; .Agents that can receive fake objects
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2: fori¼1;…;ndo

3: if bi >0then

4: R R[fig

5: Fi ;

6: whileB>0do

7: i SELECTAGENTðR;R1;…;RnÞ

8: f CREATEFAKEOBJECTðRi;Fi; cond iÞ

9: Ri  Ri [ffg

10: Fi  Fi [ffg

11: bi  bi 1

12: if bi ¼0then

13: R RnfRig

14: B B 1

EXPERIMENTAL RESULTS

Our allocation algorithms are implemented in Python
and we conducted experiments with simulated data
leakage problems to evaluate their performance. In
Section 8.1, we present the metrics we use for the
algorithm evaluation.

Metrics

we presented algorithms to optimize the problem of
(8) that is an approximation to the original
optimization problem of (7). In this section, we
evaluate the presented algorithms with respect to the
original problem. In this way, we measure not only
the algorithm performance, but also we implicitly
evaluate how effective the approximation is. The
objectives in (7) are the difference functions.

We evaluate a given allocation with the following
objective secularizations as metrics: Metric is the
average of ði; jÞ values for a given allocation and it
shows how successful the guilt detection is, on
average, for this allocation. For example, if it 0:4,
then, on average, the probability Prf GijRig for the
actual guilty agent will be 0.4 higher than the
probabilities of non-guilty agents. Note that this

scalar version of the original problem objective is
analogous to the sum-objective scalarizations of the
problem of (8). Hence, we expect that an algorithm
that is designed to minimize the sum-objective will
maximize. Metric Min is the minimum ði; jÞ value
and it corresponds to the case where agent Ui has
leaked his data and both Ui and another agent Uj
have very similar guilt probabilities. If min is small,
then we will be unable to Identify Ui as the leaker,
versus Uj. If min is large, say, 0.4,then no matter
which agent leaks his data, the probability that he is
guilty will be 0.4 higher than any other non-guilty
agent. This metric is analogous to the max-objective
scalarizations of the approximate optimization
problem.

The selected values for these metrics are depending
on the application. In particular, they depend on what
might be considered high confidence that an agent is
guilty. For instance, say thatPrfGijRig¼0:9 is enough
to arouse our suspicion that agent Ui leaked data.
Furthermore, say that the difference between
PrfGijRig and any other PrfGjjRig is at least 0.3.In
other words, the guilty agent
isð0:90:6Þ=0:600%¼50%more likely to be guilty
compared to the other agents. In this case, we may be
willing to take action against Ui. In the rest of this
section, we will use value 0.3 as an example of what
might be desired in values.

To calculate the guilt probabilities and differences,
we use throughout this section p=0:5. Although not
reported here, we did the experiments with other p
values and observed that the relative performance of
our algorithms and our main conclusions do not
change. If p approaches to 0, it becomes easier to find
guilty agents and algorithm performance converges.
On the other hand, ifpapproaches1, the relative
differences among algorithms grow since more
evidence is needed to find an agent guilty.

Explicit Requests

In the first place, the goal of these experiments was to
see whether fake objects in the distributed data sets
yield significant improvement in our chances of
detecting a



P. Santhosh Reddy et al. / IJAIR Vol. 2 Issue 2                                            ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 238

Fig. 5 Evaluation of explicit data request algorithms
(a) Average, (b) Average min

We focused on with few objects that are shared
among multiple agents. These are the most
interesting scenarios, since object sharing makes it
difficult to distinguish a guilty from non-guilty
agents. A scenario with more objects to distribute or
shared among fewer agents are obviously easier to
handle. As far as scenarios with many objects to
distribute and many over-lapping agent requests are
concerned, they are similar to the scenarios we study,
since we can map them to the distribution of many
small subsets.

In our scenarios, we have a set of jTj¼10objects for
which there are requests byn¼10 different agents.
Our assumption is that the each agent requests 8
particular objects out of these 10. Hence, each object
is shared, on average, among¼8agents. This
scenarios yield more similar that the agent guilt
probabilities and it is most important to add fake
objects. We generated a random scenario
thatyielded¼0:073andmin¼0:35and we applied the
algorithms e random and e-optimal to distribute fake
objects to the agents. The number B varied with
distributed fake objects from 2 to 20, and for each
value of B, we ran both algorithms to allocate the
fake objects to agents. We rane-optimal once for each
value of B, since it is a deterministic algorithm.
Algorithm e- random is randomized and we ran it 10
times for each value of B. The results we present are
the average over the 10 runs. Fig. 3a shows how fake
object allocation can affect.

There are three curves in the plot. The solid curve is
constant and shows the value for an allocation

without fake objects (totally defined by agents’
requests). The other two curves look at algorithms e-
optimal and e-random. The X-axis and the Y-axis
shows the ratio between the numbers of distributed
fake objects to the total number of objects that the
agents explicitly request.

We observe that distributing fake objects can
significantly improve, on average, the chances of
detecting a guiltyagent. The random allocation yields
> 0.3 for approximately 10 to15 percent fake objects.
The use of e-optimalimprovesfurther, since thee-
optimalcurve is >95 % consistently in intervals ofe-
random. If the agent dint require same number of
objects theperformance difference between the two
algorithms wouldbe greater, since this symmetry
allows non smart fake object scenarios. However, we
do not study more this issue here,since the
advantages ofe-optimalbecome obvious when welook
at our second metric.

The function of the fraction of fake objects. The
insignificant improvement in random allocation
shows the plot chances of detecting a guilty agent in
the worst-case scenario. This was expected, since e-
random does not take into consideration due to that
each agent “must” receive a fake object to
differentiate their requests from other agents. On the
contrary, algorithm e-optimal can yield min >0:3with
the allocation of approximately 10 percent fake
objects. This improvement is very important taking
into account that without fake objects, values min and
are close to 0.

By allocating 10 percent of fake objects, in worst
case also the distributor can detect a guilty agent.
Without allocating fake objects, the distributor was
unsuccessful in the worst case as well as in average
case also. Our e-optimal curve has two jumps due to
the symmetry in our scenario. Our e-optimal
algorithm allocates one fake object per each agent
before allocating a second fake object to other agents.

CONCLUSION

The agents may leak sensitive data that may
unknowingly or maliciously. And even if we want to
handle the sensitivedata perfectly in this world we
could do watermarking each object sothat we can
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trace its origins with absolute certainty.In many cases
in this world, we must work with agentsthose are
may not be 100 percent trusted, and we cannot
confirm that the leaked object came from an agent or
from other source, since our data cannot admit
watermarks.

Automated generation of security test code largely
depends on whether or not threat models can be
formally specified, whether or not individual test
inputs (e.g., attack actions with particular input data)
and test oracles (e.g., for checking system states) can
be programmed. A system that s designed for
testability and traceability would certainly facilitate
automating its security testing process. For example,
threat models identified and documented in the
design phase can be reused for security test
generation.

Access or methods designed for testability (i.e., for
accessing system states) are useful for verification of
security test oracles. The traceability of design-level
functions in the implementation can facilitate the
mapping from individual actions in threat models to
implementation constructs. It is worth pointing out
that the threat models in our approach can be built at
different levels of abstraction. They do not
necessarily specify design-level security threats.

Software security is a complex problem; there is no
silver bullet [17]. Different techniques are often
needed in order to achieve a high level of security
assurance. In particular, testing for security and static
analysis for security are two different approaches. It
is of interest to conduct a comparative study on their
cost effectiveness.
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