
Shivani Jain et al. / IJAIR Vol. 2 Issue 2                                            ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 223

Multi-Threaded Approximate Pattern
Matching Based on Edit Distance

Shivani Jain#1, Dr. A.L.N. Rao#2, Ankit Jain#3

#1 IT , #2 IT,#3IT MTU, MTU, MTU
Vidya College of Eengineering, Meerut, UP, India

Galgotia Engineering College, Greater Noida, UP India
Vidya College of Eengineering, Meerut, UP, India

1shivanij_1110@yahoo.com
2dr.rao@aol.com

3jain.ankit11@yahoo.com

Abstract— This research article concerned with
approximate string matching.  It also describes the
importance of design of efficient “Approximate Pattern
Search Algorithms in molecular database”.
Approximate Search, which allows matching patterns
that do not exactly match the search term, but allows
some errors between the pattern and the text. This
paper uses the Multithreading concept for attaining
speed on a multi core system, such that this string
matching approach will run parallel. The java
technology will be used for using the multithreading
concept. Matching is done that is based on edit distance
(Levenshtein Algorithm) using the concept of
multithreading in a multi core system for providing fast
execution. Divide the text into segments then apply the
Levenshtein Distance algorithm on each segment
concurrently, using the multithreaded concept. This
pattern matching algorithm performs the parallel string
searching on different text segments by executing a
number of threads simultaneously. This approach is
advantageous from all other string-pattern matching
algorithms in terms of time complexity. Therefore this
procedure improves the efficiency of approximate string
matching and gives the near-optimal results.

Keywords— Multithreading, Edit Distance,
Levenshtein Distance, Approximate String Matching

I. INTRODUCTION

String matching is one of the most important
problems in typical string algorithms, with
applications to text searching, biological applications,
pattern recognition etc. String matching or searching
algorithms try to find places where one or several
patterns are found within a larger text. When the
pattern is in a single string the problem is known as
string matching, locate all occurrences of a
pattern P of length n in a text T of length m.

The general goal is to perform string matching of a
pattern in a text where one or both of them have
suffered some kind of undesirable corruption. Some
examples are recovering the original signals after
their transmission over noisy channels, finding DNA
subsequences after possible mutations, and text
searching where there are typing or spelling errors
[5].

The problem of finding exact or non-exact
occurrences of a pattern P in a text T over some
alphabet is a central problem of combinatorial pattern
matching and has a variety of applications in many
areas of computer science [1].

String searching algorithms can be accomplished in
two ways:

1. Exact match, meaning that the passages returned
will contain an exact match of the key input.

2. Approximate match, meaning that the passage will
contain some part of the key word input [9].

Approximate matching is a challenging problem even
if only one error is allowed [6]. The simplest solution
is to search the suffix tree of S for every 1-error
modification of the query pattern, this requires O(m2

+occ) time [2].

Approximate String matching is a problem to search
for strings similar to a given pattern from the input
string [10]. Approximate String matching is one of
the main problems in classical string algorithms with
applications to text searching, biological applications,
pattern recognition etc.



Shivani Jain et al. / IJAIR Vol. 2 Issue 2                                            ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 224

The pattern-matching algorithms being used in the
current scenarios match the pattern exactly or
approximately within the text. An exact pattern-
matching is to find all the occurrences of a particular
pattern (P) p1 p2... pn of m-characters in a text (T) t1 t2

... tm of n-characters which are put up over a finite set
of characters of an alphabet set.

The purpose of string searching is to find the location
of a specific text pattern within a text body (e.g., in a
sentence, in a paragraph, in a text book, etc.). In
string matching algorithms, it is required to find the
occurrences of a pattern in a text.

Most of the work focused on the edit or Levenshtein
distance d, which counts the number of differences
between two strings, that is, the number of character
insertions, deletions, and substitutions needed to
make the strings equal. This distance turns out to be
sufficiently powerful to model many relevant
applications (e.g., text searching, information
retrieval, computational biology, transmission over
noisy channels, etc.), and at the same time
sufficiently simple to admit efficient solutions (e.g.,
O(mn) and even O(kn) time) [8].

Approximate string matching is a recurrent problem
in many branches of computer science, the
methodology of finding string patterns within a larger
text is known as string matching, locate all
occurrences of a pattern P of length m in a text T of
length n. Approximate string matching consists in
finding all approximate occurrences of pattern P in
text T.

The Approximate string matching problem is to find
all of those positions in a given text which are the left
endpoints of substrings.  The problem of approximate
string matching is typically divided into two sub-
problems: finding approximate  substring matches
inside a  given  string  and  finding  dictionary  string
that match  the  pattern approximately. The string
matching problem is to find out a pattern in a text
(another string). In approximation string matching
algorithm substring is matched approximately within
the large string.

Fig-1: Locate all occurrence of the pattern P in a text
T.

II. LEVENSHTEIN OR EDIT DISTANCE

The Levenshtein distance [7] is a string metric for
measuring the amount of difference between two
sequences. The term edit distance is often used to
refer specially to Levenshtein distance. The
Levenshtein distance between two strings is defined
as the minimum number of edits needed to transform
one string into the other, with the allowable edit
operations being insertion, deletion, or substitution of
a single character in the simplified definition, all the
operation cost is 1. It is named after Vladimir
Levenshtein, who considered this distance in 1965.
Time complexity of this algorithm is O(mn). It may
not be useful while comparing long query strings. In
this research, divide the large text sequence into
segments then apply the edit distance to each
segment for finding the Approximate all occurrence
of the pattern in the text sequence.

The Levenshtein distance is also called Edit Distance.
The edit distance δ(p, t) between two strings P
(pattern) and T (text) (n = |p|, m = |t|) is the minimum
number of insertions, deletions and replacements to
make p equal to t.

To define the edit distance between two strings, let
A=a1…am be any string over an alphabet ∑ and let the
possible editing operations on A be [4]:

 Deletion- Deleting a symbol from any
position, say i, to give a1…ai-1ai+1…am.

 Insertion- Inserting a symbol b ε ∑ at
position i, to give a1…aibai+1…am.

 Replacement- Changing a symbol at
position i to a new symbol b ε ∑ to give
a1…aibai+1…am.

Computing D(A, B) becomes considerably simple as
soon as we may assume that there is always an
editing sequence with cost D(A, B) converting A into
B such that if an element is deleted, inserted or
changed, it is not modified again. This means that all
editing operations could be applied on A in one
parallel step yielding B [12].

“you write always research paper, my research
paper, for paper, I am writing a paper”

paper?

“you write always research paper, my research
paper, for paper, I am writing a paper”

String Matching Example



Shivani Jain et al. / IJAIR Vol. 2 Issue 2                                            ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 225

Example

Pattern = sattern

Text = sateen

1   2   3   4   5   6   7

Text: s a   t e   e   q   n

|    |   |          |         |

Pattern: s a   t    t   e   r   n

δ(t, p) = 2

The requirement is to compute a matrix D[0..m, 0..n],
where Di,j represents the minimum number of
operations needed to match p1..i to t1..j [5].

This is computed as follows:

D[i, 0] = i

D[0, j] = j

D[i, j] = min{D[i − 1, j] + 1, D[i, j − 1] + 1, D[i, j] +
δ(pi, tj)}

δ(p, t) = D[m, n]

Fig- 2: Computed Edit Distance with error 2

II.

III. MULTI-THREADED APPROXIMATE STRING

PATTERN MATCHING

A problem with single-threaded applications is that
lengthy activities must complete before other
activities can begin (actions execute one after
another.) In a multithreaded application,
Multithreading allows two parts of the same program
to run concurrently [3].

The evolutionary development of processor
technology along with the other major enhancements
done in the processing methodologies have reduced
the searching response significantly.

Multithreading   allows a program or a process to
execute many tasks concurrently (at the same time
and parallel). It allows a process to run its tasks in
parallel mode on a single or multi processor system.
CPU performs context switching between threads and
it seems that threads are executed at the same time.
Najib Kofahi and Ahmed Abusalama proposed a
multithreading text search approach to improve
search performance at a single CPU machine. The
idea is to have multiple threads that search the text
from different positions. The pattern may occur at
any position, having more than one search is better
than searching the text sequentially from the first
character to the last one. The first thread examines
the first character of its assigned text part, CPU
makes a context switch to the second thread to check
the first character of its part and so on. This process
is repeated until the whole text is examined by all the
threads.

Multi-threading is a widespread programming and
execution model that allows multiple threads to exist
within the context of a single process. These threads
share the process resources, but are able to execute
independently. The threaded programming model
provides developers with a useful abstraction of
concurrent execution. However, perhaps the most
interesting application of the technology is when it is
applied to a single process to enable parallel
execution on a multiprocessing system.

1) Advantages of Multithreading

The advantage of a multithreaded program allows it
to operate faster on computer systems that have
multiple CPUs:

3

0

1

2

4

5

6

t

4 3 2 1 1 2 3 4

s a
U

t
r

t e r n
s

0 1 2 3 4 5 6 7

1 0 1

1

2 3 4 5 6

2 1 0 1 2 3 4 5

3 2 1 0 1 2 3 4

5 4 3 2 2 1 2 3

6 5 4

4

3 3 2 2 2

s

a

e

e

n

0 1 2 3 4 5 6 7



Shivani Jain et al. / IJAIR Vol. 2 Issue 2                                            ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 226

 Since the process is divided into many light
weight threads. The task gets simplified
providing much better performance in process
handling.

 Along with multi-threading multi-processing will
provide a fast and quick simultaneous execution
of various processes in the system.

 Multi-threading also provide optimum utilization
of all the computing resources of the CPU,
thereby increasing the overall execution speed
and providing best utilization of the CPU.

 Multi-threading improve the performance on
multi-processor machines.

2) A Parallel Working Approach toward
Approximate String Matching

In this approach, multithreading concept uses the
multi-core-processor. The threads will execute on
multi processor simultaneously.

A direct implementation of parallel approximate
pattern matching is to divide the text into multiple
segments, each segment is processed by a parallel
thread. The thread approximate string matching
example is shown in Fig-3, using a single thread to
find the pattern “BA”, which takes 24 cycles. Then
using four threads, it takes only six cycles to find the
same pattern. Therefore multithread approach is
beneficial in terms of performance thereby increasing
the efficiency of the matching process and providing
much better and enhanced execution service.

Fig-3: Single vs. Multiple Thread Approach

IV. OVERVIEW OF IMPLEMENTATION
DETAIL

The concept is that a very large size string will be
divided in segments depending upon the pattern size.
The same pattern will be executed in all the segments
of the text in parallel which will largely help to
reduce the time complexity of the algorithm. As in
terms of memory and processors, this approach is
much reliable since multiple executions can be done
simultaneously. The same concept is applied here the
edit distance for matching the pattern in the text
which are divided into multiple segments and are
executed concurrently. The major advantage of
applying parallel processing is excellent relative time
complexity.

For implementing parallel processing, the java
technology is being utilized dominantly. Java is
unique among popular general-purpose programming
languages which makes concurrency primitives
available to the applications programmer. The
programmer specifies that applications contain
threads of execution, each thread designating a
portion of a program that may execute concurrently
with other threads. Multithreading gives the Java
programmer some of its powerful capabilities that are
not available in PHP [3].

1) Approximate Pattern Matching Implementation
Concept in PHP

First the “Approximating String Matching” approach
is implemented in PHP [11] as shown in Fig-4 and
Fig-5, but during the course of analysis the
implementation came to a halt since PHP does not
support Multi-threading so then the transformation
was made to the concept implementation in java
technology.

B B B B B B B B B B B B B B B B B B B B B B B A

1 thread 24 cycles

A Single Thread Approach

B B B B B B B B B B B B B B B B B B B B B B B A

4 thread 6 cycles

Multiple Threads Approach



Shivani Jain et al. / IJAIR Vol. 2 Issue 2                                            ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 227

Fig-4: Interface of Approximate Pattern matching
Algorithm in PHP

The Fig-4 compare the running time between
different already existing pattern matching algorithms
using PHP as the interface. This was the initial work,
therefore used only already existing string matching
algorithms with Levenshtein distance.

The user chooses the desired Exact Matching
Algorithm like Boyer Moore or Raita then chooses
desired percentage matched. After that the database
and then enter the pattern.

The pattern now gets matched with the patterns in the
database and their approximate percentage is
calculated with help of Levenshtein Distance
Algorithm. If the string in database gets exactly
matched with the pattern entered by the user that is
the output percentage is 100% then the output string
goes to the algorithm selected by the user initially
and after that running time is calculated. With the
help of Levenshtein distance calculate the distance
means k-errors between the two strings. In Fig-4
match the pattern with the database records one by
one with the help of Levenshtein Distance, and then
calculate the percentage of matching. If the program
calculates 100% matching then it call the user
selected Exact String Matching Algorithm.

Using the Approximation method the users get
relevant information after going through the several
results produced by approximation method, but in
case of exact method users have no choice if the
patterns are not exactly matched.

Fig-5: Demonstration of the result with best match
percentage and running time in PHP

Fig-5 shows the all patterns that are found according
to desired percentage match. The highlighted string
from the database matches exactly with the pattern
entered by the user and therefore its running time is
calculated and shown.

For calculating the running time, procedure has taken
the system timestamp as reference before the
execution of algorithm and again procedure has taken
the system timestamp whenever the algorithm is
completed. So the difference between the two
timestamp is the desired running time.

Algorithm Raita

Desired Percentage 75% to 100%

Database pdnaa fasta sequences

Pattern TTETLHG

Result: Highlited pattern using Raita algorithm

And percentage using Levenshtein or Edit distance

Id Text Best
Match
With
Percentage

2 MDKKSARIRRATRARRKLQELGATRLV
VHRTPRHIYAQVIAPNGSEVLVAASTVE
KAIAEQLKYTGN

85.71%

3 MQAIKCVVVGDGAVGKTCLLISYTTNA
FPGEYIPTVFDNYSANVMVDGKPVNLG
LWDTAGQEDY

85.70%

5 MADITLISGSTLGGAEYVAEHLAEKLEE
AGFTTETLHGPLLEDLPASGIWLVISST
HGAGDIPDNLSPF

100%

Last timestamp= 027192700.1357007090 Macro Sec

First timestamp= 027175800.1357007090 Macro Sec

Time= 0.00016899999999997 Macro Sec

Back



Shivani Jain et al. / IJAIR Vol. 2 Issue 2                                            ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 228

The problem can be stated as follows:

Considering a short pattern P of length n, a long text
T of length m, a maximal number of errors k, and all
text positions j such that a suffix of T matches P with
at most k errors (insertions, deletions or
replacements).

2) Approximate Pattern Matching implementation
Concept in java technology

“Approximating String Matching” approach is
implemented using the concept of Java since it
requires multiprocessor execution capabilities which
can only be incorporated with the help of Multi-
threading.

Example

To check the planned algorithm, Fig-6 has been
considered for the execution

Fig-6: String S and Pattern P with length m and n
respectively is taken under consideration.

Step 1: Considering a String S of size m and Pattern
P of size n the length is evaluated.

Step 2: Divide the string into number of segments,
each segment is equal to the pattern P of size n and
apply Levenshtein distance on each segment
simultaneously, for finding closest segments, as
shown in Fig-7.

Fig-7: Partition Process (Break the String S into
number of segments equal to the pattern P of size n)

As shown in Fig-7, first divide the text into segments
and then find the closest segment using the
levenshtein distance. Levenshtein algorithm calculate
the k distance of each segments, utilizing the concept
of multithreading on a multi-core system, by utilizing
the multi-threads the performance will increase.

Step 3: Print the sequence with highlighted closest
segment as demonstrated in Fig-8.

Fig-8: Demonstration of the result after the analysis
of the multi-threaded approach

String S m = 24

ABCDCDDAABBABDCDCBAACCDD

Pattern P n = 6

ABBCBD

Input

T=ABCDCDDAABBABDCDCBAACCDDD

P=ABBCBD

Output: Highlighted part is the all occurrences
of pattern matching approximately.

Search result

ABCDCDDAABBABDCDCBAACCDDD

1. ABCDCD 2. BCDCDD

3. CDCDDA 4. DCDDAA

5. CDDAAB 6. DDAABB

7. DAABBA 8. AABBAB

9. ABBABD 10. BBABDC

11. BABDCD 12. ABDCDC

13. BDCDCB 14. DCDCBA

15. CDCBAA 16. DCBAAC

17. CBAACC 18. BAACCD

19. AACCDD 20. ACCDDD



Shivani Jain et al. / IJAIR Vol. 2 Issue 2                                            ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 229

V. CONCLUSIONS

This paper described the concept of approximate
string matching algorithms. String matching or
searching algorithms try to find places where one or
several patterns are found within a larger text. This
approach focused on approximate string matching
algorithms based on edit distance. The purpose is
implementing an approximate way using Levenshtein
distance. With this approach users are able to arrive
at certain predictable results. Multithreaded
implementation of pattern matching algorithm
performs the parallel string searching on different
text segments by executing a number of threads
simultaneously. This approach is advantageous from
all other approximate string-pattern matching
algorithms which has been inferred to after the
analysis.

REFERENCES

[1] Badoiu M. et al. 2004, “Fast Approximate Pattern Matching
with Few Indels via Embeddings,” in Proceedings of 15th
Annual ACM-SIAM Symposium on Discrete Algorithms,
Louisiana, pp. 651-652, 2004.

[2] Cobbs, A. 1995, “ Fast approximate matching using suffix
trees. In: Proceedings of Symposium on Combinatorial
Pattern Matching” , pp. 41–54

[3] Deitel P. and Deitel H. 2003, “Java How to Program”, Prentice
Hall.

[4] E UKKONEN 1985, “Algorithm for Approximate String
Matching”, information and control, Elsevier

[5] GONZALO NAVARRO 2001, “A Guided Tour to
Approximate String Matching”, ACM Computing Surveys,
Vol. 33, No. 1, March 2001, pp. 31–88.

[6] Ho-Leung Chan et al. 2010, “Compressed Indexes for
Approximate String Matching”, Springer, Volume 58, Issue
2, pp 263-281

[7] LEVENSHTEIN, V. 1965, “Binary codes capable of correcting
spurious insertions and deletions of ones”, Probl. Inf.
Transmission 1, 8–17.

[8] Marcos Kiwi et al. 2011, “On-line approximate string matching
with bounded errors”, Theoretical Computer Science 412
(2011) 6359–6370

[9] Mhashi M. et al. 2005, “A Fast Approximate String Searching
Algorithm,” Computer Journal of Science Publication, vol. 1,
no. 3, pp. 405-412.

[10] P.A.V.Hall, G.R.Dowling 1980, “Approximate String
Matching”, ACM Computing Surveys,12,4, pp.381-402.

[11] Shivani Jain#1, Dr. A.L.N. Rao 2012, “Different Pattern
Matching Algorithms with Molecular Sequence in PHP”,
IJAIR, ISSN: 2278-7844

[12] Wagner and Fisher 1974, “The string to string correction
problem”, J. Assoc. Comput. Mach. 21, 168-178.


