EQUALITY OF EDGE DOMINATION AND CONNECTED EDGE DOMINATION IN GRAPHS

S.VELAMMAL AND S.ARUMUGAM

Department of Mathematics Velammal College of Engineering and Technology Viraganoor, Madurai – 625 009, India E-mail: <u>vela67_mepco@yahoo.co.in</u>

Core group Research Faculty (CGRF) National centre for Advanced Research in Discrete Mathematics (n-Cardmath) Kalasalingam University, Anand Nagar, Krishnankoil – 626 190, India

Abstract. Let G be a (p,q) –graph with edge domination number γ' and connected edge domination number γ'_c . In this paper we investigate the structure of graphs in which some of the edge domination parameters are equal. We characterize connected graphs for which $\gamma' = \gamma'_c$.

1. Introduction

By a graph G = (V,E) we mean a finite undirected graph without loops or multiple edges. Terms not defined here are used in the sense of Harary [1].

The concept of edge domination was introduced by Mitchell and Hedetniemi. A subset X of E is called an edge dominating set of G if every edge not in X is adjacent to some edge in X. The edge domination number $\gamma'(G)$ (or γ' for short) of G is the minimum cardinality taken over all edge dominating sets of G. An edge dominating set X of is called a connected edge dominating set of G if the induced subgraph $\langle X \rangle$ is connected. The connected edge domination number $\gamma'_c(G)$ (or γ'_c for short) of G is the minimum cardinality taken over all connected edge dominating sets of G. Allan and Laskar [2] proved that for any $K_{1,3}$ – free graph, the domination number and independent domination number are equal. Topp and Volkmann [3] generalized the result of Allan and Laskar and constructed new classes of graphs with equal domination and independent domination number.

Harary and Livingston [4] characterized caterpillars with equal domination and independent domination number. In [5] they gave the characterization of trees with equal domination and independent domination number.

Payan and Xuong [6] proved that for any graph G on 9 vertices, $\gamma = \gamma' = 3$ if and only if $G = K_3 \times K_3$. Arumugam and Paulraj Joseph [7] studied the class of graphs for which connected domination number and domination number are equal.

In this paper we initiate a study of graphs in which some of the edge domination parameters are equal. We characterize connected graphs for which $\gamma' = \gamma'_c$.

2. Main Results

Lemma 2.1. Let G be a connected graph with $\gamma' = \gamma'_c = n$. Then for every minimum connected edge dominating set S of G, the edge induced sub graph $\langle S \rangle$ is isomorphic to $K_{1,n}$.

Proof. Let S be any minimum connected edge dominating set of G. If $\langle S \rangle$ contains two vertices u, v of degree at least two, then $S/\{e\}$ where c is any non – pendant edge of S incident with u forms an edge dominating set of G so that $\gamma' < \gamma'_c$ which is a contradiction. Hence at most one vertex of $\langle S \rangle$ has degree greater than 1. Thus $\langle S \rangle = K_{1,n}$.

Corollary 2.2. Let G be a connected graph. If $\gamma' = \gamma'_c$ then diam (G) ≤ 4 .

Proof. Suppose $\gamma' = \gamma'_c = n$. Then there exists a star $K_{1,n}$ in G such that all the e dges of G are incident with the vertices of $K_{1,n}$ and for every edge e_i of $K_{1,n}$, there exists an edge x_i of G such that x_i is adjacent to e_i but not adjacent to any other edge of $K_{1,n}$. Hence diam (G) ≤ 4 .

The converse of Correllary 2.2 is not true. For example, for the graph G given in Figure 2.1, diam (G) = 4, $\gamma' = 4$ and $\gamma'_c = 6$.

Corrollary 2.3. For any tree T, $\gamma' = \gamma'_c$ if and only if diam (G) ≤ 4 .

Proof. If $\gamma' = \gamma'_c$, then diam (G) ≤ 4 .

Consider let diam (G) ≤ 4 . If diam(T) = 4 then , $\gamma' = \gamma'_c = q - e'$ where e' is the number of pendant edges of T. If diam(T) < 4, then $\gamma' = \gamma'_c = 1$.

Definition 2.4. Let \mathcal{P} be a property that , $\gamma' = \gamma'_c = n$. A connected graph G is said to be \mathcal{P} – critical if G satisfies \mathcal{P} and no proper connected subgraph H of G satisfies \mathcal{P} .

Lemma 2.5 Let \mathcal{P} denote the property that $\gamma' = \gamma'_c = n \ge 3$. A connected graph G is said to be \mathcal{P} – critical if and only if G is isomorphic to $S(K_{1,n})$

Proof. Let G be a connected graph which is \mathcal{P} – critical so that $\gamma' = \gamma'_c = n$. Let S be any minimum connected edge dominating set of G. By Lemma 2.1, $(S) = K_{1,n}$. Let $V((S)) = \{u, u_1, u_2, ..., u_n\}$ with $deg_{(S)}u = n$. Let $e = uu_i$ $(1 \le i \le n)$. Since S is a minimum connected edge dominating set of G, for edge e_i , there exists an edge x_i of G such that x_i is adjacent to e_i but not adjacent to $e_i \ j \neq i$. Further every edge of G has at least one of its ends in $\{u, u_1, u_2, ..., u_n\}$. Since $\gamma'(G) = \gamma'_i(G) = n$, we may assume without loss of generality that at least n - 1 of the edges $x_1, x_2, ..., x_n$ are independent. Hence H induced by the edges the subgraph $e_1, e_2, \dots, e_n, x_1, x_2, \dots, x_n$ is isomorphic to $S(K_{1,n})$. Clearly $\gamma'(H) = \gamma'(H) = n$ and since G is \mathcal{P} – critical, it follows that G = H. The converse is obvieus.

Remark 2.6 Let G be a connected graph. Then $\gamma' = \gamma'_c \approx 1$ if and only if there exists an edge e = uv such that every edge of edge of G is incident with a or v

Theorem 2.7 Let G be a connected graph. Then $\gamma' = \gamma'_c = 2$ if and only if G contains a subgraph H isomorphic to $K_{1,2}$ and every edge e = uv in $E(G) \setminus E(H)$ has the following properties.

(i) At least one of u, v is in $V(K_{1,2})$ $\subseteq V(H)$ (ii) If u, v are pendant vertices of $K_{1,2}$ in H, then the center of $K_{1,2}$ has degree at least three in G.

Proof. Suppose $\gamma' = \gamma'_c = 2$. Let S be any minimum connected edge dominating set of G. Then by Lemma 2.1,

 $H = \langle S \rangle = K_{1,2}$. Let $V(K_{1,2}) = \{u, u_1, u_2\}$ with $deg_H u = 2$ Since $E(K_{1,2})$ is a minimum connected edge dominating set of G, every edge of $E(G) \setminus E(H)$ has at least one of its ends in $V(K_{1,2})$. If u_1 and u_2 are adjacent in G, then $deg_G u = 2$, then $\{u_1u_2\}$ is an edge dominating set of g so that $\gamma'(G) = 1 < \gamma'_c(G)G$ contains a subgraph H isomorphic to $K_{1,2}$ and every edge e = uv in $E(G) \setminus E(H)$ has the following properties.

which is a contradiction. Therefore if u_1 and u_2 are adjacent in G, then $deg_G u \ge 3$. Conversely suppose that

G contains a subgraph H isomorphic to $K_{1,2}$ and every edge e = uv in E(G) \ E(H) has the following properties (i) and (ii) mentioned in Theorem 2.5. Then $K_{1,2}$ is a subraph G and E($K_{1,2}$) is a connected edge dominating set of G so that $\gamma'_c \leq 2$. Hence $\gamma' \leq \gamma'_c \leq 2$. Since for edge e of G, there exists an edge x of G such that x and e are not adjacent, $\gamma' \geq 2$. Hence $\gamma' = \gamma'_c = 2$.

Theorem 2.8 Let $G_i = S(K_{1,n})$ with $V(G_i) = \{w, u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ and $E(G_i) = \{wu_i/1 \le i \le n\} \cup \{u_i v_i/1 \le i \le n\}$. Then for a connected graph G, $\gamma' = \gamma'_c = n \ge 3$ if and only if G satisfies the following conditions.

- (1) G contains a subgraph H isomorphic to G_1
- (2) Every edge of E(G) \ E(H) has exactly one of its ends in {w, u₁, u₂, ..., u_n}

- (3) If u_iv_j ∈ E(G) (i≠ j), then u_jv_i ∈ E(G) or u_jv_i∈
 E(G) or u_jv_k for all k ≠ i or u_jw∈ E(G) for some w in V(G) \ V(H)
- (4) If $u_i v_i$, $u_i v_i$ and $v_i v_k$ are in G $(i \neq j \neq k)$ then $u_i v_k \in E(G)$ or $u_i v_m \in E(G)$ for all $m \neq k$ or $u_i w \in E(G)$ for some w in V(G)/V(H)**Proof.** Suppose $\gamma' = \gamma'_c = n \ge 3$. Let S be any minimum connected edge dominating set of G. By Lemma 2.1, $\langle S \rangle = K_{1,n}$ Let $V(\langle S \rangle) = \{w, u_1, u_2, ..., u_n\}$ and $deg_{\langle S \rangle} w = n$. Let $e_i = wu_i$. Then as in Lemma 2.5, for each edge e_i , we can choose an edge x_i such that x_i is adjacent to e, but not adjacent to any other edge of S and the subgraph H induced by e_i 's and x_i 's is \mathcal{P} - critical. Hence H is isomorphic to $S(K_{1,n})$. Since S is minimum connected edge dominating set of G, every edge of E(G)/E(H) has at least one end in $V(K_{1,n})$. If there exists vertices u_i, u_j such that $u_i u_j \in E(G)$, then $(E(K_{1,n}) \setminus \{wu_i, wu_j\}) \cup \{u_i u_j\}$ is an edge dominating set of G so that $\gamma'(G) < \gamma'_c(G)$ which is a contraction. Hence every edge of E(G)/E(H) has exactly one of its ends in $\{w, u_1, u_2, \dots, u_n\}$. Now let $u_i v_i \in E(G)$. Suppose $u_i v_i \notin E(G)$ and $u_i w \notin E(G)$ for every vertex w in $V(G) \setminus V(H)$. We claim that $u_i v_k \in E(G)$ for all $\neq i$. Suppose $u_i v_k \notin E(G)$ for some $k \neq i$. Without loss of generality we assume that $1 \le i < j < k \le$ n.Then

 $S_1 = \{wu_k, u_iv_j, u_1v_1, u_2v_2, \dots, u_{i-1}v_{i-1}, u_iv_{i-1}, u_iv_{i-$

 $u_{i+1}v_{i+1}, \dots, u_{j-1}v_{i-1}, u_{j+1}v_{j+1}, \dots, u_{k-1}v_{k-1}, u_{k+1}v_{k+1}, \dots, u_nv_n$ is an edge dominating set of G of cardinality n - 1 so that $\gamma'(G) < \gamma'_t(G)$ which is a contradiction. Hence $u_iv_k \in E(G)$ for all $k \neq i$. Thus (3) is proved.

Now let $u_i v_j, u_j v_i$ and $v_i u_k$ be in E(G) (I $\neq j \neq k$). Suppose $u_j v_k \notin E(G)$ and $u_j w \notin E(G)$ for every vertex w in V(G)/V(H). We claim that $u_j v_m \in E(G)$ for all $m \neq k$. Suppose $u_j v_m \notin E(G)$ for some $m \neq k$. Without loss of generality we assume that $1 \leq k < i < j < m \leq n$. Then

$$S_{2} = \begin{cases} wu_{m}, u_{i}v_{j}, u_{k}v_{i}, u_{1}v_{1}, u_{2}v_{2}, \dots, \\ u_{k-1}v_{k-1}, u_{k+1}v_{k+1}, \dots, \\ u_{i-1}v_{i-1}, u_{i+1}v_{i+1}, u_{j-1}j, u_{j+1}v_{j+1}, \dots, \\ u_{m-1}v_{m-1}, u_{m+1}v_{m+1}, \dots, u_{n}v_{n} \end{cases}$$
 is an edge

dominating set of cardinafity n - 1 so that $\gamma'(G) < \gamma'_c(G)$ which is a contradiction. Hence $u_j v_m \in E(G)$ for all $m \neq k$. Thus (4) is proved.

Conversely let us assume that G satisfies (1), (2), (3), and (4) mentioned in the hypothesis. We claim that $\gamma' = \gamma'_c = n$. Clearly $\{wu_1, wu_2, \dots, wu_n\}$ is a connected edge dominating set of G so that $\gamma' \leq \gamma'_c \leq n$. Now let D be any minimum independent edge dominating set of G so that $|D| = \gamma' = \gamma'_i$.

Suppose D contains no edge incident with w. Since $\{u_1, u_2, ..., u_n\}$ is independent in G, D must contains at least n edges for dominating the edges $wu_1, wu_2, ..., wu_n$ so that $|D| \ge n$.

Suppose D contains an edge incident with w, say wu_1 . If D contains an edge incident with u_i , for each i, $Z \le i \le n$, then $|D| \ge n$.

Suppose D does not contain any edge incident with u_2 and if H is isomorphic to G_1 . Since D contains no edge incident with $u_2, u_2w \notin E(G)$ for any vettex w in V(G) \ V(H). Now for dominating u_2v_2 , D must contain an edge incident with u_2 , say v_2u_3 . Then by (4), $u_2v_3 \in E(G)$ or $u_2v_k \in E(G)$ for all $k \neq 3$. Suppose $u_2v_k \in E(G)$ for all $k \neq 3$. Since $\{v_1, v_2, ..., v_n\}$ is independent in G for dominating edges $u_2v_1, u_2v_2, ..., u_2v_n$, D must contain n - 2 edges so that $|\mathcal{P}| \ge 2 + n - 2 = n$. If $u_2v_3 \in E(G)$, then for dominating u_2v_3 D must contain an edge incident with v_3 , say v_3u_4 . Again by (4), $u_2v_4 \in E(G)$ or $u_2v_k \in E(G)$ for all $k \neq 4$. Continuing this process, we get $|D| \ge n$. Thus $\gamma'(G) \ge n$ so that $\gamma' = \gamma'_c = n$.

Corollary 2.9 Let G be a connected unicyclic graph with unique cycle C. Then $\gamma' = \gamma'_c = n$ if and only if the following holds.

- 1. $C = C_3 or C_4$
- Every vertex not on C has degree 1 or 2, all vertices of degree 2 not on C are adjacent to the same vertex u of C and the distance between any pendant vertex and C is 1 or 2
- If C = C₄ and every vertex not on C₄ is a pendant vertex, then at least one vertex of C₄ is of degree 2.
- 4. If there exists a vertex of degree 2 not on C, then at least one vertex v of C has degree two and when C = C₄, v is non adjacent to u

Proof Let G be a connected unicyclic graph with cycle C and $\gamma' = \gamma'_c$. If $\gamma' = \gamma'_c = 1$ then $C = C_3$, every vertex not C_3 has degree 2. Suppose $\gamma' = \gamma'_c = n \ge 2$. Let S be a minimum connected edge dominating set of G. Then by Lemma 2.1, $\langle S \rangle = K_{1,n}$. Let $V(\langle S \rangle) = \{w, u_1, u_2, ..., u_n\}$ and $deg_{\langle S \rangle} w = n$. Since every edge of G has at least one end in $\langle S \rangle$, it follows that $C = C_3 \text{ or } C_4$. If n = 2 and $u_1u_2 \in E(G)$,

then by Theorem 2.7 it follows that C =

 C_3 , every vertex not on C_3 is a pendant vertex and every vertex on C_3 has degree at least 3. If $n \ge$ 3 and there exists a vertex $v_1 \notin V(\langle S \rangle)$ such that $u_1v_1, u_2v_1 \in E(G)$ then $C = C_4$ and the result follows from Theorems 2.7 and 2.9. The converse is obvious.

Theorem 2.12 For a connected cubic graph G, $\gamma' = \gamma'_c$ if and only if G is isomorphic to K_4 or the graph given in Figure 2.2

Proof Suppose $\gamma' = \gamma'_c = n$. Let S be any minimum connected edge dominating set of G. By Lemma 2.1, $\langle S \rangle = K_{1,n}$. Since G is a cubic graph, it follows that n = 2 or 3

Case (i) $\gamma' = \gamma'_c = 2$.

Since $\gamma' \leq \frac{p}{2}$, $\gamma' \geq \frac{q}{\Delta'+1}$ and $\Delta' \approx 4$, we have $p \geq 4$ and $q \leq 10$. Since every edge of G is incident with the vertices of $\langle S \rangle = K_{1,2}$ and G is cubic, it follows that $q \leq 7$. Hence $p \equiv 4$ and G is isomorphic to K_4 .

Case (ii) $\gamma' = \gamma_c' = 3$.

In this case $p \ge 6$ and $q \le 15$. Since every edge of G is incident with the vertices of $\langle S \rangle = K_{1,3}$ and G is cubic, it follows that $q \le 9$. Hence p = 6. Now by theorem 2.9, G contains a subgraph H isomorphic to the graph obtained by identifying two pendant vertices of $S(K_{1,3})$ so that G is isomorphic to the graph given in Figure 2.3.

References

[1] F. Harary, Graph Theory, Addison Wesley Reading Mass. (1972)

[2] R.B. Allan and R.Laskar, On domination and independent domination of a graph, Discrete Math.23 (1978), 73 - 76

[3] J. Topp and L. Volkman, On graphs with equal domination and independent domination numbers, Discrete Math. 96

(1991) 75 - 80

[4] F. Harary and M. Livingston, Caterpillars with equal domination and independent domination

numbers , Recent studies in Graph Theory, ed. V.R.Kulli, Vishwa International Publications (19890, 149 - 154

[5] F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers, Congr. Numer. 55 (1986), 121 – 150

[6] C.Payan and N.H. Xuong, Domination balanced graphs, Journal of Graph Theory 6 (1) (1982) 23 – 32

[7] S.Arumugam and J. Paulraj Joseph, On graphs with equal domination and connected domination numbers, Discrete Math. (To appear)