
Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 181

A Performance Evaluation and Examination of Open-Source Erasure Coding
Libraries For Storage

Ram Krishna Sharma ,ggits Jabalpur, mp , india m.tech(embedded system and vlsi design),
ram.mtech87@yahoo.com pn 91-7354085395

Abstract

Over the past five years, large-scale storage
installations have required fault-protection
beyond RAID-5, leading to a flurry of research
on and development of erasure codes for
multiple disk failures. Numerous open-source
implementations of various coding techniques
are available to the general public. In this paper,
we perform a head-to-head comparison of these
implementations in encoding and decoding
scenarios. Our goals are to compare codes and
implementations, to discern whether theory
matches practice, and to demonstrate how
parameter selection, especially as it concerns
memory, has a significant impact on a code's
performance. Additional benefits are to give
storage system designers an idea of what to
expect in terms of coding performance when
designing their storage systems, and to identify
the places where further erasure coding
research can have the most impact.

1 Introduction

In recent years, erasure codes have moved to the fore
to prevent data loss in storage systems composed of
multiple disks. Storage companies such as Allmydata
[1], Cleversafe [7], Data Domain [36], Network
Appliance [22] and Panasas [32] are all delivering
products that use erasure codes beyond RAID-5 for
data availability. Academic projects such as LoCI [3],
Oceanstore [29], and Pergamum [31] are doing the
same. And of equal importance, major technology
corporations such as Hewlett Packard [34], IBM

[12,13] and Microsoft [15,16] are performing active
research on erasure codes for storage systems. Along
with proprietary implementations of erasure codes,
there have been numerous open source
implementations of a variety of erasure codes that are
available for download [7,19,23,26,33]. The intent of
most of these projects is to provide storage system
developers with high quality tools. As such, there is a
need to understand how these codes and
implementations perform.

In this paper, we compare the encoding and decoding
performance of five open-source implementations of
five different types of erasure codes: Classic Reed-
Solomon codes [28], Cauchy Reed-Solomon codes [6],
EVENODD [4], Row Diagonal Parity (RDP) [8] and
Minimal Density RAID-6 codes [5,24,25]. The latter
three codes are specific to RAID-6 systems that can
tolerate exactly two failures. Our exploration seeks
not only to compare codes but also to understand
which features and parameters lead to good coding
performance.

We summarize the main results as follows:

 The special-purpose RAID-6 codes vastly
outperform their general-purpose
counterparts. RDP performs the best of these
by a narrow margin.

 Cauchy Reed-Solomon coding outperforms
classic Reed-Solomon coding significantly, as
long as attention is paid to generating good
encoding matrices.

 An optimization called Code-Specific Hybrid
Reconstruction [14] is necessary to achieve
good decoding speeds in many of the codes.

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 182

 Parameter selection can have a huge impact
on how well an implementation performs. Not
only must the number of computational
operations be considered, but also how the
code interacts with the memory hierarchy,
especially the caches.

 There is a need to achieve the levels of
improvement that the RAID-6 codes show for
higher numbers of failures.

Of the five libraries tested, Zfec [33]
implemented the fastest classic Reed-Solomon
coding, and Jerasure [26] implemented the
fastest versions of the others.

2 Nomenclature and Erasure Codes

It is an unfortunate consequence of the history of
erasure coding research that there is no unified
nomenclature for erasure coding. We borrow
terminology mostly from Hafner et al [14], but try
to conform to more classic coding terminology
(e.g. [5,21]) when appropriate.

Our storage system is composed of an array of n
disks, each of which is the same size. Of these n
disks, k of them hold data and the remaining m
hold coding information, often termed parity,
which is calculated from the data. We label the
data disks D0, ..., Dk-1 and the parity disks C0, ...,
Cm-1. A typical system is pictured in Figure 1.

Figure 1: A typical storage system with erasure coding.

We are concerned with Maximum Distance Separable
(MDS) codes, which have the property that if any m
disks fail, the original data may be reconstructed [21].
When encoding, one partitions each disk into strips of
a fixed size. Each parity strip is encoded using one strip
from each data disk, and the collection of {k+m} strips

that encode together is called a stripe. Thus, as in
Figure 1, one may view each disk as a collection of
strips, and one may view the entire system as a
collection of stripes. Stripes are each encoded
independently, and therefore if one desires to rotate
the data and parity among the n disks for load
balancing, one may do so by switching the disks'
identities for each stripe.

2.1 Reed-Solomon (RS) Codes

Reed-Solomon codes [28] have the longest history.
The strip unit is a w-bit word, where w must be large
enough that n ≤ 2w+1. So that words may be
manipulated efficiently, w is typically constrained so
that words fall on machine word boundaries: w ∈ {8,
16, 32, 64 }. However, as long as n ≤ 2w+1, the value of
w may be chosen at the discretion of the user. Most
implementations choose w=8, since their systems
contain fewer than 256 disks, and w=8 performs the
best. Reed-Solomon codes treat each word as a
number between 0 and 2w-1, and operate on these
numbers with Galois Field arithmetic (GF(2w)), which
defines addition, multiplication and division on these
words such that the system is closed and well-
behaved [21].

The act of encoding with Reed-Solomon codes is
simple linear algebra. A Generator Matrix is
constructed from a Vandermonde matrix, and this
matrix is multiplied by the k data words to create a
codeword composed of the k data and m coding
words. We picture the process in Figure 2 (note, we
draw the transpose of the Generator Matrix to make
the picture clearer).

Figure 2: Reed-Solomon coding for k=4 and m=2. Each
element is a number between 0 and 2w-1.

When disks fail, one decodes by deleting rows of GT,
inverting it, and multiplying the inverse by the
surviving words. This process is equivalent to solving a

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 183

set of independent linear equations. The construction
of GT from the Vandermonde matrix ensures that the
matrix inversion is always successful.

In GF(2w), addition is equivalent to bitwise exclusive-or
(XOR), and multiplication is more complex, typically
implemented with multiplication tables or discrete
logarithm tables [11]. For this reason, Reed-Solomon
codes are considered expensive. There are several
open-source implementations of RS coding, which we
detail in Section 3.

2.2 Cauchy Reed-Solomon (CRS) Codes

CRS codes [6] modify RS codes in two ways. First,
they employ a different construction of the
Generator matrix using Cauchy matrices instead
of Vandermonde matrices. Second, they eliminate
the expensive multiplications of RS codes by
converting them to extra XOR operations. Note,
this second modification can apply to
Vandermonde-based RS codes as well. This
modification transforms GT from a n * k matrix of
w-bit words to a wn * wk matrix of bits. As with
RS coding, w must be selected so that n ≤ 2w+1.

Instead of operating on single words, CRS coding
operates on entire strips. In particular, strips are
partitioned into w packets, and these packets may
be large. The act of coding now involves only XOR
operations -- a coding packet is constructed as the
XOR of all data packets that have a one bit in the
coding packet's row of GT. The process is depicted
in Figure 3, which illustrates how the last coding
packet is created as the XOR of the six data
packets identified by the last row of GT.

Figure 3: CRS example for k=4 and m=2.

To make XORs efficient, the packet size must be a
multiple of the machine's word size. The strip size is
therefore equal to w times the packet size. Since w no
longer relates to the machine word sizes, w is not

constrained to [8,16,32,64]; instead, any value of w
may be selected as long as n ≤ 2w.

Decoding in CRS is analogous to RS coding --- all rows
of GT corresponding to failed packets are deleted, and
the matrix is inverted and employed to recalculate the
lost data.

Since the performance of CRS coding is directly related
to the number of ones in GT, there has been research
on constructing Cauchy matrices that have fewer ones
than the original CRS constructions [27]. The Jerasure
library [26] uses additional matrix transformations to
improve these matrices further. Additionally, in the
restricted case when m=2, the Jerasure library uses
results of a previous enumeration of all Cauchy
matrices to employ provably optimal matrices for all w
≤ 32 [26].

2.3 EVENODD and RDP

EVENODD [4] and {RDP} [8] are two codes developed
for the special case of RAID-6, which is when m=2.
Conventionally in RAID-6, the first parity drive is
labeled P, and the second is labeled Q. The P drive is
equivalent to the parity drive in a RAID-4 system, and
the Q drive is defined by parity equations that have
distinct patterns.

Although their original specifications use different
terms, EVENODD and RDP fit the same paradigm as
CRS coding, with strips being composed of w packets.
In EVENODD, w is constrained such that k+1 ≤ w and
w+1 is a prime number. In RDP, w+1 must be prime
and k ≤ w. Both codes perform the best when (w-k) is
minimized. In particular, RDP achieves optimal
encoding and decoding performance of (k-1) XOR
operations per coding word when k=w or k+1 = w.
Both codes' performance decreases as (w-k) increases.

2.4 Minimal Density RAID-6 Codes

If we encode using a Generator bit-matrix for RAID-6,
the matrix is quite constrained. In particular, the first
kw rows of GT compose an identity matrix, and in
order for the P drive to be straight parity, the next w
rows must contain k identity matrices. The only
flexibility in a RAID-6 specification is the composition
of the last w rows. In [5], Blaum and Roth demonstrate
that when k ≤ w, these remaining w rows must have at
least kw+k-1 ones for the code to be MDS. We term
MDS matrices that achieve this lower bound Minimal
Density codes.

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 184

There are three different constructions of Minimal
Density codes for different values of w:

 Blaum-Roth codes when w+1 is prime [5].
 Liberation codes when w is prime [25].
 The Liber8tion code when w = 8 [24].

These codes share the same performance
characteristics. They encode with (k-1) + (k-1)/(2w)
XOR operations per coding word. Thus, they perform
better when w is large, achieving asymptotic
optimality as w → ∞. Their decoding performance is
slightly worse, and requires a technique called Code-
Specific Hybrid Reconstruction [14] to achieve near-
optimal performance [25].

The Minimal Density codes also achieve near-optimal
updating performance when individual pieces of data
are modified [27]. This performance is significantly
better than EVENODD and RDP, which are worse by a
factor of roughly 1.5 [25].

2.5 Anvin's RAID-6 Optimization

In 2007, Anvin posted an optimization of RS encoding
for RAID-6 [2]. For this optimization, the row of GT

corresponding to the P drive contains all ones, so that
the P drive may be parity. The row corresponding to
the Q drive contains the number 2i in GF(2w) in column
i (zero-indexed) so that the contents of the Q drive
may be calculated by successively XOR-ing drive i's
data into the Q drive and multiplying that sum by two.
Since multiplication by two may be implemented
much faster than general multiplication in GF(2w), this
optimizes the performance of encoding over standard
RS implementations. Decoding remains unoptimized.

3 Open Source Librarie

We test five open source erasure coding libraries.
These are all freely available libraries from various
sources on the Internet, and range from brief proofs
of concept (e.g. Luby) to tuned and supported code
intended for use in real systems (e.g. Zfec). We also
tried the Schifra open source library [23], which is free
but without documentation. We were unable to
implement an encoder and decoder to perform a
satisfactory comparison with the others. We present
them chronologically.

Luby: CRS coding was developed at the ICSI lab in
Berkeley, CA in the mid 1990's [6]. The authors

released a C version of their codes in 1997, which is
available from ICSI's web site [19]. The library supports
all settings of k, m, w and packet sizes. The matrices
employ the original constructions from [6], which are
not optimized to minimize the number of ones.

Zfec: The Zfec library for erasure coding has been in
development since 2007, but its roots have been
around for over a decade. Zfec is built on top of a RS
coding library developed for reliable multicast by Rizzo
[30]. That library was based on previous work by Karn
et al [18], and has seen wide use and tuning. Zfec is
based on Vandermonde matrices when w=8. The
latest version (1.4.0) was posted in January, 2008 [33].
The library is programmable, portable and actively
supported by the author. It includes command-line
tools and APIs in C, Python and Haskell.

Jerasure: Jerasure is a C library released in 2007 that
supports a wide variety of erasure codes, including RS
coding, CRS coding, general Generator matrix and bit-
matrix coding, and Minimal Density RAID-6 coding
[26]. RS coding may be based on Vandermonde or
Cauchy matrices, and w may be 8, 16 or 32. Anvin's
optimization is included for RAID-6 applications. For
CRS coding, Jerasure employs provably optimal
encoding matrices for RAID-6, and constructs
optimized matrices for larger values of m. Additionally,
the three Minimal Density RAID-6 codes are
supported. To improve performance of the bit-matrix
codes, especially the decoding performance, the Code-
Specific Hybrid Reconstruction optimization [14] is
included. Jerasure is released under the GNU LGPL.

Cleversafe: In May, 2008, Cleversafe exported the first
open source version of its dispersed storage system
[7]. Written entirely in Java, it supports the same API
as Cleversafe's proprietary system, which is notable as
one of the first commercial distributed storage
systems to implement availability beyond RAID-6. For
this paper, we obtained a version containing just the
the erasure coding part of the open source
distribution. It is based on Luby's original CRS
implementation [19] with w=8.

EVENODD/RDP: There are no open source versions of
EVENODD or RDP coding. However, RDP may be
implemented as a bit-matrix code, which, when
combined with Code-Specific Hybrid Reconstruction
yields the same performance as the original
specification of the code [16]. EVENODD may also be
implemented with a bit-matrix whose operations may
be scheduled to achieve the code's original
performance [16]. We use these observations to

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 185

implement both codes as bit-matrices with tuned
schedules in Jerasure. Since EVENODD and RDP codes
are patented, this implementation is not available to
the public, as its sole intent is for performance
comparison.

4 Encoding Experiment

We perform two sets of experiments -- one for
encoding and one for decoding. For the encoding
experiment, we seek to measure the performance of
taking a large data file and splitting and encoding it
into n = k+m pieces, each of which will reside on a
different disk, making the system tolerant to up to m
disk failures. Our encoder thus reads a data file,
encodes it, and writes it to k+m data/coding files,
measuring the performance of the encoding
operations.

Figure 4: The encoder utilizes a data buffer and a
coding buffer to encode a large file in stages.

Since memory utilization is a concern, and since
large files exceed the capacity of most computers'
memories, our encoder employs two fixed-size
buffers, a Data Buffer partitioned into k blocks
and a Coding Buffer partitioned into m blocks. The
encoder reads an entire data buffer's worth of
data from the big file, encodes it into the coding
buffer and then writes the contents of both
buffers to k+m separate files. It repeats this
process until the file is totally encoded, recording
both the total time and the encoding time. The
high level process is pictured in Figure 4.

The blocks of the buffer are each partitioned into
s strips, and each strip is partitioned either into
words of size w (RS coding, where w ∈
{8,16,32,64}), or into w packets of a fixed size PS
(all other codes -- recall Figure 3). To be specific,
each block Di (and Cj) is partitioned into strips
DSi,0, ..., DSi,s-1. (and CSj,0, ..., CSj,s-1), each of size
wPS. Thus, the data and coding buffer sizes are
dependent on the various parameters.
Specifically, the data buffer size equals (kswPS)
and the coding buffer size equals (mswPS).

Encoding is done on a stripe-by-stripe basis. First,
the data strips DS0,0, ..., DSk-1,0 are encoded into
the coding strips CS0,0, ..., CSm-1,0. This completes
the encoding of stripe 0, pictured in Figure 5. Each
of the s stripes is successively encoded in this
manner.

Figure 5: How the data and coding buffers are
partitioned,
and the encoding of Stripe 0 from data strips DS0,0, ...,
DSk-1,0

into coding strips CS0,0, ..., CSm-1,0.

Thus, there are multiple parameters that the encoder
allows the user to set. These are k, m, w (subject to
the code's constraints), s and PS. When we mention
setting the buffer size below, we are referring to the
size of the data buffer, which is (kswPS).

4.1 Machines for Experimentation

We employed two machines for experimentation.
Neither is exceptionally high-end, but each represents
middle-range commodity processors, which should be
able to encode and decode comfortably within the I/O
speed limits of the fastest disks. The first is a Macbook

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 186

with a 32-bit 2GHz Intel Core Duo processor, with 1GB
of RAM, a L1 cache of 32KB and a L2 cache of 2MB.
Although the machine has two cores, the encoder only
utilizes one. The operating system is Mac OS X, version
10.4.11, and the encoder is executed in user space
while no other user programs are being executed. As a
baseline, we recorded a memcpy() speed of 6.13
GB/sec and an XOR speed of 2.43 GB/sec.

The second machine is a Dell workstation with an Intel
Pentium 4 CPU running at 1.5GHz with 1GB of RAM,
an 8KB L1 cache and a 256KB L2 cache. The operating
system is Debian GNU Linux revision 2.6.8-2-686, and
the machine is a 32-bit machine. The memcpy() speed
is 2.92 GB/sec and the XOR speed is 1.32 GB/sec.

4.2 Encoding with Large Files

Our intent was to measure the actual performance of
encoding a large video file. However, doing large
amounts of I/O causes a great deal of variability in
performance timings. We exemplify with Figure 6. The
data is from the Macbook, where we use a 256 MB
video file for input. The encoder works as described in
Section 4 with k=10 and m=6. However, we perform
no real encoding. Instead we simply zero the bytes of
the coding buffer before writing it to disk. In the
figure, we modify the size of the data buffer from a
small size of 64 KB to 256 MB -- the size of the video
file itself.

Figure 6: Times to read a 256 MB video, peform a
dummy encoding when k=10 and m=6, and write to 16
data/coding files.

In Figure 6, each data point is the result of ten runs
executed in random order. A tukey plot is given, which
has bars to the maximum and minimum values, a box
encompassing the first to the third quartile, hash
marks at the median and a dot at the mean. While
there is a clear trend toward improving performance
as the data buffer grows to 128 MB, the variability in
performance is colossal: between 15 and 20 seconds
for many runs. Running Unix's split utility on the file
reveals similar variability.

Because of this variability, the tests that follow
remove the I/O from the encoder. Instead, we
simulate reading by filling the buffer with random
bytes, and we simulate writing by zeroing the buffers.
This reduces the variability of the runs tremendously --
the results that follow are all averages of over 10 runs,
whose maximum and minimum values differ by less
than 0.5 percent. The encoder measures the times of
all coding activites using Unix's gettimeofday(). To
confirm that these times are accurate, we also
subtracted the wall clock time of a dummy control
from the wall clock time of the encoder, and the two
matched to within one percent.

Figure 6 suggests that the size of the data buffer can
impact performance, although it is unclear whether
the impact comes from memory effects or from the
file system. To explore this, we performed a second
set of tests that modify the size of the data buffer
while performing a dummy encoding. We do not
graph the results, but they show that with the I/O
removed, the effects of modifying the buffer size are
negligible. Thus, in the results that follow, we maintain
a data buffer size of roughly 100 KB. Since actual
buffer sizes depend on k, m, w and PS, they cannot be
affixed to a constant value; instead, they are chosen to
be in the ballpark of 100 KB. This is large enough to
support efficient I/O, but not so large that it consumes
all of a machine's memory, since in real systems the
processors may be multitasking.

4.3 Parameter Space

We test four combinations of k and m -- we will
denote them by [k,m]. Two combinations are RAID-6
scenarios: [6,2] and [14,2]. The other two represent
16-disk stripes with more fault-tolerance: [12,4] and
[10,6]. We chose these combinations because they
represent values that are likely to be seen in actual
usage. Although large and wide-area storage
installations are composed of much larger numbers of
disks, the stripe sizes tend to stay within this medium
range, because the benefits of large stripe sizes show

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 187

diminishing returns compared to the penalty of extra
coding overhead in terms of encoding performance
and memory use. For example, Cleversafe's widely
dispersed storage system uses [10,6] as its default [7];
Allmydata's archival online backup system uses [3,7],
and both Panasas [32] and Pergamum [31] report
keeping their stripe sizes at or under 16.

For each code and implementation, we test its
performance by encoding a randomly generated file
that is 1 GB in size. We test all legal values of w ≤ 32.
This results in the following tests.

 Zfec: RS coding, w=8 for all combinations of
[k,m].

 Luby: CRS coding, w ∈ {4, ..., 12} for all
combinations of [k,m], and w=3 for [6,2].

 Cleversafe: CRS coding, w=8 for all
combinations of [k,m].

 Jerasure:
o RS coding, w ∈ {8,16,32} for all

combinations of [k,m]. Anvin's
optimization is included for the RAID-6
tests.

o CRS coding, w ∈ {4, ..., 32} for all
combinations of [k,m], and w=3 for
[6,2].

o Blaum-Roth codes, w ∈ {6,10,12} for
[6,2] and w ∈ {16,18,22,28,30} for
[6,2] and [14,2].

o Liberation codes, w ∈ {7,11,13} for
[6,2] and w ∈ {17,19,23,29,31} for
[6,2] and [14,2].

o The Liber8tion code, w=8 for [6,2].
 EVENODD: Same parameters as Blaum-Roth

codes in Jerasure above.
 RDP: Same parameters as EVENODD.

4.4 Impact of the Packet Size

Our experience with erasure coding led us to
experiment first with modifying the packet sizes of the
encoder. There is a clear tradeoff: lower packet sizes
have less tight XOR loops, but better cache behavior.
Higher packet sizes perform XORs over larger regions,
but cause more cache misses. To exemplify, consider
Figure 7, which shows the performance of RDP on the
[6,2] configuration when w=6, on the Macbook. We
test every packet size from 4 to 10000 and display the
speed of encoding.

Figure 7: The effect of modifying the packet size on
RDP coding, k=6, m=2, w=6 on the Macbook.}

We display two y-axes. On the left is the encoding
speed. This is the size of the input file divided by the
time spent encoding and is the most natural metric to
plot. On the right, we normalize the encoding speed so
that we may compare the performance of encoding
across configurations. The normalized encoding speed
is calculated as:

(Encoding Speed)m(k-1)
k

(1)

This is derived as follows. Let S be the file's size and t
be the time to encode. The file is split and encoded
into m+k files, each of size S/k. The encoding process
itself creates Sm/k bytes worth of coding data, and
therefore the speed per coding byte is Sm/kt. Optimal
encoding takes k-1 XOR operations per coding drive
[35]; therefore we can normalize the speed by dividing
the time by k-1, leaving us with Sm(k-1)/kt, or
Equation (1) for the normalized encoding speed.

The shape of this curve is typical for all codes on both
machines. In general, higher packet sizes perform
better than lower ones; however there is a maximum
performance point which is achieved when the code
makes best use of the L1 cache. In this test, the
optimal packet size is 2400 bytes, achieving a
normalized encoding speed of 2172 MB/sec.
Unfortunately, this curve does not monotonically
increase to nor decrease from its optimal value.
Worse, there can be radical dips in performance
between adjacent packet sizes, due to collisions
between cache entries. For example, at packet sizes
7732, 7736 and 7740, the normalized encoding speeds

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 188

are 2133, 2066 and 2129 MB/sec, respectively. We
reiterate that each data point in our graphs represents
over 10 runs, and the repetitions are consistent to
within 0.5 percent.

We do not attempt to find the optimal packet sizes
for each of the codes. Instead, we perform a search
algorithm that works as follows. We test a region r of
packet sizes by testing each packet size from r to r+36
(packet sizes must be a multiple of 4). We set the
region's performance to be the average of the five
best tests. To start our search, we test all regions that
are powers of two from 64 to 32K. We then iterate,
finding the best region r, and then testing the two
regions that are halfway between the two values of r
that we have tested that are adjacent to r. We do this
until there are no more regions to test, and select the
packet size of all tested that performed the best. For
example, the search for the RDP instance of Figure 7
tested only 202 packet sizes (as opposed to 2500 to
generate Figure 7) to arrive at a packet size of 2588
bytes, which encodes at a normalized speed of 2164
MB/sec (0.3% worse than the best packet size of 2400
bytes).

Figure 8: The effect of modifying w on the best packet
sizes found.

One expects the optimal packet size to decrease as k,
m and w increase, because each of these increases the

stripe size. Thus smaller packets are necessary for
most of the stripe to fit into cache. We explore this
effect in Figure 8, where we show the best packet
sizes found for different sets of codes -- RDP,
Minimum Density, and Jerasure's CRS -- in the two
RAID-6 configurations. For each code, the larger value
of k results in a smaller packet size, and as a rough
trend, as w increases, the best packet size decreases.

4.5 Overall Encoding Performance

We now present the performance of each of the codes
and implementations. In the codes that allow a packet
size to be set, we select the best packet size from the
above search. The results for the [6,2] configuration
are in Figure 9.

Figure 9: Encoding performance for [6,2].

Although the graphs for both machines appear similar,
there are interesting features of both. We concentrate
first on the MacBook. The specialized RAID-6 codes
outperform all others, with RDP's performance with

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 189

w=6 performing the best. This result is expected, as
RDP achieves optimal performance when k=w.

The performance of these codes is typically quantified
by the number of XOR operations performed
[5,4,8,25,24]. To measure how well number of XORs
matches actual performance, we present the number
of gigabytes XOR'd by each code in Figure 10.

Figure 10: Gigabytes XOR'd by each code in the [6,2]
tests. The number of XORs is independent of the
machine used.

On the MacBook, the number of XORs is an excellent
indicator of performance, with a few exceptions (CRS
codes for w ∈ {21,22,32}). As predicted by XOR count,
RDP's performance suffers as w increases, while the
Minimal Density codes show better performance. Of
the three special-purpose RAID-6 codes, EVENODD
performs the worst, although the margins are not
large (the worst performing EVENODD encodes at 89%
of the speed of the best RDP).

The performance of Jerasure's implementation the
CRS codes is also excellent, although the choice of w is
very important. The number of ones in the CRS
generator matrices depends on the number of bits in
the Galois Field's primitive polynomial. The
polynomials for w ∈ {8,12,13,14,16,19,24,26,27,30,32}
have one more bit than the others, resulting in worse
performance. This is important, as w ∈ {8,16,32} are
very natural choices since they allow strip sizes to be
powers of two.

Returning back to figure 9, the Luby and Cleversafe
implementations of CRS coding perform much worse
than Jerasure. There are several reasons for this. First,
they do not optimize the generator matrix in terms of
number of ones, and thus perform many more XOR

operations, from 3.2 GB of XORs when w=3 to 13.5 GB
when w=12. Second, both codes use a dense, bit-
packed representation of the generator matrix, which
means that they spend quite a bit of time performing
bit operations to check matrix entries, many of which
are zeros and could be omitted. Jerasure converts the
matrix to a schedule which eliminates all of the matrix
traversal and entry checking during encoding.
Cleversafe's poor performance relative to Luby can
most likely be attributed to the Java implementation
and the fact that the packet size is hard coded to be
very small (since Cleversafe routinely distributes strips
in units of 1K).

Of the RS implementations, the implementation
tailored for RAID-6 (labeled ``RS-Opt'') performs at a
much higher rate than the others. This is due to the
fact that it does not perform general-purpose Galois
Field multiplication over w-bit words, but instead
performs a machine word's worth of multiplication by
two at a time. Its performance is better when w ≤ 16,
which is not a limitation as w=16 can handle a system
with a total of 64K drives. The Zfec implementation of
RS coding outperforms the others. This is due to the
heavily tuned implementation, which performs explicit
loop unrolling and hard-wires many features of GF(28)
which the other libraries do not. Both Zfec and
Jerasure use precomputed multiplication and division
tables for GF(28). For w=16, Jerasure uses discrete
logarithms, and for w=32, it uses a recursive table-
lookup scheme. Additional implementation options for
the underlying Galois Field arithmetic are discussed in
[11].

The results on the Dell are similar to the MacBook
with some significant differences. The first is that
larger values of w perform worse relative to smaller
values, regardless of their XOR counts. While the
Minimum Density codes eventually outperform RDP
for larger w, their overall performance is far worse
than the best performing RDP instance. For example,
Liberation's encoding speed when w=31 is 82% of
RDP's speed when w=6, as opposed to 97% on the
MacBook. We suspect that the reason for this is the
smaller L1 cache on the Dell, which penalizes the strip
sizes of the larger w.

The final difference between the MacBook and the
Dell is that Jerasure's RS performance for w=16 is
much worse than for w=8. We suspect that this is
because Jerasure's logarithm tables are not optimized
for space, consuming 1.5 MB of memory, since there
are six tables of 256 KB each [26]. The lower bound is

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 190

two 128 KB tables, which should exhibit better
behavior on the Dell's limited cache.

Figure 11: Encoding performance for [14,2].

Figure 11 displays the results for [14,2] (we omit
Cleversafe since its performance is so much worse
than the others). The trends are similar to [6,2], with
the exception that on the Dell, the Minimum Density
codes perform significantly worse than RDP and
EVENODD, even though their XOR counts follow the
performance of the MacBook. The definition of the
normalized encoding speed means that if a code is
encoding optimally, its normalized encoding speed
should match the XOR speed. In both machines, RDP's
[14,2] normalized encoding speed comes closest to
the measured XOR speed, meaning that in
implementation as in theory, this is an extremely
efficient code.

Figure 12: Encoding performance for [14,2].

Figure 12 displays the results for [12,4]. Since this is no
longer a RAID-6 scenario, only the RS and CRS codes
are displayed. The normalized performance of
Jerasure's CRS coding is much worse now because the
generator matrices are more dense and cannot be
optimized as they can when m=2. As such, the codes
perform more XOR operations than when k=14. For
example, when w=4 Jerasure's CRS implementation
performs 17.88 XORs per coding word; optimal is 11.
This is why the normalized coding speed is much
slower than in the best RAID-6 cases. Since Luby's
code does not optimize the generator matrix, it
performs more XORs (23.5 per word, as opposed to
17.88 for Jerasure), and as a result is slower. The RS
codes show the same performance as in the other
tests. In particular, Zfec's normalized performance is
roughly the same in all cases. For space purposes, we
omit the [10,6] results as they show the same trends
as the [12,4] case. The peak performer is Jerasure's
CRS, achieving a normalized speed of 1409 MB/sec on
the MacBook and 869.4 MB/sec on the Dell. Zfec's
normalized encoding speeds are similar to the others:

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 191

528.4 MB/sec on the MacBook and 380.2 MB/sec on
the Dell.

Figure 13: Decoding performance for [6,2].

5 Decoding Performance

To test the performance of decoding, we converted
the encoder program to perform decoding as well.
Specifically, the decoder chooses m random data
drives, and then after each encoding iteration, it zeros
the buffers for those drives and decodes. We only
decode data drives for two reasons. First, it represents
the hardest decoding case, since all of the coding
information must be used. Second, all of the libraries
except Jerasure decode only the data, and do not
allow for individual coding strips to be re-encoded
without re-encoding all of them. While we could have
modified those libraries to re-encode individually, we
did not feel that it was in the spirit of the evaluation.
Before testing, we wrote code to double-check that
the erased data was decoded correctly, and in all cases
it was. We show the performance of two

configurations: [6,2] in Figure 13 and [12,4] in Figure
14. The results are best viewed in comparison to
Figures 9 and 12. The results on the MacBook tend to
match theory. RDP decodes as it encodes, and the two
sets of speeds match very closely. EVENODD and the
Minimal Density codes both have slightly more
complexity in decoding, which is reflected in the
graph. As mentioned in [24], the Minimal Density
codes benefit greatly from Code-Specific Hybrid
Reconstruction [14], which is implemented in Jerasure.
Without the optimization, the decoding performance
of these codes would be unacceptable. For example,
in the [6,2] configuration on the MacBook, the
Liberation code for w=31 decodes at a normalized rate
of 1820 MB/sec. Without Code-Specific Hybrid
Reconstruction, the rate is a factor of six slower: 302.7
MB/sec. CRS coding also benefits from the
optimization. Again, using an example where w=31,
normalized speed with the optimization is 1809 MB/s,
and without it is 261.5 MB/sec.

The RS decoders perform identically to their encoding
counterparts with the exception of the RAID-6
optimized version. This is because the optimization
applies only to encoding and defaults to standard RS
decoding. Since the only difference between RS
encoding and decoding is the inversion of a k * k
matrix, the fact that encoding and decoding
performance match is expected.

On the Dell, the trends between the various codes
follow the encoding tests. In particular, larger values
of w are penalized more by the small cache.

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 192

Figure 14: Decoding performance for [12,4].

In the [12,4] tests, the performance trends of the CRS
codes are the same, although the decoding proceeds
more slowly. This is more pronounced in Jerasure's
implementation than in Luby's, and can be explained
by XORs. In Jerasure, the program attempts to
minimize the number of ones in the encoding matrix,
without regard to the decoding matrix. For example,
when w=4, CRS encoding requires 5.96 GB of XORs. In
a decoding example, it requires 14.1 GB of XORs, and
with Code-Specific Hybrid Reconstruction, that
number is reduced to 12.6. Luby's implementation
does not optimize the encoding matrix, and therefore
the penalty of decoding is not as great.

As with the [6,2] tests, the performance of RS coding
remains identical to decoding.

6 XOR Units

This section is somewhat obvious, but it does bear
mentioning that the unit of XOR used by the
encoding/decoding software should match the largest
possible XOR unit of the machine. For exmaple, on 32-

bit machines like the MacBook and the Dell, the long
and int types are both four bytes, while the char and
short types are one and two bytes, respectively. On
64-bit machines, the long type is eight bytes. To
illustrate the dramatic impact of word size selection
for XOR operations, we display RDP performance for
the [6,2] configuration (w = 6) on the two 32-bit
machines and on an HP dc7600 workstation with a 64-
bit Pentium D860 processor running at 2.8 GHz. The
results in Figure 15 are expected.

Figure 15: Effect of changing the XOR unit of RDP
encoding when w=6 in the [6,2] configuration.

The performance penalty at each successively smaller
word size is roughly a factor of two, since twice as
many XORs are being performed. All the libraries
tested in this paper perform XORs with the widest
word possible. This also displays how 64-bit are
especially tailored for these types of operations.

7 Conclusions

Given the speeds of current disks, the libraries
explored here perform at rates that are easily fast
enough to build high performance, reliable storage
systems. We offer the following lessons learned from
our exploration and experimentation:

RAID-6: The three RAID-6 codes, plus Jerasure's
implementation of CRS coding for RAID-6, all perform
much faster than the general-purpose codes.
Attention must be paid to the selection of w for these
codes: for RDP and EVENODD, it should be as low as
possible; for Minimal Density codes, it should be as
high as the caching behavior allows, and for CRS, it
should be selected so that the primitive polynomial
has a minimal number of ones. Note that w ∈
{8,16,32} are all bad for CRS coding. Anvin's
optimization is a significant improvement ot

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 193

generalized RS coding, but does not attain the levels of
the special-purpose codes.

CRS vs. RS For non-RAID-6 applications, CRS coding
performs much better than RS coding, but now w
should be chosen to be as small as possible, and
attention should be paid to reduce the number of
ones in the generator matrix. Additionally, a dense
matrix representation should not be used for the
generator matrix while encoding and decoding.

Parameter Selection: In addition to w, the packet sizes
of the codes should be chosen to yield good cache
behavior. To achieve an ideal packet size,
experimentation is important; although there is a
balance point between too small and too large, some
packet sizes perform poorly due to direct-mapped
cache behavior, and therefore finding an ideal packet
size takes more effort than executing a simple binary
search. As reported by Greenan with respect to Galois
Field arithmetic [11], architectural features and
memory behavior interact in such a way that makes it
hard to predict the optimal parameters for encoding
operations. In this paper, we semi-automate it by
using the region-based search of Section 4.4.

Minimizing the Cache/Memory Footprint: On some
machines, the implementation must pay < attention to
memory and cache. For example, Jerasure's RS
implementation performs poorly on the Dell when
w=16 because it is wasteful of memory, while on the
MacBook its memory usage does not penalize as
much. Part of Zfec's better performance comes from
its smaller memory footprint. In a similar vein, we
have seen improvements in the performance of the
XOR codes by reordering the XOR operations to
minimize cache replacements [20]. We anticipate
further performance gains through this technique.

Beyond RAID-6: The place where future research will
have the biggest impact is for larger values of m. The
RAID-6 codes are extremely successful in delivering
higher performance than their general-purpose
counterparts. More research needs to be performed
on special-purpose codes beyond RAID-6, and
implementations need to take advantage of the
special-purpose codes that already exist [9,10,17].

8 Acknowledgements

This material is based upon work supported by the
National Science Foundation under grants CNS-
0615221 and IIS-0541527. The authors are greatly
indebted to Ilya Volvolski and Jason Resch from

Cleversafe for providing us with the erasure coding
core of their open source storage dispersal system.
The authors also thank Hakim Weatherspoon for his
helpful and detailed comments on the paper.

References

[1] Allmydata, "Unlimited Online Backup, Storage, and
Sharing," http://allmydata.com, 2008.

[2] H. P. Anvin, "The Mathematics of RAID-6,"
http://kernel.org/pub/linux/kernel/people/hpa/raid6.
pdf, 2007.

[3] M. Beck, D. Arnold, A. Bassi, F. Berman, H.
Casanova, J. Dongarra, T. Moore, G. Obertelli, J. S.
Plank, M. Swany, S. Vadhiyar and R. Wolski, "Logistical
Computing and Internetworking: Middleware for the
Use of Storage in Communication," Third Annual
International Workshop on Active Middleware Services
(AMS), San Francisco, August, 2001.

[4] M. Blaum, J. Brady, J. Bruck and J. Menon,
"EVENODD: An Efficient Scheme for Tolerating Double
Disk Failures in RAID Architectures," IEEE Transactions
on Computing, 44(2), February, 1995, pp. 192-202.

[5] M. Blaum and R. M. Roth, "On Lowest Density MDS
Codes," IEEE Transactions on Information Theory,
45(1), January, 1999, pp. 46-59.

[6] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M.
Luby and D. Zuckerman, "An XOR-Based Erasure-
Resilient Coding Scheme," Technical Report TR-95-048,
International Computer Science Institute, August,
1995.

[7] Cleversafe, Inc., "Cleversafe Dispersed Storage,"
Open source code distribution:
http://www.cleversafe.org/downloads, 2008.

[8] P. Corbett, B. English, A. Goel, T. Grcanac, S.
Kleiman, J. Leong and S. Sankar, "Row Diagonal Parity
for Double Disk Failure Correction," FAST-2004: 3rd
Usenix Conference on File and Storage Technologies,
San Francisco, CA, March, 2004.

[9] G. Feng, R. Deng, F. Bao and J. Shen, "New efficient
MDS array codes for RAID Part I: Reed-Solomon-like
codes for tolerating three disk failures," IEEE
Transactions on Computers, 54(9), September, 2005,
pp. 1071-1080.

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 194

[10] G. Feng, R. Deng, F. Bao and J. Shen, "New
efficient MDS array codes for RAID Part II: Rabin-like
codes for tolerating multiple (≥ 4) disk failures," IEEE
Transactions on Computers, 54(12), Decemeber, 2005,
pp. 1473-1483.

[11] K. Greenan, E. Miller and T. J. Schwartz,
"Optimizing Galois Field Arithmetic for Diverse
Processor Architectures and Applications," MASCOTS
2008: 16th IEEE Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems, Baltimore, MD, September, 2008.

[12] J. L. Hafner, "WEAVER Codes: Highly Fault
Tolerant Erasure Codes for Storage Systems," FAST-
2005: 4th Usenix Conference on File and Storage
Technologies, San Francisco, December, 2005, pp. 211-
224.

[13] J. L. Hafner, "HoVer Erasure Codes for Disk
Arrays," DSN-2006: The International Conference on
Dependable Systems and Networks, IEEE, Philadelphia,
June, 2006.

[14] J. L. Hafner, V. Deenadhayalan, K. K. Rao and A.
Tomlin, "Matrix Methods for Lost Data Reconstruction
in Erasure Codes," FAST-2005: 4th Usenix Conference
on File and Storage Technologies, San Francisco,
December, 2005, pp. 183-196.

[15] C. Huang, M. Chen and J. Li, "Pyramid Codes:
Flexible Schemes to Trade Space for Access Efficienty
in Reliable Data Storage Systems," NCA-07: 6th IEEE
International Symposium on Network Computing
Applications, Cambridge, MA, July, 2007.

[16] C. Huang, J. Li and M. Chen, "On Optimizing XOR-
Based Codes for Fault-Tolerant Storage Applications,"
ITW'07, Information Theory Workshop, IEEE, Tahoe
City, CA, September, 2007, pp. 218-223.

[17] C. Huang and L. Xu, "STAR: An Efficient Coding
Scheme for Correcting Triple Storage Node Failures,"
FAST-2005: 4th Usenix Conference on File and Storage
Technologies, San Francisco, December, 2005, pp. 197-
210.

[18] P. Karn, "DSP and FEC Library,"
http://www.ka9q.net/code/fec/, 2007.

[19] M. Luby, "Code for Cauchy Reed-Solomon
Coding," Uuencoded tar file:
http://www.icsi.berkeley.edu/~luby/cauchy.tar.uu,
1997.

[20] J. Luo, L. Xu and J. S. Plank, "An Efficient XOR-
Scheduling Algorithm for Erasure Code Encoding,"
Technical Report Computer Science, Wayne State
University, http://nisl.wayne.edu/Papers/Tech/code-
sp.pdf, December, 2008.

[21] F. J. MacWilliams and N. J. A. Sloane, The Theory
of Error-Correcting Codes, Part I, North-Holland
Publishing Company, Amsterdam, New York, Oxford,
1977.

[22] B. Nisbet, "FAS Storage Systems: Laying the
Foundation for Application Availability," Network
Appliance white paper:
http://www.netapp.com/us/library/analyst-
reports/ar1056.html, February, 2008.

[23] A. Partow, "Schifra Reed-Solomon ECC Library,"
Open source code distribution:
http://www.schifra.com/downloads.html, 2000-2007.

[24] J. S. Plank, "A New Minimum Density RAID-6 Code
with a Word Size of Eight," NCA-08: 7th IEEE
International Symposium on Network Computing
Applications, Cambridge, MA, July, 2008.

[25] J. S. Plank, "The RAID-6 Liberation Codes," FAST-
2008: 6th Usenix Conference on File and Storage
Technologies, San Jose, February, 2008, pp. 97-110.

[26] J. S. Plank, S. Simmerman and C. D. Schuman,
"Jerasure: A Library in C/C++ Facilitating Erasure
Coding for Storage Applications - Version 1.2,"
University of Tennessee, CS-08-627, August, 2008,
http://www.cs.utk.edu/~plank/plank/papers/CS-08-
627.html.

[27] J. S. Plank and L. Xu, "Optimizing Cauchy Reed-
Solomon Codes for Fault-Tolerant Network Storage
Applications," NCA-06: 5th IEEE International
Symposium on Network Computing Applications,
Cambridge, MA, July, 2006.

[28] I. S. Reed and G. Solomon, "Polynomial codes
over certain finite fields," Journal of the Society for
Industrial and Applied Mathematics, 8, 1960, pp. 300-
304.

[29] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H.
Weatherspoon and J. Kubiatowicz, "Maintenance-Free
Global Data Storage," IEEE Internet Computing, 5(5),
2001, pp. 40-49.

Ram Krishna et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 195

[30] L. Rizzo, "Effective erasure codes for reliable
computer communication protocols," ACM SIGCOMM
Computer Communication Review, 27(2), 1997, pp. 24-
36.

[31] M. W. Storer, K. M. Greenan, E. L. Miller and K.
Voruganti, "Pergamum: Replacing Tape with Energy
Efficient, Reliable, Disk-Based Archival Storage," FAST-
2008: 6th Usenix Conference on File and Storage
Technologies, San Jose, February, 2008, pp. 1-16.

[32] B. Welch, M Unangst, Z. Abbasi, G. Gibson, B.
Mueller, J. Small, J. Zelenka and B. Zhou, "Scalable
Performance of the Panasas Parallel File System,"
FAST-2008: 6th Usenix Conference on File and Storage
Technologies, San Jose, February, 2008, pp. 17-33.

[33] Z. Wilcox-O'Hearn, "Zfec 1.4.0," Open source code
distribution: http://pypi.python.org/pypi/zfec, 2008.

[34] J. J. Wylie and R. Swaminathan, "Determining
Fault Tolerance of XOR-based Erasure Codes
Efficiently," DSN-2007: The International Conference
on Dependable Systems and Networks, IEEE,
Edinburgh, Scotland, June, 2007.

[35] L. Xu and J. Bruck, "X-Code: MDS Array Codes with
Optimal Encoding," IEEE Transactions on Information
Theory, 45(1), January, 1999, pp. 272-276.

[36] B. Zhu, K. Li and H. Patterson, "Avoiding the Disk
Bottleneck in the Data Domain Deduplication File
System," FAST-2008: 6th Usenix Conference on File
and Storage Technologies, San Jose, February, 2008,
pp. 269-282.

