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Abstract— Successful development of cloud computing paradigm 

necessitates accurate performance evaluation of cloud data 

centers. As exact modeling of cloud centers is not feasible due to 

the nature of cloud centers and diversity of user requests, we 

describe a novel approximate analytical model for performance 

evaluation of cloud server farms and solve it to obtain accurate 

estimation of the complete probability distribution of the request 

response time and other important performance indicators. 
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I. INTRODUCTION 

Cloud Computing is a novel paradigm for the provision of 

computing infrastructure, which aims to shift the location of 

the computing infrastructure to the network in order to reduce 

the costs of management and maintenance of hardware and 

software resources. Cloud computing has a service-oriented 

architecture in which services are broadly divided into three 

categories: Infrastructure-as-a- Service (IaaS), which includes 

equipment such as hardware, storage, servers, and networking 

components are made accessible over the Internet; Platform-

as-a-Service (PaaS), which includes hardware and software 

computing plat- forms such as virtualized servers, operating 

systems, and the like; and Software-as-a-Service (SaaS), 
which includes software applications and other hosted 

services. 

 

 A cloud service differs from traditional hosting in three 

principal aspects. First, it is provided on demand; second, it is 

elastic since users can use the service have as much or as little 

as they want at any given time (typically by the minute or the 

hour); and third, the service is fully managed by the provide. 

We assume that any task sent to the cloud center is serviced 

within a suitable facility node; upon finishing the service, the 

task leaves the center. A facility node may contain different 
computing resources such as web servers, database servers, 

directory servers, and others. A service level agreement, SLA, 

outlines all aspects of cloud service usage and the obligations 

of both service providers and clients, including various 

descriptors collectively referred to as Quality of Service (QoS). 

QoS includes availability, throughput, reliability, security, and 

many other parameters, but also performance indicators such 

as response time, task blocking probability, probability of 

immediate service, and mean number of tasks in the system, 

all of which may be determined using the tools of queuing 

theory. However, cloud centers differ from traditional queuing 

systems in a number of important aspects. 

 

1. A cloud center can have a large number of facility 

(server) nodes, typically of the order of hundreds or thousands; 
traditional queuing analysis rarely considers systems of this 

size. 

2. Task service times must be modeled by a general, 

rather than the more convenient exponential, probability 

distribution. Moreover, the coefficient of variation of task 

service time may be high—i.e., well over the value of one. 

3. Due to the dynamic nature of cloud environments, 

diversity of user’s requests and time dependency of load, 

cloud centers must provide expected quality of service at 

widely varying loads. 

 
To fill this gap, in this work, we model the cloud center as 

an M/G/m/m + r queuing system with single task arrivals and 

a task buffer of finite capacity. We evaluate its performance 

using a combination of a transform-based analytical model 

and an approximate Markov chain model, which allows us to 

obtain a complete probability distribution of response time 

and number of tasks in the system. We also discuss the 

probability of immediate service (i.e., no waiting in the input 

buffer) and blocking probability, and determine the size of the 

buffer needed for the blocking probability to remain below a 

predefined value. Analytical results are validated through 

discrete-event simulation. 

II. THE PROPOSED ANALYTICAL MODEL 

 

We model a cloud server farm as a M/G/m/m+ r queuing 

system which indicates that the interarrival time of requests is 

exponentially distributed, while task service times are 

independent and identically distributed random variables that 

follow a general distribution with mean value of µ. The 

system under consideration contains m servers which render 

service in order of task request arrivals (FCFS). The capacity 

of system is m + r which means the buffer size for incoming 

request is equal to r. As the population size of a typical cloud 
center is relatively high while the probability that a given user 

will request service is relatively small, the arrival process can 

be modeled as a Markovian process. An M/G/m/m+ r queuing 

system may be considered as a semi-Markov process which 

can be analyzed by exploiting the embedded Markov chain 
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technique. Embedded Markov Chain technique requires 

selection of Markov points in which the state of the system is 

observed. Therefore, we model the number of the tasks in the 

system (both those in service and those queued but not yet 

serviced) at the moments immediately before task request 

arrivals; if we enumerate these instances as 0; 1; 2; ... ; m+ r, 

we obtain a homogeneous Markov chain. Therefore, the semi-

Markov process records the state at arbitrary time while the 

embedded Markov chain only observes the state at which the 

system has an arrival. 

 
Advantages: 

Performance evaluation of server farms is an important 

aspect of cloud computing which is of crucial interest for both 

cloud providers and cloud customers. In this paper, We have 

proposed an analytical technique based on an approximate 

Markov chain model for performance evaluation of a cloud 

computing center. Due to the nature of the cloud environment, 

We assumed general service time for requests as well as large 

number of servers, which makes our model flexible in terms 

of scalability and diversity of service time. 

 
2.1 The Embedded Markov Chain 

The moments of task request arrivals are selected as 

Markov points. Two successive task request arrivals and task 

departures that (may) occur between them are shown 

schematically in Fig. 1. Note that the number of departures 

may be anywhere between 0 and 1, but it is likely to be low in 

fact, when the system is in the steady state, there will be on 

the average a single departure between every two successive 

arrivals. As our embedded Markov chain is homogeneous and 

ergodic, it has a steady-state solution. (Definition of ergodicity 

and the proof that the Markov chain is ergodic can be found in 
Appendix B, available in the online supplemental material.) 

Therefore, we can calculate the distribution of number of tasks 

in the system as well as the mean response time. 

 

 
              Fig.1. Embedded Markov Points 
 

Let An and An+1 indicate the moment of nth and (n+1)th  

arrivals to the system, respectively, while q n and q n+1 indicate 

the number of tasks found in the system immediately before 

these arrivals. If vn+1 indicates the number of tasks which 

depart from the system between An and An+1, then              

qn+1= qn-vn-1+1. 

 

 

 

 

III. NUMERICAL VALIDATION 

 

We have considered the system with different number of 

servers (m = 50, 100, and 200), while the input buffer was 

made variable from r = 0 to m/2 in five steps. In all cases, 

traffic intensity was ρ= 0:85, while the coefficient of variation 

CoV was assigned values of 0.5 and 1.4. These values give 

reasonable insight into the behavior and dimensioning of 

cloud centers. While the number of servers may be too low 

and the traffic intensity too high for a large provider such as 

Amazon (it is worth noting that no cloud provider publishes 
information regarding average traffic intensity, buffer space, 

number of servers, or the percentage of reserved, on-demand 

or spot instances), the values chosen may be quite applicable 

to small- to medium-sized providers that try to keep the 

utilization of their servers as high as possible.  

 

Mean number of tasks in the system is shown in Fig. 4. As 

can be seen, it increases rather smoothly with buffer size when 

the number of servers is m = 50, but it is much less 

pronounced when the number of servers is higher. In fact, he 

impact of buffer size becomes virtually undetectable when the 
number of servers is high (m =200). 

 

 Blocking probability is shown in Fig. 5. As can be seen, it 

decreases rapidly when the buffer size increases. From the 

plot, we can estimate the minimum buffer size needed to keep 

the blocking probability below a given value ϵ. For ϵ = 0.002 

(i.e., 0.2 percent), buffer size should be at least 10 for the 

system with m = 50 servers. For systems with higher number 

of servers, this minimum is lower, and even small extra buffer 

space results in virtually no blocking at all, as can be seen in 

Figs. 5b and 5c. 
 

 Finally, Fig. 6 shows the probability that a task will get 

immediate service without any queuing; this probability is an 

important non functional service property for cloud customers. 

Intuitively, this probability should not depend on the system 

capacity—it requires the presence of at least one idle server. 

However, its value is close to 1 at low buffer sizes, and then 

decreases and stabilizes as the number of spaces in the buffer r 

increases. This behaviour is due to the fact that, at low values 

of r (i.e., small buffer size), an arriving task is not very likely 

to get queued; instead, it will either get blocked (as per Fig. 5) 

or immediately serviced. Only when the buffer size exceeds a 
certain value will the probability of queuing become non 

negligible. In other words, increasing the capacity for queuing 

(i.e., the buffer size) will decrease both the probability of 

blocking and the probability of getting immediately into 

service. However, this trend ceases to hold beyond a certain 

value, and adding Fig. 4. Mean number of tasks in the system 

at traffic intensity ρ= 0:85. Fig. 5. Blocking probability. Fig. 6. 

Probability of immediate service. Extra buffer capacity will 

not affect either probability to a noticeable degree. 
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a) System with m=50 servers           b) System with m=50 servers                c) System with m=50 servers 
 

Fig.4  Mean number of tasks in the system at traffic intensity ρ= 0:85 

 

 

 
a) M/G/50/50+r                                 b) M/G/100/100+r                                 c) M/G/200/200+r 

 
Fig.5  Blocking probability 

 

 

           

 
                               

a) M/G/50/50+r                                    b) M/G/100/100+r                                      c) M/G/200/200+r 

 

Fig.6  probability of immediate service 

 

We only show the results for M/G/50/50+r because the 

discussion aims to highlight the influences of coefficient of 
variation of service time on response time; for larger 

systems, the discussion is the same. Distinguishing 

between tasks and allocating dedicate buffer space to 

different classes of tasks can be a way to avoid sudden long 

delay. In other words, establishing a few parallel distinct 

homogeneous cloud centers instead of having one central 
heterogeneous center could be a solution which will 

decrease the waiting time; this provides another 

justification for providing performance results only for a 

cloud center with 50 servers. Finally, we note that the 
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agreement of simulation and analytical results is very good, 

which confirms the validity of our analytical model. 

 

IV. CONCLUSION 

 

Performance evaluation of server farms is an important 

aspect of cloud computing which is of crucial interest for 

both cloud providers and cloud customers. In this paper, 

we have proposed an analytical technique based on an 

approximate Markov chain model for performance 

evaluation of a cloud computing center. Due to the nature 
of the cloud environment, we assumed general service time 

for requests as well as large number of servers, which 

makes our model flexible in terms of scalability and 

diversity of service time. We have further conducted 

numerical experiments and simulation to validate our 

model. Numerical and simulation results showed that the 

proposed approximate method provides results with high 

degree of accuracy for the mean number of tasks in the 

system, blocking probability, probability of immediate 

service as well as the response time distribution 

characteristics such as mean, standard deviation, skewness, 
and kurtosis. Our results also indicate that a cloud center 

that accommodates heterogeneous services may impose 

longer waiting time for its clients compared to its 

homogeneous equivalent with the same traffic intensity. 
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