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Abstract— This paper presents an area-time efficient CORDIC
algorithm that completely eliminates the scale-factor. By
suitable selection of the order of approximation of Taylor series
the proposed CORDIC circuit meets the accuracy requirement,
and attains the desired range of convergence. Besides we have
proposed an algorithm to redefine the elementary angles for
reducing the number of CORDIC iterations. A generalized
micro-rotation selection technique based on high speed most-
significant-1-detection obviates the complex search algorithms
for identifying the micro-rotations. The proposed CORDIC
processor provides the flexibility to manipulate the number of
iterations depending on the accuracy, area and latency
requirements. Compared to the existing recursive architectures
the proposed one has 17% lower slice-delay product on Xilinx
Spartan XC2S200E device.

Keywords— coordinate rotation digital computer (CORDIC),
cosine/ sine, field-programmable gate array (FPGA), most-
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I.  INTRODUCTION

The coordinate rotation digital computer (CORDIC)
has established its popularity in several important areas of
application, like generation of sine and cosine functions,
calculation of discrete sinusoidal transforms like fast Fourier
transform (FFT), discrete sine/cosine transforms (DST/DCT),
householder transform (HT), etc. Many variations have been
suggested for efficient implementation of CORDIC with less
number of iterations over the conventional CORDIC
algorithm. The number of CORDIC iterations are optimized
in by greedy search at the cost of additional area and time for
the implementation of variable scale-factor. In efficient scale-
factor compensation techniques are proposed, which
adversely affect the latency/throughput of computation. Two
area-time efficient CORDIC architectures have been
suggested in, which involve constant scale-factor
multiplication for adequate range of convergence (RoC). The
virtually scale-free CORDIC in also requires multiplication
by constant scale-factor and relatively more area to achieve

respectable RoC. The enhanced scale-free CORDIC in
combines few conventional CORDIC iterations with scaling-
free CORDIC iterations for an efficient pipelined CORDIC
implementation with improved RoC. However, if used for
recursive CORDIC architecture, combining two different
types of CORDIC iterations degrades performance. In this
paper, we propose a novel scaling-free CORDIC algorithm
for area-time efficient implementation of CORDIC with
adequate RoC. The proposed recursive architecture has
comparable or less area complexity with other existing
scaling-free CORDIC algorithms. Moreover, no scale-factor
multiplications are required for extending the RoC to entire
coordinate space, as required.

II BRIEF OVERVIEW OF CORDIC ALGORITHM

The CORDIC algorithm operates either in, rotation
mode or vectoring mode, following linear, circular or
hyperbolic coordinate trajectories. In this paper, we focus on
rotation mode CORDIC using circular trajectory.

A. Conventional CORDIC Algorithm
In conventional CORDIC to obtain the rotated

vector, the angle of rotation “ ” is decomposed into a
sequence of fixed predefined elementary rotations with
variable direction. The conventional rotation mode CORDIC
estimates the (i+1)th intermediate rotated vector from the ith

vector using circular trajectory as
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Where Ki = cos αi

αi = tan-1(2-i)
The sign sequence µ i € {1,-1} is so selected that
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Where, b is the word-length in bits.
The range of convergence of this algorithm is

limited to [-99.99o, 99.99o], which can be extended to entire
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coordinate space using the properties of sine and cosine
functions, using an extra iteration for full-range rotation.

The overall scaling-factor of “b” CORDIC
iterations. The scaling-factor K, after sufficiently large
number of iterations converges to a constant value K =
0.60725.
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B. Review of Existing Scaling Free CORDIC Algorithm
Scaling-free CORDIC was the first attempt to

completely dispose of the scale-factor. Here, the sine and
cosine functions were approximated to
Sin αi = (2-i)      cos αi = 1-2-(2i+1)

However, the approximation imposes a restriction on
the basic-shift I = [(b – 2.585)/3]. For 16-bit data, the basic-
shift = 4 results in extremely low range of convergence.
However, modified virtually adaptive scaling-free algorithm,
extends the range of convergence over the entire coordinate
space and introduces an adaptive scale-factor.

III. PROPOSED ALGORITHM FOR SCALING FREE
CORDIC

The proposed design is based on the following key
ideas: 1) we use Taylor series expansion of sine and cosine
functions to avoid scaling operation and 2) suggest a
generalized sequence of micro-rotation to have adequate
range of convergence (RoC) based on the chosen order of
approximation of the Taylor series.

A. Taylor Series Approximation of Sine and Cosine Functions
The Taylor expansions of sine and cosine of an

angle “α” are given by
sin α = α – (3!) -1 .α3 + (5!)-1. α5……….

cos α = 1 – (2!) -1 .α2 + (4!)-1. α4……….

We have estimated the maximum error in the
evaluation of sine and cosine functions for different order of
approximations. The maximum percentage of error in sine
and cosine functions for third order approximation is
0.0033% and 0.0168%, respectively, within the permissible
CORDIC elementary angles range of [0, 7π/88]. Therefore,
we choose third order of approximation for Taylor’s
expansion of sine and cosine functions.

1) Representation of Micro-Rotations Using Taylor Series
Approximation:

The impact of orders of approximation of Taylor
series of sine and cosine functions on the micro-rotations to
be used in CORDIC coordinate calculation. Both theoretical
and simulation results are discussed to confirm the
appropriate selection of the order of approximation. Using
different orders of approximation of sine and cosine
functions, we can have
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We have used for coordinate calculation for
evaluating the best possible combination of approximation,
which satisfies the accuracy and RoC requirements, with
minimum possible hardware. In Fig. 1, we have plotted the
error in magnitude estimated according to (with respect to the
corresponding built-in functions of MATLAB). Since the
errors resulting from the five combinations are of very small
order, we prefer to use for coordinate calculation with
minimum complexity.
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Fig.1. Error in the coordinate values
2) Expressions for Micro-Rotations Using Taylor Series
Approximation and Factorial Approximation:

Taylor series expansion with third order of
approximation, with desired accuracy and RoC requirement,
cannot be used in the CORDIC shift-add iterations. To
implement by shift-add operations, we need to approximate
the factorial terms by the power of 2 values, replacing 3! by
2^3 in the we find
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In Fig. 1 only, we have plotted the error in

magnitude using the approximated factorial values and exact
factorial values after a CORDIC rotation for initial vector
with coordinates x = 1 and y = 1. The maximum percentage
of error in sine and cosine values for both third order of
approximation and factorial approximation is 0.0004% and
0.0168%, respectively, within the permissible CORDIC
elementary angles range of [0, 7π/88].

B. Determination of the Basic-Shift for a Given Order of
Approximation of Taylor Series Expansion

One can find that:
1) the order of approximation of Taylor series

expansion of sine and cosine functions determines the basic-
shift to be used for CORDIC iterations, and

2) the basic-shift of CORDIC micro operation
determines the range of convergence.

The expressions for the basic-shifts, the first
elementary angle of rotation (αi) and RoC for different orders
of approximations for different word-length of
implementations are as follows:
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Where b is the wordlength, and

Roc = n1 x α1

n1 is the number of microtations, and

α1 = 2-s

In the order of approximation, the basic-shift
decreases, the first elementary angle of rotation increases and
RoC is expanded. Very often inclusion of higher order terms
does not have any impact on the accuracy for smaller word-
lengths.

The basic-shift for third order of approximation, for
16-bit word-length is [2.854]. The RoC (with basic-shift for
16-bit) is large enough to be mapped to the entire coordinate-
space.

TABLE I
COMPARISON OF APPROXIMATION ORDERS VERSUS ROC FOR

VARIOUS BIT WIDTHS

Order
of

Appro
x.

Basic-
shift

First
Elementary

Angle
(Radians)

RoC for
n1=4

(Radians)

16
-

Bi
t

32-
Bit

16-
Bit

32-Bit
16-
Bit

32-Bit

3 2 6 0.25 0.01562 1 0.0625
4 1 5 0.5 0.03125 2 0.125
5 1 3 0.5 0.125 2 0.5

TABLE III
BIT REPRESENTATION OF ELEMENTARY ANGLES AND

CORRESPONDING SHIFTS

Shift (si)
Elementary Angle (αi)

Decimal
16-bit

Hexadecimal
2 0.25 4000 H
3 0.125 2000 H
4 0.0625 1000 H
5 0.03125 0800 H

IV. GENERALIZED MICRO-ROTATION SELECTION

In the proposed generalized micro-rotation sequence,
we perform multiple iterations of basic-shift, followed by
non-repetitive unidirectional iterations of the micro-rotations
corresponding to other shift indices, to minimize the number
of iterations and achieve adequate range of convergence.

A. Organization of Micro-Rotation Sequence
In the proposed scheme, we represent the rotation

angle “ ” as

 = n1. αs + n
n

i
si .

2

1



 n = n1 + n2

Where αs is the elementary angle corresponding to
the basic-shift, αsi are elementary angles for other shifts, n1

and n2 are non-negative integers and n represents the total
number of iterations. If we do not use any micro-rotation of
angle αs then n1 is zero, and n2 = n.  On the other hand, if the
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desired angle of rotation “ ” is a multiple of αs then n2 is
zero and n1 = n.

B. Defining the Elementary Angles
The elementary angles αs and αsi are given by αs = 2-

s and αsi = 2-si where, s is the basic-shift and si > s is the
shift for ith iteration. For basic-shift �= 2, we can find αsi =
7π/88 and for basic-shift =3, we can find αs = 7π/176. In
Table II, we list the decimal and (0, 16) fixed point binary
representation of the elementary angles corresponding to
different shifts.

C. Generalized Micro-Rotation Sequence Identification
The micro-rotations depending on the bit

representation of the desired rotation angle in radix-2 system
using most-significant-1 detector. For this we restrict the
maximum rotation angle to π/4 radians as the entire
coordinate space [0, 2π] can be mapped to the [0, π/4] using
octant symmetry of sine and cosine functions.

TABLE IIIII
PSEUDO CODE FOR GENERATING THE MICRO-ROTATION

SEQUENCE

Input: angle to be rotated ( i)
Begin
M=Most Significant-1 Location of  i

if (M = 15) then
α = 0.25 radians
shift, si = 2 and  i+1 =  i-α

Else
Shift, si = 16 – M
 i+1 =  i with  i[M = ‘0’

End

If the most-significant-1 location(M), of the rotation
angle “ ” is smaller than the basic-shift “s”, elementary
angle of the basic-shift would be used for the CORDIC
iteration. For a fixed word-length of N-bit, the shift (si) for
the elementary angle is given by Si = N - M

D. Number of Iterations to Have Desired RoC
We decide on a suitable value of “n” for realizing

rotations by angles in the range [0, π/4]. The basic-shift for
16-bit word-length is “2.854”. But the basic-shift should be
an integer, so we design the iterations for both “2” and “3”.
With basic-shift = 2 (αs = 7π/88) no more than three iterations
of αs are required; therefore, the maximum value of n1 is 3.
The iterations corresponding to n2 depend on the accuracy
requirements. With various values of n2 the accuracy varies
and is different for “x” and “y” coordinates.

In Fig. 2, we plot the error in the “y” coordinates
estimated using for the initial vector with coordinates “x=1”
and “y=1”, for n=7 and 8. We observe that no better bit error
position (BEP) is obtained for n=8 Therefore, to minimize the
number of iterations, we restrict the maximum value of “n” to

7. The error in the “x” coordinate is nearly of same
magnitude as that of “y” coordinate error.

Fig. 2. Error plot for varying n2 iterations.

Fig. 3. Error plot for varying basic-shift.

Fig. 4. Recursive architecture of the proposed CORDIC processor.

Similarly, for basic-shift = 3 (αs=7π/176), no more
than six iterations of αs are equired; therefore, n=10. In Fig. 3,
BEP for basic-shift = 2 and 3 are compared.

V. PROPOSED CORDIC ARCHITECTURE

The block diagram for the proposed CORDIC
architecture is shown in Fig. 4. It makes use of the same stage
for all the iterations for the coordinate calculations, as well as
for the generation of shift values. The structure of each stage
(shown in Fig. 5) consists of three computing blocks namely:
the 1) shift-value estimation; 2) coordinate calculation; and 3)
micro-rotation sequence generator.

The combinatorial circuit for the evaluation of
desired shift values is shown in Fig. 6; the coordinate
calculation is implemented according to (6); the
combinatorial circuit for generating the micro-rotation
sequence is shown in Fig. 7.
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Fig. 5. Block diagram for the stage.

Fig. 6. Combinatorial circuit for generating the shift values.

Fig. 7. Micro-rotation sequence generation.

Fig. 8. Dynamic power dissipation for the proposed architecture.

TABLE IVV
SLICE DELAY PRODUCT COMPARISON FOR DIFFERENT

APPROCHES

Design

No.
of

Slices
(A)

Max.
Freq.
MHz
(B)

Worst
Case
Iter.
(C)

Slice
Delay

Product
(A*C/B)

Max
Error
(%)

ALGO-I
[9]

186 54.35 10 34.2 0.79

ALGO-
II [9]

203 60.80 10 33.4 0.79

Scale-
Free [10]

945 52.54 15 269.85 -

Proposed 231 58.37 7 27.7 0.45

The number of iterations required in a CORDIC
processor decides the rollover count of the counter. The
rollover count is seven for basicshift =2 and ten for basic-
shift =3. The expiry of the counter signals the completion of a
CORDIC operation; depending on this signal, the multiplexer
either loads a new data-set (rotation angle, initial value of “x”
and “y”) to start a fresh CORDIC operation, or recycles the
output of the stage to begin a new iteration for the current
CORDIC operation. The input and output register files act as
latches for synchronization.

VI. FPGA IMPLEMENTATION

The proposed architecture is coded in Verilog and
synthesized using Xilinx ISE9.2i to be implemented in Xilinx
Spartan 2E (XC2S200EPQ208-6) device. Slice-delay-product
of the proposed architecture is compared with the existing
CORDIC designs in Table IV; where, all designs are
synthesized on Xilinx Spartan 2E XC2S200E device to
maintain uniformity. The power dissipation of the proposed
architecture for different clock frequencies is estimated by
Xilinx XPower tool, and plotted in Fig. 8.

VII. CONCLUSION

The proposed algorithm provides a scale-free
solution for realizing vector-rotations using CORDIC. The
order of Taylor series approximation is decided appropriately
by the proposed algorithm, not only to meet the accuracy
requirement but also to attain adequate range of convergence.
The generalized micro-rotation selection technique is
suggested to reduce the number of iterations for low latency
implementation. Moreover, a high speed most-significant-1
detection scheme obviates the complex search algorithms for
identifying the micro-rotations. The proposed CORDIC
processor has 17% lower slice-delay product with a penalty
of about 13% increased slice consumption on Xilinx Spartan
2E device.
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