
Deepak Jain et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 54

Software Testing In Research and Actual
Deepak Jain

#1
, Praveen Bhatt

 *2

Research Scholar, Department of Computer Science, JJT University

Jhunjhunun, Rajasthan India
1
deypak@gmail.com

*Faculty of Allied Science, SGI

Samalkha, Panipat, India
2
Praveen34592@rediffmail.com

Abstract-This paper will provide a compressive view of

Software Testing. The main aim of this paper is to put all

the pertinent issues of a cohesivecontext. In the vastness of

the field, each topic approaches and problems will only

briefly tackled with the proper reference .there is no

entire survey of software testing , but my intend to show

here that , how theoretical and technical problems are

challenge for a software tester and there are the large gap

between practice and the state of art.

Keywords— Software Testing, Software Quality

Assurance, Software Engineering.

I. Introduction

Testing by nature can never conclude anything

mathematically valid as its amount to taking a simple
and trying to infer a generally valid judgment on the

whole. To complicate things when the objects of testing

includes software, in making the inference we cannot

rely on any certain continuity property as in the testing

of physical system. We can work towards making the

sampling less and more systematic. We can try to

incorporate quantities, measurable notions within the

analysis of test results.

So we can say Testing is a challenging activity and

can greatly contribute to the engineering of quality
programs.

II. Software Testing

Definition1: Software testing consists of dynamic

verification of the behaviour of the program on a finite
Set of test cases, suitably selected from the usually

Infinite execution domain against the specified

expected behaviour1.

Dynamic: Dynamic means to explicitly specify that

testing implies executing the programs on valued

inputs. To be precise, the input value alone is not
always sufficient to determine a test, as system

behaviour generally depends on the system state.

Different from testing and complementary with it, are

static analysis-techniques, such as peer review and

inspection .formal verification techniques such as

model checker, data-flow analyser. All these

approaches are important, but the left outside the scope

of this paper. I mainly focus here the testing the

implementation.

Selected: Test criteria essentially differ in how they

selected the test suite. Tester should be constantly
aware the different techniques may yield largely

different effect. , also depending on context. How to

identify the most suitable selection criteria under given

condition is very complex problem. In practice risk

analysis techniques and in test engineering expertise are

applied.

Expected: It must be possible to decide whether the

observed outcomes of the program execution are

acceptable or not. Otherwise the testing would be

useless. The observed behaviour may be checked
against user’s expectation or against a specification.

III. Faults vs. Failure

Fault and Failure denotes with different notations.

When a test condition is executed and the response is
“fail”, the means that the program exposed as undesired

Deepak Jain et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 55

1This reference is from a chapter within the guide to the software engineering body of knowledge, providing and

overview.

Behaviour: properly this is called a failure. It can be

defined as deviation of the delivered service from the

function the program was intended for.

The originating cause of the failure is said a fault. A

fault may remain dormant long time, until it is activated

and bring the program to a state which, if propagated to

the observables output, can lead to a failure: this
immediate unstable state is indicated as error. Below

chain expresses a causality relationship.

FaultError Failure

IV. Test Selection

The problem of test case selection has been the

largely dominating topic in software testing research to

the extent that “ software testing ” is often take as a

synonymous for “ test case selection “ . An important

point is always keep in mind is that what makes a test a

“good” one does not have a unique answer. But it
change depending on context.

In general, a test criterion is a means of deciding

which a “good” set of test cases should be.

V. Selection criteria based on Code

Code based testing has been dominating trend in

software testing research during the late 70’s and the

80’s. One reason is certainly that in those years in

which formal approaches to specification were much

less mature and pursued than now. This criterion is
known as path based. They map each test input to a

unique path on the flow graph .the ideal and

unreachable target of code- based testing would be the

exhaustive coverage of all possible paths along the

program control flow. The basic test hypothesis is that ,

by executing a path once , potential faults related to it

will be revealed , i.e. it is assumed that every executing

a same path will either fail or succeed.

Code –based testing is, in which a family of criteria is

introduced, based on both control flow and data flow.

VI. Selection criteria based on specifications

In specification based testing, the code based

derived in general form the documentation relative to

program specifications. Depending on how these are

expressed, largely different techniques are possible.

Very early approaches was looked at input /output

relation of the program “black-box” and manually

derived equivalence classes , or the boundary value

conditions , or the cause –effect graphs. Lots of

researches have tried to automate the derivation of test

cases from formal or semi formal specifications.

VII. Other Criteria

There are lots of other test criteria has been proposed,

but the size limitation do not allow us to tackle them in

details. The other criteria can be Error guessing, or

mutation testing etc.

VIII. Selecting the Test cases is not only the Issue

There are other test related activities present technical

and conceptual difficulties that are underrepresented in

research like select tests, test outcome is acceptable or

not, impact of failure and finding its direct cause.

These activities have received marginal attention in

software testing research. One argument is that being

these issues technological in kind, in contrast with the

more theoretical and intuitive problem of test selection,

the approach pursued are specific to an application

context.

IX. Test Execution

As we discussed, if the code –based criteria is

followed, it provides us with entry-exit paths over the
graph model, the test input that execute the

corresponding programs paths need to be found. If a

specification based criteria relying on coverage of test

case is adopted, then the test cases are paths over the

corresponding to sequence of events, that are specified

at the abstraction level of the specification. To derive

concrete test cases, the labels of the specification

language must be translated into corresponding labels

at code level, and eventually into execution statements

to be launched on the GUI of the used test tool. The

testing task itself requires a large programming efforts
to able to test a piece of a large system, that we need

tosimulate the surrounding environment of the piece

under tests. This is done by developing ad hoc drivers

and stubs; some commercial test tool exists than can

facilitate these tasks.

Deepak Jain et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 56

X. Test Oracles

The important component of testing is oracles. A test is

meaning full only if it is possible to decide about its

outcome.

An oracle is any (mechanical or human) agent that
decides whether the program behaved correctly on a

given test. The oracle is specified to the output a reject

verdict if it observes a failure and approve otherwise.

Different approaches can be taken .suppose in a

scenario in which a limited number of test cases are

executed, sometimes even derived manually; the oracle

is tester himself/herself. Who can either inspect a

posterior the test log, or even decide a priori, during

test planning, the conditions that make a test successful

and the code these conditions into the employed test

driver.

In some cases, the oracle can be an earlier version of
the system that we are going to replace with the one

under test. A particular instance of this situation is

regression testing. , in which the test outcome is

compared with earlier version executions.. Generally

speaking an oracle is derived from a specification of the

expected behaviour.

XI. Analysis of Test Results

As I mentioned in Test cases selection that, the

researchers continuously strive for finding “good”

criteria. But what makes criteria better than other?

Effectiveness must be associated with a test case or an

entire suite, but beat effectiveness does not yield a
universal interpretation. Some people misconceive the

meaning of coverage measures and confuse coverage

with effectiveness. We have already mentioned that one

intuitive and diffuse practice is to count the number of

failures or faults detected. The test criterion that found

the highest number could be deemed the most useful.

Even this measure has drawbacks; as tests are gathered

and more and more faults are removed, what can we

infer about the resulting quality of the tested program?

For instance, if we continue testing and no new faults

are found for a while what does this imply? That the

program is “correct”, or the test is ineffective?

XII. The notation of Software Reliability

Software reliability is the probability that the software

will execute without the failure in a given environment

for a given period of time. Particularly, to assess the

software reliability “in a given environment”, this input

distribution should approximate as closely as possible
the operational distribution for that environment. The

extremesdefault of identifying an operational

distribution for software system is one of the arguments

brought by opponents of software reliability. However

the practical approach proposed is define even a course

operational profile by grouping different typologies of

users and functionalities have demonstrated great

effectiveness.

XIII. Keeping altogether in flawless process

There are several problems discussed so far , real big

challenge ahead is to work out a unified process within

which all these test tasks are gracefully complementing

each other , and testing as a whole is not an activity

detached from construction , but the two things ,

building and checking , become two face of same coin

, two seamlessly integrated activities.

XIV. Test Phases

Testing of a large system is organised into phases, i.e.

the testing task is portioned into a phased process,

addressing at each step the testing of a subsystem.

Integration testing refers to the testing of the

interactions between subsystems along system

composition. An incremental systematic approach
should be taken, as opposed to a big-bang approach.

The aim is to keep complexity under control and to

eventually arrive at the final stage of the system with

all the composing subsystem extensively tested. At

each stage test selection is closely related with the

object under test. Some white-box testing approaches

proposed to derive integration test cases based on the

call structure among modules and measure inter-

procedural coverage. In object oriented system,

integration test consist of interleaved sequence of

module paths and massages, and they are derived
considering the interaction pattern between objects, for

instance the colorations or the client-server hierarchy.

XV. Test Patterns

Practical instruments to the design of complex systems

are patterns. A design pattern is an abstract

descriptionof a recurring problem. Together with a
general arrangement of elements and procedures that

has proved to be useful to solve it. Patterns are always

been used by expert designers and engineers: they form

their cultural expertise. Symmetric to design pattern

comes the idea of identifying and logging interesting

and recurrent patterns in the testing of complex

Deepak Jain et al. / IJAIR Vol. 2 Issue 2 ISSN: 2278-7844

© 2013 IJAIR. ALL RIGHTS RESERVED 57

systems. Unfortunately there is not much work in this

sense. Certainly more research and empirical work

towards the definition of the test patterns is desirable.

XVI. Summary

We think, we discussed the general overview regarding
several complex facts .We discuss about the Test

selection , Test phase s , Test pattern , Fault and failure.

Etc. There is much room for automation in each of the

involved activities; the tester’s expertise remains

essential as much as a need for approximate solution

under constrained remains. Again Testing is a

challenging and important activity. Let me conclude

with the famous quotation from Knuth: Beware of bugs

in the above code; I have only proved it correct, not

tried it.

XVII. References

[1] Beth Gold-Bernstein and William Ruh. Enterprise

Integration: The Essential Guide to Integration
Solutions. Addison-Wesley, 2005.

[2] Collard, R. Test Design: Developing test cases from

use cases. Software Testing & Quality Engineering

Magazine, 1999. Vol. 1:4. pp. 30-37.

[3] D. Gelperin and B. Hetzel. The growth of software

testing.Commun. ACM, 31(6):687{695, 1988.

[4] Edsger W. Dijkstra – Notes on Structured

Programming

[5] E. Hiean;Rc-Mee;"Going Faster: Testing The Web

Application", IEEE Software, Mar. 2002, pp. 60- 65

[6] FilippoRicca and Paolo Tonella, “Analysis and

Testing of Web Applications”, IEEE, 2001

[7] Glass, R. L. 1998. ”Defining Quality Intuitively”,

IEEE Softw. 15, 3 (May. 1998), 103-104,107

[8] Goger S. Pressman, Software Engineering

APractioner’s Approach, McGraw-Hill, 2001

[9] Hong Zhu, Xudong He, “A Study of Integration

Testing and Software Regression at the Integration

Level”, 0-7695-1372-7/01 2001 IEEE

[10] HenrikBaerbak Christensen – Systematic Testing

should bot be a Topic in the Computer Science

Curriculum!Hong Zhu, Xudong He, “A Study of

Integration Testing and Software Regression at the

Integration Level”, 0-7695-1372-7/01 2001 IEEE

[11] James A. Whittaker – What Is Software Testing?

And Why Is It So Hard?

[12] Jerry ZeyuGao et al, Testing and Quality

Assurance for Component-Based Software, 2003

[13] John Watkins, Testing IT An Off-the-Shelf

Software Testing Process, 2004

[14] Kim H. Veltman, “Syntactic and Semantic

Interoperability: New Approaches to Knowledge and

the Semantic Web”, The New Review of Information

Networking, vol. 7, 2001

[15] Learning, Proceedings of 22nd Conference on

Software Engineering Education and Training, IEEE,

pp 279-281.

[16] MagielBruntink – Testability of Object-Oriented
Systems: a Metrics-based Approach

[17] Prowell, S. J. TML: a description language for

Markov chain usage models. Information and Software

Technology, 2000. Vol. 42:12. p. 825-833.

[18] Robert C. Martin – The Dependency Inversion

Principle

[19] Ricca, F. “Analysis, testing and Re-structuring of

Web applications” Proceedings of the 20th IEEE

International Conference on Software Maintenance
(ICSM’04), 2004 [27] Nasib S. Gill, “Factors affecting

Effective Software Quality Management Revisitied”,

[20] RituArora and Sanjay Goel (2009), Software

Engineering approach for teaching development of

Scalable Enterprise Applications, proceedings of 22nd

Conference on Software Engineering Education and

Training, IEEE, pp 105-112.

[21] Robinson, H. Finite state model-based testing on a

shoestring. International Conference on Software
Testing Analysis and Review, San Jose, California,

USA, 1999.

[22] S. Robertson. An early start to testing: How to test

requirements. Conference on Software Testing, 1996.

Thimbleby, H. The directed Chinese Postman Problem.

Software – Practice and Experience, 2003. Vol 33:11.

pp. 1081-1096.

