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Abstract: Multimedia applications, and in 

particular the encoding and decoding of standard 

image and video formats, are usually a typical 

target for Systems on Chip (SoC). The bi-

dimensional Discrete Cosine Transformation (2D-

DCT) is a commonly used frequency 

transformation in graphic compression 

algorithms. Many hardware implementations, 

adopting disparate algorithms, have been 

proposed for Field Programmable Gate Arrays 

(FPGA). These designs focus either on 

performance or area, and often do not succeed in 

balancing the two aspects. This paper presents two 

high performance FPGA architectures for the 2D 

DCT computation for Ultra High Definition video 

coding systems. Both architectures use Distributed 

Arithmetic to perform the necessary 

multiplications instead of traditional multipliers. 

The first architecture uses 105 clock cycles to 

transform an 8x8 block and reaches a rate of up 

to 206 samples per second at a 338.5 MHz 

frequency, while the second one requires 65 cycles 

for each 8x8 block and achieves a rate equal to 

252 samples per second at 256 MHz’s Both 

architectures have been implemented using 

VHDL. Virtex7 FPGA of Xilinx has been used for 

the realization of both implementations. 

Keywords—Video Coding, 2D DCT, Distributed 

Arithmetic, FPGA Implementation, VHDL. 

I. INTRODUCTION 

     High dynamic range (HDR) video and image 

transmission over digital communication channels 

is undergoing exponential growth. With the 

increasing demand for high-definition 

programming, there exists a strong need for 

efficient digital video coding (DVC) that provides 

high data compression ratios which in turn leads to 

better utilization of network resources. The 

H.264/AVC standard does not provide the required 
compression ratios for emerging capture and 

display technologies such as ultra high definition 

(UHD), multiview, and auto stereoscopy. To 

address such emerging needs, the Joint 

Collaborative Team on Video Coding (JCT-VC) 

has developed the successor for H.264/AVC, called 

High Efficiency Video Coding (HEVC). The 

HEVC standard aims at achieving a 50% reduction 

in data rate compared with its predecessors while 

maintaining low complexity computation. Video 

compression systems operating at high frequencies 

and resolutions require hardware capable of 

significant throughput with tolerable area and 

power requirements. Real-time video compression 

circuits having high numerical accuracy are needed 

for next generation video, coding systems, and 

retina displays.  

     The two-dimensional (2D) 8×8discrete cosine 

transform (DCT) is a fundamental operation in 

real-time video systems, which is adopted in 

compression standards, such as JPEG, MPEG-1, 

MPEG-2, H.261, H.263, H.264, and most 

recentlyH.265/HEVC. The DCT is the de facto 

standard in transform coding, with extensive 

applications in modern DVC standards, due to its 

superior energy compaction on par with the 

optimum Karhunen–Lo`eve transforms, achieved at 

reasonably low computational complexity. The 

circuit realization of the 2D 8 × 8 DCT affects 

noise, distortion, circuit area, and power 

consumption of such compression systems. The 2D 

DCT implementation is essentially dependent on 

the one-dimensional (1D) DCT. The 8-point 1D 

DCT requires multiplications by numbers in the 

form 𝑐[𝑛] = cos(𝑛𝜋/16), 𝑛 = 0, 1, . . . , 7. These 

constants impose implementation difficulties in 

terms of their machine representation, because they 

are irrational values. Fixed-point arithmetic DCT 

implementations usually employ rounding off to 

approximate such quantities, which introduces 
errors.  

     In this paper two efficient 2D DCT architectures 

are presented, capable to manage 8x8 image 

blocks. Both architectures use DA in order to 

improve the time performance. The architecture of 

2D DCT in was used as reference architecture. 

Although this architecture was optimized for low 

power applications and implemented in ASIC, 
there is no need for high level of throughput, since 

two high speeds FPGA architectures are 

implemented in this paper. 

2. REVIEW AND BACKGROUND 

      Here we will see different types of cosine 

transforms which are available for various 

applications. 
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Table1: Multiplicands required in the 8-point 

Chen’s fast DCT algorithm. 

 

2.1. HEVC Integer Cosine Transform: 

     The integer cosine transform (ICT) required in 

the HEVC specification is a scaled approximation 

of Chen’s fast algorithm for computing the 1D 

DCT. Since the computational architecture is based 

on a regular butterfly structure, the ICT has lower 

circuit complexity at the physical layer. However, 

the ICT algorithm is not optimal in terms of speed 

or accuracy [4, 20]. Despite such sub optimality, 
the ICT algorithm has the advantage of being 

extensible to larger transform sizes such as 32 × 

32 and 64 × 64, leading to its adoption in HEVC. 

2.2. 8-Point Chen’s Fast DCT Algorithm: 

     The fast algorithm proposed by Chen et al. for 

computing the 8-point DCT requires 26 additions 
and 12 multiplications. The seven different 

multiplicands employed in this algorithm are given 

in Table 1. The exact DCT coefficients can be 

obtained by scaling the output obtained from the 

butterfly structure given in by 4. In the suggested 

reference C++ software implementation [20], 

Chen’s algorithm was implemented in 16-bit 

arithmetic, using short variables to represent 

intermediate results. Suitable approximations for 

the irrational constants in the DCT are scaled by a 

factor of √ 2, leading to Table 1. In order to 

compute the 2DDCT, the 1D transform is applied 

twice: first in a row-wise manner, then column-
wisely, with a transposition operation in between. 

Hence, the errors that are introduced in the 

rounding operation after the row and column 

transform calculations propagate through the 2D 

DCT computation and are present as additive noise 

at the final quantizer stage. The additive noise 

injected within the 2D transformation algorithm 

can affect a visible impact on picture fidelity 

especially for low levels of compression.  

     The 2D DCT architecture uses the row–column 

distributed arithmetic version of the Chen fast DCT 

algorithm. The first step of the Chen algorithm is a 

factorization of the DCTII matrix such that the 

subsequent computation of the even indexed 

coefficients is fully separated from the computation 

of the odd indexed coefficients. The 1D DCT       
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coefficients Xk, k=0,1,…,7 for an 8-point input 

vector xn, n=0,1,…,7 can be expressed as follows: 

Where A= cos(𝜋/4), B= cos(𝜋/8), C= cos(𝜋/8), D= 

cos(𝜋 /16), E= cos( 3𝜋 /16), F= cos( 3𝜋 /16), G= 

cos(𝜋/16), 

The 2-D DCT (8 x 8 DCT) is implemented by the 
row-column decomposition technique. We first 

compute the 1-D DCT (8 x 1 DCT) of each column 

of the input data matrix, after appropriate rounding 

or truncation, the transpose of the resulting matrix, 

it is stored in an transpose buffer. We then compute 

another 1-D DCT (8 x 1 DCT) of each row of the 

transpose matrix to yield the desired 2-D DCT. A 

block diagram of the design is shown in Fig 1. 

 

 

 

Fig 1: 2D-DCT Architecture 

In addition, to allow the use a global 2D-DCT 

pipeline, a special transpose buffer must be 

designed, since the first DCT produces row results, 
and the second DCT needs column values as input. 

This memory should have ping pong1 features to 

permit to the first 1D architecture to write different 

values that could be read by the second 1D 

architecture. This leads to even more space 

occupation on FPGA. 

III. HARDWARE ARCHITECTURE 

     The hardware architecture of the 2D DCT is 

shown in Fig.2. The design has a 64-bit data input 

and 112-bit output. Each input coefficient is equal 

to 8 bits. So, the eight coefficients (64-bit) of each 

row are shifted into the register during the first 

clock cycle. In the next stage, the adders and 

subtractors perform the first butterflies. In order to 

keep full accuracy, the outputs of the butterflies 

should be 9 bits long. Then, the data are loaded 
into parallel-in serial-out registers that repackage 

the data into 4-bit addresses that serially feed the 

ROM and Accumulators, from RAC0 to RAC7, 

with MSB first. 

 

1D-DCT 

(8*1) 

Transpose 

buffer 

1D-DCT 

(8*1) 
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Fig. 2. The 8x8 2D DCT architecture 

                                                                                                           

A straightforward architecture of the RAC by using 

DA structure is depicted in Fig. 3. Although the 

serial inputs limit the performance of such a 

structure a better performance can be obtained by 

using more hardware resources.      

 

             

 

 

 

 

 

 

 

 

      Inputs       

 

 

Fig 3. Straight forword ROM Accumulator 

architecture. 

 

     Fig. 4 illustrates two bit-sum that can be 
computed at a time by duplicating the ROM and 

adder tree. The first ROM is used by even indexed 

input bits and the second one is used by odd 

indexed input bits. The odd bit partials are left 

shifted to properly weight the result and added to 

the even partials before accumulating the 

aggregate. Since two bits are taken at a time, the 

scaling accumulator has to shift the feedback by 

two bits on the left. The ROM is made 10-bit wide 

to accommodate for the largest sum without 

overflow. ROMs contain the sums of the constant 

coefficients, for all the possible serial input 
combinations as shown in Fig. 5. The adder that 

sums the odd and even partials is 10-bit and the 

accumulator adder is 20-bit long to accommodate 

for the continuously increasing operands due to the 

logical shifting in the feedback path. The results of 

the first RACs computations are 20-bit 2's-

complement and are rounded to 12-bit 2's-

complement before being stored in the transpose 

register. Actually, the results of the first RACs are 

the row 1D DCT. The resulted coefficients are 

taken in the order of X0, X2, X4, X6, X1, X3, X5, 

X7. Every 5 cycles, the final results within each 

RAC are computed. As it has been mentioned 
above, two bits per cycle are processed in the RAC. 

So, in order to balance the outputs of the 

butterflies, which are 9 bits long, a bit equal to zero 

is appended at the end of the butterflies’ outputs. 

This does not cost any inaccuracy because the 

value of the ROM zero address is equal to zero. 

 

 
Fig 4.  The proposed RAC architecture 

 

     The corresponding ROM structure that contains 

sums of all the constant coefficients, for all the 

possible serial input combinations are shown in the 

below figure 

 

R

O

M 
+/- 

R

E

G 

<<1 

International Journal of Advanced and Innovative Research (2278-7844) / # 254 / Volume 3 Issue 9

    © 2014 IJAIR. All Rights Reserved                                                                                           254



 
Fig. 5: the content of the ROM 

 

      The transpose register consists of eight 96-bit 

serial-input parallel-output registers and eight 8-to-

1 multiplexers. The architecture of the transpose 

register is depicted in Fig. 6. So, the coefficients 

that have been computed by the first RACs are 
rearranged in an ascending order and stored in each 

register. After 8 executions the transpose register 

has been filled with the DCT coefficients of the 

eight rows. Then, each register outputs its content 

in parallel and enables the eight multiplexers. 

During the first operation the multiplexers select 

the most significant byte from each register and 

feed the second 1D DCT with the first column. 

During the second operation, the multiplexers feed 

the second column and so on.  

     Then, a similar 1D DCT is applied on the eight 

columns. As shown in Fig. 1, in order to meet high 
levels of accuracy, the outputs of the butterflies are 

12 bits long and the outputs of the RACs are 14 bits 

long. 

 
Fig. 6. The Transpose Register Architecture 

 

The final results within each RAC are computed 

every 6 cycles. This architecture requires a 

maximum transpose register of 768 1-bit registers 

and parallelized row and column RAC stages. 
Additionally, this architecture needs 105 clock 

cycles in order to process an 8x8 image block. In 

order to increase the time performance of the 

architecture, a second option of the RAC 

architecture is proposed. Specifically, four bit-sums 

can be computed in parallel using four ROMs. This 

architecture is illustrated in Fig. 7 

.Fig. 7. Four ROM RAC Architecture 

 

     The first ROM is used by the even indexed 

input bits, the second one is used by odd indexed 

input bits, the third by every other even indexed 

and the fourth by every other odd indexed input 

bits. This RAC scheme reduces by half the 

execution cycles compared to the previous one, at 

the expense of an increase in hardware resources. 
This second architecture needs 65 clock cycles in 

order to process an 8x8 image block. 

 

IV. SYNTHESIS RESULTS 

 

     Initially, a behavioral model was developed that 

simulated the behavior of the 2D DCT algorithm. 

This model has been used in order to verify the 

correct functionality of the proposed architectures 

of the 2D DCT. The proposed architectures have 

been captured using VHDL. The VHDL codes are 

implemented and synthesized with the Xilinx ISE 

13.1 tool. The target FPGA device was 

XC7VX330T-3FFG1157. The measurements are 

focused on the design throughput and the 

consumed FPGA area resources. Table II presents 
the synthesis results of the proposed architectures. 

The proposed architecture that uses the RAC 
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structure with 2 ROMs is shown as 

2D_DCT_2ROM, while the proposed architecture 

that uses the RAC structure with 4 ROMs it was 

symbolized as 2D_DCT_4ROM. 
 

TABLE II. SYNTHESIS RESULTS 

FPGA 

Device 
XC7VX330T-3FFG1157 

FPGA 

Resources 
Architectures 

2D_DCT_2ROM 2D_DCT_4ROM 

Slice 

Registers 
1354 1110 

Slice LUT’s 1786 2021 
Freq (MHz) 338.5 256 

Bit rate 

(Samples/sec) 206 252 

 

     The 2D_DCT_2ROM architecture consumes 

less hardware resources (1786 slice LUT) and 

yields better clock frequency (338.5 MHz) as 

compared to 2D_DCT_4ROM architecture that 

consumes 2021 slice LUT and achieves a clock 
frequency up to 256 MHz The 2D_DCT_2ROM 

architecture needs 105 clock cycles to manage 64 

samples (an 8x8 image), which corresponds to a bit 

rate equal to 206 Samples per second. 

 

V. CONCLUSIONS 

 

     The 2-D DCT and 1D-DCT architectures which 

adopts algorithmic strength reduction technique to 

reduce the device utilization pulling the power 

consumption low have thus been designed. The 

DCT computation is performed with sufficiently 

high precision yielding an acceptable quality. Two 

high speed FPGA architectures for the 2D DCT 

computation are presented in this paper. Both 

architectures use Distributed Arithmetic in order to 
replace the multipliers that are needed by the DCT 

algorithm. In the 2D_DCT_2ROM architecture two 

ROMs are used in order to double the performance, 

while in the 2D_DCT_4ROM four ROMs are used 

to quadruple the performance. The synthesis results 

prove that both architectures are very good choices 

for applications of high time performance 

requirements. 

 

REFERENCES 

 
[1]. Enas Dhuhri Kusuma, Thomas Sri Widodo 

“FPGA Implementation of Pipelined 2D- DCT and 

Quantization Architecture for JPEG Image 

Compression” Proceedings of 978-1-4244-6716-

7/10/$26.00 ©2010 IEEE  

 

[2]. Vijay Kumar Sharma, K. K. Mahapatra and 

Umesh C. Pati “An Efficient Distributed 

Arithmetic based VLSI Architecture for DCT”  

 

[3]. Chidanandan, Bayoumi, M, “Area-Efficient 

NEDA Architecture for The 1-D DCT/IDCT” 

ICASSP 2006 Proceedings. 2006 IEEE 

International Conference.  

 

[4]. Zhenyu Liu Tughrul Arslan Ahmet T. Erdogan 
“A Novel Reconfigurable Low Power Distributed 

Arithmetic Architecture for Multimedia 

Applications” Proceedings of 1-4244-0630-

7/07/$20.00 C 2007 IEEE.  

 

[5]. S.Saravanan, Dr.Vidyacharan Bhaskar, 

P.T.Lee ,“A High Performance Parallel Distributed 

Arithmetic DCT Architecture for H.264 Video 

Compression” European Journal of Scientific 

Research ISSN 1450- 216X Vol.42 No.4 (2010), 

pp.558-564 EuroJournals Publishing, Inc. 2010. 

  
[6]. VLSI Digital Signal Processing Systems: 

Design And Implementation (Hardcover) By 

Keshab K Parhi  

 

[7]. Vijaya Prakash.A.M, K.S.Gurumurthy “A 

Novel VLSI Architecture for Digital Image 

Compression Using Discrete Cosine Transform and 

Quantization”, IJCSNS International Journal of 

Computer Science and Network Security, VOL.10 

No.9, September 2010 

 
[8] J. Lee and H. Kalva, “Video Coding 

Techniques and Standards”, In Furht B. (Ed.) 

Encyclopedia of Multimedia, Springer-Verlag 

Berlin Heidelberg, 2008. 

 

[9] T. Wiegand, G. J. Sullivan, G. Bjontegaard and 

A. Luthra, “Overview of the H.264/AVC Video 

Coding Standard”, IEEE Transactions on Circuits 

and Systems for Video Technology, Vol. 13, Issue 

7, pp. 560-576, July 2003. 

 

[10] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. 
Wiegand, “Overview of the High Efficiency Video 

Coding (HEVC) Standard”, IEEE Transactions on 

Circuits and Systems for Video Technology, Vol. 

22, No. 12, pp. 1649-1668, December 2012. 

 

[11] S. A. White, “Applications of Distributed 

Arithmetic to Digital Signal Processing: A Tutorial 

Review”, IEEE ASSP Magazine, Vol. 6, Issue. 3, 

pp. 4-19, July 1989. 

 

[12] T. Xanthopoulos, and A. P. Chandrakasan, “A 
Low-Power DCT Core Using Adaptive Bitwidth 

and Arithmetic Activity Exploiting Signal 

Correlations and Quantization”, IEEE Journal of 

Solid-State Circuits, Vol. 35, No. 5, pp. 740-750, 

May 2000. 

 

[13] W. H. Chen, C. H. Smith, and S. Fralick, “A 

Fast Computational Algorithm for the Discrete 

Cosine Transform,” IEEE Tranactions on 

Communications, vol. COM-25, pp. 1004–1009, 

September 1977. 

. 

International Journal of Advanced and Innovative Research (2278-7844) / # 256 / Volume 3 Issue 9

    © 2014 IJAIR. All Rights Reserved                                                                                           256


