
Speed Optimized 2D DCT Implementation for

High Compression Rate Applications
K.Santhosh Kumar

1
, B.N. Srinivasa Rao

2
,

1 Pursuing M.Tech in VLSID, Dept. of ECE, Avanthi Institute Of Engineering And Technology, Andhra

Pradesh, India
2 Asst. Professor, Dept. of ECE, Avanthi Institute Of Engineering And Technology, Andhra Pradesh, India,

karothu.santhosh@gmail.com, nagasrinu.b@gmail.com 2

Abstract: Multimedia applications, and in

particular the encoding and decoding of standard

image and video formats, are usually a typical

target for Systems on Chip (SoC). The bi-

dimensional Discrete Cosine Transformation (2D-

DCT) is a commonly used frequency

transformation in graphic compression

algorithms. Many hardware implementations,

adopting disparate algorithms, have been

proposed for Field Programmable Gate Arrays

(FPGA). These designs focus either on

performance or area, and often do not succeed in

balancing the two aspects. This paper presents two

high performance FPGA architectures for the 2D

DCT computation for Ultra High Definition video

coding systems. Both architectures use Distributed

Arithmetic to perform the necessary

multiplications instead of traditional multipliers.

The first architecture uses 105 clock cycles to

transform an 8x8 block and reaches a rate of up

to 206 samples per second at a 338.5 MHz

frequency, while the second one requires 65 cycles

for each 8x8 block and achieves a rate equal to

252 samples per second at 256 MHz’s Both

architectures have been implemented using

VHDL. Virtex7 FPGA of Xilinx has been used for

the realization of both implementations.

Keywords—Video Coding, 2D DCT, Distributed

Arithmetic, FPGA Implementation, VHDL.

I. INTRODUCTION

 High dynamic range (HDR) video and image

transmission over digital communication channels

is undergoing exponential growth. With the

increasing demand for high-definition

programming, there exists a strong need for

efficient digital video coding (DVC) that provides

high data compression ratios which in turn leads to

better utilization of network resources. The

H.264/AVC standard does not provide the required
compression ratios for emerging capture and

display technologies such as ultra high definition

(UHD), multiview, and auto stereoscopy. To

address such emerging needs, the Joint

Collaborative Team on Video Coding (JCT-VC)

has developed the successor for H.264/AVC, called

High Efficiency Video Coding (HEVC). The

HEVC standard aims at achieving a 50% reduction

in data rate compared with its predecessors while

maintaining low complexity computation. Video

compression systems operating at high frequencies

and resolutions require hardware capable of

significant throughput with tolerable area and

power requirements. Real-time video compression

circuits having high numerical accuracy are needed

for next generation video, coding systems, and

retina displays.

 The two-dimensional (2D) 8×8discrete cosine

transform (DCT) is a fundamental operation in

real-time video systems, which is adopted in

compression standards, such as JPEG, MPEG-1,

MPEG-2, H.261, H.263, H.264, and most

recentlyH.265/HEVC. The DCT is the de facto

standard in transform coding, with extensive

applications in modern DVC standards, due to its

superior energy compaction on par with the

optimum Karhunen–Lo`eve transforms, achieved at

reasonably low computational complexity. The

circuit realization of the 2D 8 × 8 DCT affects

noise, distortion, circuit area, and power

consumption of such compression systems. The 2D

DCT implementation is essentially dependent on

the one-dimensional (1D) DCT. The 8-point 1D

DCT requires multiplications by numbers in the

form 𝑐[𝑛] = cos(𝑛𝜋/16), 𝑛 = 0, 1, . . . , 7. These

constants impose implementation difficulties in

terms of their machine representation, because they

are irrational values. Fixed-point arithmetic DCT

implementations usually employ rounding off to

approximate such quantities, which introduces
errors.

 In this paper two efficient 2D DCT architectures

are presented, capable to manage 8x8 image

blocks. Both architectures use DA in order to

improve the time performance. The architecture of

2D DCT in was used as reference architecture.

Although this architecture was optimized for low

power applications and implemented in ASIC,
there is no need for high level of throughput, since

two high speeds FPGA architectures are

implemented in this paper.

2. REVIEW AND BACKGROUND

 Here we will see different types of cosine

transforms which are available for various

applications.

International Journal of Advanced and Innovative Research (2278-7844) / # 252 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 252

Table1: Multiplicands required in the 8-point

Chen’s fast DCT algorithm.

2.1. HEVC Integer Cosine Transform:

 The integer cosine transform (ICT) required in

the HEVC specification is a scaled approximation

of Chen’s fast algorithm for computing the 1D

DCT. Since the computational architecture is based

on a regular butterfly structure, the ICT has lower

circuit complexity at the physical layer. However,

the ICT algorithm is not optimal in terms of speed

or accuracy [4, 20]. Despite such sub optimality,
the ICT algorithm has the advantage of being

extensible to larger transform sizes such as 32 ×

32 and 64 × 64, leading to its adoption in HEVC.

2.2. 8-Point Chen’s Fast DCT Algorithm:

 The fast algorithm proposed by Chen et al. for

computing the 8-point DCT requires 26 additions
and 12 multiplications. The seven different

multiplicands employed in this algorithm are given

in Table 1. The exact DCT coefficients can be

obtained by scaling the output obtained from the

butterfly structure given in by 4. In the suggested

reference C++ software implementation [20],

Chen’s algorithm was implemented in 16-bit

arithmetic, using short variables to represent

intermediate results. Suitable approximations for

the irrational constants in the DCT are scaled by a

factor of √ 2, leading to Table 1. In order to

compute the 2DDCT, the 1D transform is applied

twice: first in a row-wise manner, then column-
wisely, with a transposition operation in between.

Hence, the errors that are introduced in the

rounding operation after the row and column

transform calculations propagate through the 2D

DCT computation and are present as additive noise

at the final quantizer stage. The additive noise

injected within the 2D transformation algorithm

can affect a visible impact on picture fidelity

especially for low levels of compression.

 The 2D DCT architecture uses the row–column

distributed arithmetic version of the Chen fast DCT

algorithm. The first step of the Chen algorithm is a

factorization of the DCTII matrix such that the

subsequent computation of the even indexed

coefficients is fully separated from the computation

of the odd indexed coefficients. The 1D DCT

𝑋0
𝑋2
𝑋4
𝑋6

 =

𝐴 𝐴 𝐴 𝐴
𝐵 𝐶 −𝐶 −𝐵
𝐴 −𝐴 −𝐴 𝐴
𝐶 −𝐵 −𝐵 𝐶

𝑥0 + 𝑥7
𝑥1 + 𝑥6
𝑥2 + 𝑥5
𝑥3 + 𝑥4

𝑋1
𝑋3
𝑋5
𝑋7

 =

𝐷 𝐸 𝐹 𝐺
𝐸 −𝐷 −𝐷 −𝐹
𝐹 −𝐺 𝐺 𝐸
𝐺 −𝐹 𝐸 −𝐷

𝑥0− 𝑥7
𝑥1− 𝑥6
𝑥2− 𝑥5
𝑥3− 𝑥4

coefficients Xk, k=0,1,…,7 for an 8-point input

vector xn, n=0,1,…,7 can be expressed as follows:

Where A= cos(𝜋/4), B= cos(𝜋/8), C= cos(𝜋/8), D=

cos(𝜋 /16), E= cos(3𝜋 /16), F= cos(3𝜋 /16), G=

cos(𝜋/16),

The 2-D DCT (8 x 8 DCT) is implemented by the
row-column decomposition technique. We first

compute the 1-D DCT (8 x 1 DCT) of each column

of the input data matrix, after appropriate rounding

or truncation, the transpose of the resulting matrix,

it is stored in an transpose buffer. We then compute

another 1-D DCT (8 x 1 DCT) of each row of the

transpose matrix to yield the desired 2-D DCT. A

block diagram of the design is shown in Fig 1.

Fig 1: 2D-DCT Architecture

In addition, to allow the use a global 2D-DCT

pipeline, a special transpose buffer must be

designed, since the first DCT produces row results,
and the second DCT needs column values as input.

This memory should have ping pong1 features to

permit to the first 1D architecture to write different

values that could be read by the second 1D

architecture. This leads to even more space

occupation on FPGA.

III. HARDWARE ARCHITECTURE

 The hardware architecture of the 2D DCT is

shown in Fig.2. The design has a 64-bit data input

and 112-bit output. Each input coefficient is equal

to 8 bits. So, the eight coefficients (64-bit) of each

row are shifted into the register during the first

clock cycle. In the next stage, the adders and

subtractors perform the first butterflies. In order to

keep full accuracy, the outputs of the butterflies

should be 9 bits long. Then, the data are loaded
into parallel-in serial-out registers that repackage

the data into 4-bit addresses that serially feed the

ROM and Accumulators, from RAC0 to RAC7,

with MSB first.

1D-DCT

(8*1)

Transpose

buffer

1D-DCT

(8*1)

International Journal of Advanced and Innovative Research (2278-7844) / # 253 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 253

Fig. 2. The 8x8 2D DCT architecture

A straightforward architecture of the RAC by using

DA structure is depicted in Fig. 3. Although the

serial inputs limit the performance of such a

structure a better performance can be obtained by

using more hardware resources.

 Inputs

Fig 3. Straight forword ROM Accumulator

architecture.

 Fig. 4 illustrates two bit-sum that can be
computed at a time by duplicating the ROM and

adder tree. The first ROM is used by even indexed

input bits and the second one is used by odd

indexed input bits. The odd bit partials are left

shifted to properly weight the result and added to

the even partials before accumulating the

aggregate. Since two bits are taken at a time, the

scaling accumulator has to shift the feedback by

two bits on the left. The ROM is made 10-bit wide

to accommodate for the largest sum without

overflow. ROMs contain the sums of the constant

coefficients, for all the possible serial input
combinations as shown in Fig. 5. The adder that

sums the odd and even partials is 10-bit and the

accumulator adder is 20-bit long to accommodate

for the continuously increasing operands due to the

logical shifting in the feedback path. The results of

the first RACs computations are 20-bit 2's-

complement and are rounded to 12-bit 2's-

complement before being stored in the transpose

register. Actually, the results of the first RACs are

the row 1D DCT. The resulted coefficients are

taken in the order of X0, X2, X4, X6, X1, X3, X5,

X7. Every 5 cycles, the final results within each

RAC are computed. As it has been mentioned
above, two bits per cycle are processed in the RAC.

So, in order to balance the outputs of the

butterflies, which are 9 bits long, a bit equal to zero

is appended at the end of the butterflies’ outputs.

This does not cost any inaccuracy because the

value of the ROM zero address is equal to zero.

Fig 4. The proposed RAC architecture

 The corresponding ROM structure that contains

sums of all the constant coefficients, for all the

possible serial input combinations are shown in the

below figure

R

O

M
+/-

R

E

G

<<1

International Journal of Advanced and Innovative Research (2278-7844) / # 254 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 254

Fig. 5: the content of the ROM

 The transpose register consists of eight 96-bit

serial-input parallel-output registers and eight 8-to-

1 multiplexers. The architecture of the transpose

register is depicted in Fig. 6. So, the coefficients

that have been computed by the first RACs are
rearranged in an ascending order and stored in each

register. After 8 executions the transpose register

has been filled with the DCT coefficients of the

eight rows. Then, each register outputs its content

in parallel and enables the eight multiplexers.

During the first operation the multiplexers select

the most significant byte from each register and

feed the second 1D DCT with the first column.

During the second operation, the multiplexers feed

the second column and so on.

 Then, a similar 1D DCT is applied on the eight

columns. As shown in Fig. 1, in order to meet high
levels of accuracy, the outputs of the butterflies are

12 bits long and the outputs of the RACs are 14 bits

long.

Fig. 6. The Transpose Register Architecture

The final results within each RAC are computed

every 6 cycles. This architecture requires a

maximum transpose register of 768 1-bit registers

and parallelized row and column RAC stages.
Additionally, this architecture needs 105 clock

cycles in order to process an 8x8 image block. In

order to increase the time performance of the

architecture, a second option of the RAC

architecture is proposed. Specifically, four bit-sums

can be computed in parallel using four ROMs. This

architecture is illustrated in Fig. 7

.Fig. 7. Four ROM RAC Architecture

 The first ROM is used by the even indexed

input bits, the second one is used by odd indexed

input bits, the third by every other even indexed

and the fourth by every other odd indexed input

bits. This RAC scheme reduces by half the

execution cycles compared to the previous one, at

the expense of an increase in hardware resources.
This second architecture needs 65 clock cycles in

order to process an 8x8 image block.

IV. SYNTHESIS RESULTS

 Initially, a behavioral model was developed that

simulated the behavior of the 2D DCT algorithm.

This model has been used in order to verify the

correct functionality of the proposed architectures

of the 2D DCT. The proposed architectures have

been captured using VHDL. The VHDL codes are

implemented and synthesized with the Xilinx ISE

13.1 tool. The target FPGA device was

XC7VX330T-3FFG1157. The measurements are

focused on the design throughput and the

consumed FPGA area resources. Table II presents
the synthesis results of the proposed architectures.

The proposed architecture that uses the RAC

International Journal of Advanced and Innovative Research (2278-7844) / # 255 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 255

structure with 2 ROMs is shown as

2D_DCT_2ROM, while the proposed architecture

that uses the RAC structure with 4 ROMs it was

symbolized as 2D_DCT_4ROM.

TABLE II. SYNTHESIS RESULTS

FPGA

Device
XC7VX330T-3FFG1157

FPGA

Resources
Architectures

2D_DCT_2ROM 2D_DCT_4ROM

Slice

Registers
1354 1110

Slice LUT’s 1786 2021
Freq (MHz) 338.5 256

Bit rate

(Samples/sec) 206 252

 The 2D_DCT_2ROM architecture consumes

less hardware resources (1786 slice LUT) and

yields better clock frequency (338.5 MHz) as

compared to 2D_DCT_4ROM architecture that

consumes 2021 slice LUT and achieves a clock
frequency up to 256 MHz The 2D_DCT_2ROM

architecture needs 105 clock cycles to manage 64

samples (an 8x8 image), which corresponds to a bit

rate equal to 206 Samples per second.

V. CONCLUSIONS

 The 2-D DCT and 1D-DCT architectures which

adopts algorithmic strength reduction technique to

reduce the device utilization pulling the power

consumption low have thus been designed. The

DCT computation is performed with sufficiently

high precision yielding an acceptable quality. Two

high speed FPGA architectures for the 2D DCT

computation are presented in this paper. Both

architectures use Distributed Arithmetic in order to
replace the multipliers that are needed by the DCT

algorithm. In the 2D_DCT_2ROM architecture two

ROMs are used in order to double the performance,

while in the 2D_DCT_4ROM four ROMs are used

to quadruple the performance. The synthesis results

prove that both architectures are very good choices

for applications of high time performance

requirements.

REFERENCES

[1]. Enas Dhuhri Kusuma, Thomas Sri Widodo

“FPGA Implementation of Pipelined 2D- DCT and

Quantization Architecture for JPEG Image

Compression” Proceedings of 978-1-4244-6716-

7/10/$26.00 ©2010 IEEE

[2]. Vijay Kumar Sharma, K. K. Mahapatra and

Umesh C. Pati “An Efficient Distributed

Arithmetic based VLSI Architecture for DCT”

[3]. Chidanandan, Bayoumi, M, “Area-Efficient

NEDA Architecture for The 1-D DCT/IDCT”

ICASSP 2006 Proceedings. 2006 IEEE

International Conference.

[4]. Zhenyu Liu Tughrul Arslan Ahmet T. Erdogan
“A Novel Reconfigurable Low Power Distributed

Arithmetic Architecture for Multimedia

Applications” Proceedings of 1-4244-0630-

7/07/$20.00 C 2007 IEEE.

[5]. S.Saravanan, Dr.Vidyacharan Bhaskar,

P.T.Lee ,“A High Performance Parallel Distributed

Arithmetic DCT Architecture for H.264 Video

Compression” European Journal of Scientific

Research ISSN 1450- 216X Vol.42 No.4 (2010),

pp.558-564 EuroJournals Publishing, Inc. 2010.

[6]. VLSI Digital Signal Processing Systems:

Design And Implementation (Hardcover) By

Keshab K Parhi

[7]. Vijaya Prakash.A.M, K.S.Gurumurthy “A

Novel VLSI Architecture for Digital Image

Compression Using Discrete Cosine Transform and

Quantization”, IJCSNS International Journal of

Computer Science and Network Security, VOL.10

No.9, September 2010

[8] J. Lee and H. Kalva, “Video Coding

Techniques and Standards”, In Furht B. (Ed.)

Encyclopedia of Multimedia, Springer-Verlag

Berlin Heidelberg, 2008.

[9] T. Wiegand, G. J. Sullivan, G. Bjontegaard and

A. Luthra, “Overview of the H.264/AVC Video

Coding Standard”, IEEE Transactions on Circuits

and Systems for Video Technology, Vol. 13, Issue

7, pp. 560-576, July 2003.

[10] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T.
Wiegand, “Overview of the High Efficiency Video

Coding (HEVC) Standard”, IEEE Transactions on

Circuits and Systems for Video Technology, Vol.

22, No. 12, pp. 1649-1668, December 2012.

[11] S. A. White, “Applications of Distributed

Arithmetic to Digital Signal Processing: A Tutorial

Review”, IEEE ASSP Magazine, Vol. 6, Issue. 3,

pp. 4-19, July 1989.

[12] T. Xanthopoulos, and A. P. Chandrakasan, “A
Low-Power DCT Core Using Adaptive Bitwidth

and Arithmetic Activity Exploiting Signal

Correlations and Quantization”, IEEE Journal of

Solid-State Circuits, Vol. 35, No. 5, pp. 740-750,

May 2000.

[13] W. H. Chen, C. H. Smith, and S. Fralick, “A

Fast Computational Algorithm for the Discrete

Cosine Transform,” IEEE Tranactions on

Communications, vol. COM-25, pp. 1004–1009,

September 1977.

.

International Journal of Advanced and Innovative Research (2278-7844) / # 256 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 256

