
EVALUATION OF SECURITY IN ANDROID

ANTI-MALWARE APPLICATIONS
R. Tamilarasi

#1
, B. Dharani Manoharan

*2

#
PG Scholar, Department of Computer Science and Engineering, Christian College of Engineering and Technology,

Dindigul, Tamilnadu - 624619, India.
tamilarasirobert@gmail.com

*Assistant Professor, Department of Computer science, Christian College of Engineering and Technology,

 Dindigul, Tamilnadu - 624619, India.
dharani18@gmail.com

Abstract— Mobile devices such as smart phones have gained

great popularity in response to vast repositories of applications.

Most of these applications are created by unknown developers

who may not operate in the user’s best interests, leading to

malware. Earlier work used DroidChameleon, the

DroidChameleon is a systematic framework with various

transformation techniques which is used to evaluate the anti-

malware products. Those transformations are classified as trivial

transformations, DSA-Detected by Static Analysis and NSA-Non-

Detected by Static Analysis. However comprehensive evaluation

using a much larger number of malware samples and anti-

malware tools are not performed. To deal with this, the proposed

system extends DroidChameleon with various detection

techniques such as Taint tracing, sensitive API monitoring and

Kernel-level monitoring for detecting malware in android. The

proposed system is experimentally evaluated the anti-malware

applications.

Keywords— Android,anti-malware tools, transformation attacks.

I. INTRODUCTION

Mobile phones are very popular among people today. The

most popular operating systems used in mobile phones are

Android, iPhone, and Windows mobile. This popularity of

using much apps especially in android mobile phone attracts

the malwares to attack the different kind of apps[7]. A

malware instance is a program that has malicious intent.

Examples of such programs include viruses, Trojans, and

worms. A malware detector is a system that attempts to

identify malware. A virus scanner uses signatures and other

heuristics to identify malware, and thus is an example of a

Malware detector [4].

In order to protect the mobile phones from various attacks and

malwares, many ant-malware products are introduced [7]. But

all anti-malware products are not fully secured and high

resistance against the Malware samples.

Evaluating anti-malware products of android based mobile

phones is a non-trivial issue, especially with the challenge that

there are a wide variety of smart phone operating system

available now-a-days[1][2]. The Android is a Linux based

operating system that runs java based applications. The

android anti-malwares are evaluated through various kinds of

transformation techniques.

The DroidChameleon techniques are used to appraise the

android anti-malware products [1][2]. The term transformation

denotes semantics preserving changes to a program. In the

system different types of transformations are applied to the

malware samples, Each malware samples should undergoes to

the transformations as a step by step process, those results are

collected as a next generation solution [1][2]. In addition to

this some of new techniques are introduced to improve the

performance of the evaluation technique by adding much

larger malware transofrmations. The tactical detection

technique includes Taint tracing, sensitive API monitoring and

Kernel-level monitoring.

The prototype of droidchameleon is used to evaluate fifteen

popular anti-malware products of android with various

transformation attacks and malware samples.

II. BUILDING AN ANDROID APPLICATION

An Android application is mainly written in Java source code.

The build process of an Android application is to compile and

package a Java source code project into an .apk file that can

run on a Smartphone device or emulator. We now summarize

the key steps of the build process as follows.[3]

1. Preparation: An Android project contains Java source code

(and possibly some other native code), as well as metadata

such as resources and programming interfaces. The build

process first converts the metadata information into Java code

or interfaces.

2. Compilation: All Java source code files as well as the

converted metadata are compiled together into .class files,

which contain Java bytecode.

3. Bytecode conversion: All Android applications run on the

Dalvik Virtual Machine (DVM), which is a runtime

environment similar to the Java Virtual Machine (JVM) but is

designed for mobile devices that generally have limited

hardware resources. The build process converts all .class files

into .dex files, which contain the Dalvik Executable bytecode.

4. Building: All resource files, including both non-compiled

and compiled files, as well as the .dex files are then packaged

(i.e., zipped) into a single .apk file.

5. Signing: The .apk file needs to be digitally signed before it

can be published in well-known sites (e.g., Google Market). It

is typical that the .apk file is signed with the application

International Journal of Advanced and Innovative Research (2278-7844) / # 198 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 198

developer’s private key, rather than by a centrally trusted

authority

6. Alignment: To optimize the performance of the Android

program (e.g., reducing memory usage), the .apk file can be

aligned along the byte boundaries with the zip align tool. Note

that some integrated development environment (IDE), such as

Eclipse with the ADT plug-in, will automatically zip align the

.apk file after signing the file with the developer’s private

key[3].

III. FRAMEWORK DESIGN OVERVIEW

The Droid Chameleon, a systematic framework is used to

evaluate the anti-malware tools by introducing various

transformation attacks and techniques and also increasing the

number of Malware samples. Each and every Malware

samples should undergo various transformation attacks step

by step while preserving their malicious behavior.

The transformations are classified as trivial transformations

and DSA, NSA.

TABLE-I

TRANSFORMATIONS
Code Technique

P Repack

A Disassemble &Assemble

RP Remote Package

EE Encrypt native exploit or

Payload

RI Remote Identifiers

ED Encode strings and array data

CR Recorder Code

CI Call Indirection

JN Insert Junk Code

CB Call Blocker

MF Message Filter

SB Safe Browsing

SP Sensitive API Monitoring

TT Taint Tracing

KM Kernel Level Monitoring

RF Rename Files

A. Trivial Transformation:

Trivial transformations are defined as those which does not

affect any code level changes.

1) Changing Package Name: The package name is unique to

each and every application. Those names are defined in

package’s Android Manifest. In the given malicious

application we change the package name to another name.

2) Disassembling and Reassembling: The compiled Dalvik

bytecode in classes.dex of the application package may be

disassembled and then reassembled back again. The various

items (classes, methods, strings, and so on) in a dex file may

be arranged or represented in more than one way and thus a

compiled program may be represented in different forms.

Signatures that match the whole classes.dex are beaten by this

transformation.

3) Repacking: Once repacked, applications are signed with

custom keys (the original developer keys are not available).

Detection signatures that match the developer keys or a

checksum of the entire application package are rendered

ineffective by this transformation.

B. Transformation Attacks Detectable by Static Analysis

(DSA):

All kinds of static analysis cannot be break by the application

of DSA transformations. For examples data flow are possible.

1) Taint Tracing: Taint tracing defines that it trace and tracks

privacy-sensitive information leakage. This is implemented by

slightly modified version of Taint Droid, an open-source,

high-performance taint-tracing system for Android.

2) Sensitive API monitoring: It monitors a few system APIs

for detecting possibly malicious functionality. The SMS API

is one of the most exploited API in Android. Malicious apps

use it to send text messages to premium rate numbers without

user’s awareness.

3) Kernel-level monitoring: It provides kernel-level tracking

to identify known root-exploits.

4) Identifier Renaming: The classes and methods and field

identifiers in the byte code can be removed.

5) Data Encoding: The dex files contain all types of strings

and the array data that are used in the code. These strings and

arrays are used to develop signatures against malware.

6) Call Indirections: The call indirection is the simple way to

manipulate call graph of the application to defeat automatic

matching. This transformation may be seen as trivial function

outlining.

7) Code Reordering: This transformation records the

instructions in the method of the program.

8) Junk Code Insertion: The junk code insertion has the code

sequences which are executed but do not affect the rest of the

program. Detections based on the analyzing instruction (or

opcode) sequences are defeated by the junk code insertion.

Junk code constitutes simple nop sequences or the most

sophisticated sequence and branch that actually have no

effects on the semantics.

9) Encrypting Payloads and Native Exploits: In Android,

native codes are usually made available as library accessed via

JNI. However, some malware such as Droid Dream also pack

the native code exploits meant to run from a single command

line in non-standard location in the application packages. All

those files are stored encrypted in the application package and

they can be decrypted at the runtime. The Malware Droid

Dream also carries payload application that can install once

the system compromised. These payloads are also be stored

encrypted.

9) Other Simple Transformations: There are some other

transformations as well, specific to Android. Debug

International Journal of Advanced and Innovative Research (2278-7844) / # 199 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 199

informations, such as source file names and local and

parameter variable name, and source line number may be

stripped off.

10) Composite Transformations: Any of the above

transformations are combined with one another to generate

stronger obfuscations. While compositions were not

commutative, anti-malware detection results should be

agnostic to the order of applications of transformations in all

cases discussed above.

TABLE-II

LIST OF ANTI-MALWARE PRODUCTS

S.No Anti-Malware

1) AVG

2) Symantec

3) Lookout

4) ESET

5) Dr.Web

6) Kaspersky

7) Trend M

8) ESTSoft

9) Zoner

10) Security Manager

11) Webroot

12) Avira

13) Mobile Security

C. Transformation Attacks Non-Detectable by Static Analysis

(NSA)

This transformation breaks all kinds of static analysis. The

transformation attacks non-detectable by static analysis are as

follow as.

1) Reflection: Java reflection API allows the program to

invoke a method by using the name of the methods. We may

convert any method call into a call to that method via

reflection.

2) Byte code Encryption: Code encryptions tries to make the

code unavailable for static analysis. The relevant piece of the

application code is stored in an encrypted form and is

decrypted at runtime via a decryption routine.

Bytecode encryption is accomplished by moving most of the

application in a separate dex file (packed as a jar) and storing

it in the application package in an encrypted form. When one

of the application components (such as an activity or a

service) is created, it first calls a decryption routine that

decrypts the dex file and loads it via a user defined class

loader. In Android, the DexClass Loader provides the

functionality to load arbitrary dex files. Following this

operation, calls can be made into the code in the newly loaded

dex file. Alternatively, one could define a custom class loader

that loads classes from a custom file format, possibly

containing encrypted classes. We note that classes which have

been defined as components need to be available in

classes.dex (one that is loaded by default) so that they are

available to the Android middleware in the default class

loader. These classes then act as wrappers for component

classes that have been moved to other dex files.

The Table I consists of list of transformation attacks and the

Table II consists of list of anti Malware products to be

evaluated [5].

IV. RELATED WORK

A. Evaluating Anti-malware Tools by ADAM:

ADAM, an automated system for evaluating the detection of

Android Malware. ADAM is an automated, generic and

extensible technique that evaluate the effectiveness of the

android anti malware through different transformation

techniques. ADAM can be extensible to support new

implementation of Malware transformations and detection

techniques.

Obfuscated Malware Detection:

Obfuscation resilient detection is based on the semantics

rather than syntac. The works of Christodorescu et al [6]

present one such technique. Christodorescu et el.[6] and

Fredrikson et al. attempt to generate semantics based

signatures by mining malicious behavior representations such

as data dependence graphs and information flow between

system calls.

V. CONCLUSION

The Droid Chameleon, Systematic framework is used to

evaluate 15 anti-malwares with various transformation attacks

which include taint tracing, sensitive API Monitoring and

kernel level Monitoring. Different Malware samples are used

to evaluate all anti-malware products and many succumb to

even trivial transformations not involving code-level changes.

 VI. REFERENCES

 [1] V. Rastogi, Y. Chen, and X. Jiang, “Catch me if you can: Evaluating

Android anti-malware against transformation attacks”, January 2014.

[2] V. Rastogi, Y. Chen, and X. Jiang, “Droid Chameleon: Evaluating

Android anti-malware against transformation attacks”, in Proc. ACM
ASIACCS, May 2013, pp. 329–334.

[3] M. Zheng and J. Lui, “ADAM: An automatic and extensible platform to

stress test Android anti-virus systems”, in Proc. DIMVA, Jul. 2012, pp. 1–20.

[4] M. Christodorescu, S. Jha, D. Song, and R. Bryant, “Semantics-aware

malware detection,” in Proc. IEEE Symp. Security Privacy, May 2005, pp.

32–46.

[5]AV Comparitive Test, Anti-Virus Comparitive Performance Test (AV

Products)-May 2014,www.av-comparitives.org.

[6] M. Christodorescu, S. Jha, “Testing malware detectors”, in Proc. ACM
SIGSOFT Int. Symp. Softw.Test. Anal., 2004, pp. 34–44.

[7] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
evolution”, in Proc. IEEE Symp. Security Privacy, May 2012, pp. 95–109.

[8] M. Christodorescu, and C. Kruegel, “Mining specifications of malicious
behavior”, in Proc. 6th Joint Meeting Eur.Softw. Eng. Conf., ACM SIGSOFT

Symp. Found. Softw. Eng., 2007,pp. 5–14.

[9] C. Kolbitsch, E. Kirda, X. Zhou, and X. Wang, “Effective and efficient

malware detection at the end host,” in Proc. 18th Conf. USENIX Security

Symp., 2009, pp. 351–366.

[10].DroidKungFu [Online].Available: http://www.csc.ncsu.edu/faculty/jiang/

International Journal of Advanced and Innovative Research (2278-7844) / # 200 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 200

DroidKungFu.html

[11]R. Whitwam.Circumventing Google’s Bouncer, Android’s Anti-Malware
System [Online].

[12]M. Zheng, and J. Lui, “ADAM: An automatic and extensible platform to
stress test Android anti-virus systems,” in Proc. DIMVA, Jul. 2012, pp. 1–20.

[13]C. Collberg, C. Thomborson, D. Low, “A taxonomy of obfuscating
transformations,” Dept. Comput. Sci., Univ. Auckland, Auckland, New

Zealand, Tech. Rep. 148, 1997.

 [14]S. B. Needleman, C. D. Wunsch, “A general method applicable to the

search for similarities in the amino acid sequence of two proteins.” J.

Molecular Biol., vol. 48, no. 3, pp. 443–453, Mar. 1970.

[15]T. F. Smith, M. S. Waterman, “Identification of common molecular

subsequences,” J. Molecular Biol., vol. 147, no. 1, pp. 195–197, 1981.

 [16]A. Agrawal and X. Huang, “Pairwise statistical significance of local

sequence alignment using multiple parameter sets and empirical justi- fication
of parameter set change penalty”, BMC Bioinformat., vol. 10,

 [17]A. Agrawal and X. Huang, “Pairwise statistical significance of local
sequence alignment using sequence-specific and position-specific sub-

stitution matrices”, IEEE/ACM Trans. Comput. Biol. Bioinformat., vol. 8, no.

1, pp. 194–205, Jan./Feb. 2011.

International Journal of Advanced and Innovative Research (2278-7844) / # 201 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 201

