
A Survey on Security and Performance of SOA

 via Event Exposure

G.Sasikala

#1
,A.Nirmal Kumar

*2

PG Scholar, Department of Computer Science and Engineering, Christian College of Engineering and Technology, Dindigul,

Tamilnadu - 624619, India.
1
sasiss10@gmail.com

* Assistant Professor, Department of Computer Science and Engineering, Christian College of Engineering and Technology,

Dindigul, Tamilnadu - 624619, India.
2
sa.nirmalkumar@gmail.com

Abstract— The Service-oriented applications are services usually

collected from various organizations. The details of

implementation on services are usually not visible to the service

clients, so as to protect the business interests of service providers.

This calls for a challenge when compared to white-box test

service-oriented applications because it is difficult to determine

accurately the test coverage of a service composition as a whole

as well as the difficulty to design test cases effectively. This paper

focuses on improving the performance of testing and to reduce

the delay incurred during testing. To assure the reliability of an

SOA application service, security is imposed only on the most

critical services of SOA application.

Index Terms— Web service composition, white-box testing, event

interface, gray-box testing.

I. INTRODUCTION

The service-oriented architecture (SOA) standard is a

widely adopted set of software engineering principles to help

manage the complexity of software development for

distributed activity applications[14],[15].Service-Oriented

Architecture, or SOA, encourages IT departments to switch

from application-centric view to a process-centric view.

Now, IT departments enjoy the freedom to combine business

services from various applications to support for business

processes using end-to-end delivery. IT departments can

upgrade or change applications without impacting other

applications because the integration mechanism of SOA

enables loosely coupled integration.

In SOA standard, service providers develop reusable

software components, publish them as Web services, and

register them in service registries. By composing selected

services from registries, service consumers develop composite

SOA applications across distributed, various and independent

organizations.

To guarantee the quality of SOA applications, integration

testing of service compositions is required before the

applications are released. Testing is a challenging task,

especially, when an SOA application integrates third-party

services from different organizations .On the one hand, white

box testing of a service composition requires implementation

details of every third-party service involved in the

composition to be available.

There are two main reasons for this (1) inability to

accurately determine test coverage as a whole and (2) the

complexity in design test cases effectively. Software

engineering is the study that deals with the application of

engineering to the design, development, and maintenance of

software. Software testing is an investigation carried out to

provide information to stakeholders regarding the quality of

the product or service being tested. Software testing also

provides an independent view of the software which allows

the business organizations to manage and understand the risks

associated with software implementation.

Testing activities must be carried out throughout the entire

SOA project life cycle the activities include design, analysis,

planning and execution. Traditional software testing focused

only on code-level testing that has evolved from Distributed

and Web Service architectures. For testing business logic

through the application's user interface Web application

testing was introduced, which has proved to be critical when

deploying new solutions.

The basic objective of testing is to identify failures of

software so that faults may be easily discovered and corrected.

The software testing often includes the examination of code

and executing that code in different environments and

conditions to check for defects or errors. The ultimate goal of

Service Oriented Architecture (SOA) is to develop new

components and applications .The different roles involved in

software testing scenario are manager, test analyst, test

designer, tester, automation developer, test lead and test

administrator.

The main components of SOA are 1) Service provider

2) Service consumer 3) Service registry. Each component can

also act as one of the two other components. For example, if a

service provider needs additional information then it can only

acquire it from another service, then in that case service

provider acts as a service consumer.

International Journal of Advanced and Innovative Research (2278-7844) / # 150 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 150

http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Software

 Discover Publish

 Invoke

 Request Response

Fig 1: Components of SOA

 In this paper ,I proposed a whitening test rather than

using white-box testing to improve the performance and

security.

As white-box testing focuses on individual functionality

which leads to delay and degraded performance whereas

whitening test focuses on events rather than functionality.

Whitening test provides security only to the most critical

events as and when required by the events. Whitening test also

has the added advantage of providing recommendations

stating which service is the best.

II. TESTING METHODS

 Software Testing is the process used for revealing the

defects in software. Testing is the group of procedures carried

out to evaluate some aspect of a piece of software. Recently

there are many methods available in software testing. The

methods used for static testing are reviews, walkthroughs, or

inspections, whereas dynamic testing refers to executing

programmed code with a given set of test cases. Static testing

deals with verification, whereas dynamic testing deals with

validation. Both types of testing works together to improve the

quality of software. The traditional methods of Software

testing are divided into two, they are white-box and black-box

testing. These two approaches describes how a test engineer

designs the test cases.

A. The white-box approach

 White-box testing is used to test internal structures

or workings of a program. Programming skills as well as a

perspective of the system, are used to design test cases in

case of white-box testing. To determine the appropriate

outputs the tester chooses the correct inputs to exercise

paths through the code. A similar concept is used for

testing nodes in a circuit, e.g. in-circuit testing

(ICT).Testing of the software at the system levels is

usually done at the unit level whereas white-box testing

can be done only at the unit. White-box testing can be used

to test paths within a unit, between units of path during

integration phase, and between subsystems during a

system–level test. Even though this method of test can be

used to uncover many faults or problems, it might not

identify missing requirements or unimplemented parts of

the specification.

 The various techniques used in white-box testing

include:1)API testing 2)Code coverage3)Fault injection

methods 4)Mutation testing methods5)Static testing

methods.

In unit testing, the single component is tested. the

main goal is to detect the functional and structural defects

in the software unit. In integration testing, several

components are tested as a group and it is performed to

test the component interaction. In system testing, the

system as a whole is tested to evaluate the attributes such

as usability, reliability and performance and also to check

the specifications or requirements. In user acceptance

testing, the software organization must show that the

software meets all the users requirements.

B .Block box approach

 Black-box testing considers the software as a "black

box", monitoring the functionality of the software without any

prior knowledge of internal implementation. The testers are

not aware of how the software does it or about its operation

they are only aware of what the software does. The different

methods involved in black-box testing are: equivalence

partitioning, boundary value analysis, all-pairs testing, state

transition tables, decision table testing, fuzzy testing, model-

based testing, use case testing, exploratory testing and

specification-based testing.

For testing the functionality of software with respect to the

applicable requirements a specification-based testing is used.

In case of Specification-based testing it usually requires

thorough study of the test cases that are to be provided to the

tester. The tester then verifies, the output value (or behaviour),

either is or is not the same as the expected value that is

specified in the test case that for a given input. Specifications

and requirements of the application are the building blocks of

test cases, i.e., what it is supposed to do and not how the

application does it. The tests can be functional or non-

functional, though usually it is considered as functional. Even

though specification-based testing is insufficient to protect

against complex or high-risk situations, it may be necessary to

assure correct functionality, No prior programming

knowledge is required which is the main drawback of the

black box testing.

B. Grey-box approach

 Grey-box testing as opposed to black-box testing

involves having prior knowledge of data structures internal to

the system and algorithms for the purpose of designing tests.

The tester does not have full access to the software's source

code. Changing input data and formatting its output do not

account for grey-box, since the input and output falls outside

the "black box" that is under test. While conducting

integration testing between two modules of code written by

Service

Registry

Service

Consumer
Service

Provider

International Journal of Advanced and Innovative Research (2278-7844) / # 151 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 151

http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Software_walkthrough
http://en.wikipedia.org/wiki/Software_inspection
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Software_verification
http://en.wikipedia.org/wiki/Software_validation
http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/In-circuit_test
http://en.wikipedia.org/wiki/System_testing
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Fault_injection
http://en.wikipedia.org/wiki/Mutation_testing
http://en.wikipedia.org/wiki/Static_testing
http://en.wikipedia.org/wiki/Equivalence_partitioning
http://en.wikipedia.org/wiki/Equivalence_partitioning
http://en.wikipedia.org/wiki/Boundary_value_analysis
http://en.wikipedia.org/wiki/All-pairs_testing
http://en.wikipedia.org/wiki/State_transition_table
http://en.wikipedia.org/wiki/State_transition_table
http://en.wikipedia.org/wiki/Decision_table
http://en.wikipedia.org/wiki/Fuzz_testing
http://en.wikipedia.org/wiki/Model-based_testing
http://en.wikipedia.org/wiki/Model-based_testing
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Exploratory_testing
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Functional_testing
http://en.wikipedia.org/wiki/Non-functional_testing
http://en.wikipedia.org/wiki/Non-functional_testing
http://en.wikipedia.org/wiki/Integration_testing

two different developers, where only the interfaces are

exposed for test that no prior programming knowledge is

required this distinction is important. Grey-box testing also

includes reverse engineering to determine instances, boundary

values or error messages.

 Grey-box testing techniques are:1)Matrix Testing

2)Regression testing 3)Pattern Testing 4)Orthogonal array

testing.

III. METHODOLOGY

 A state of a service is defined as a snapshot of its execution

at runtime. The execution of a service can be seen as a series

of transitions among its states. The transition from one state to

another is defined as a state change. For example, an online

shopping service transitions from the state the customer has

not been verified to the customer has been verified .

A. Coverage-equivalent Event Interface

 To make use of event introduction from services to support

white-box testing of service compositions. The service

providers need to summarize events related to test coverage. It

will derive their relationships and declare them in event

interfaces.

B. Coverage Reasoning

 Based on the event interfaces provided by service

providers service consumers can monitor the showing events

at runtime to determine test coverage. As mentioned in service

consumers can construct all the potentially possible

observations based on the coverage-equivalent event

interfaces from service providers. During testing service

consumers generate test cases to test service compositions and

pledge to the exposed events from involved services.

IV TECHNIQUES

A. Load Balancing

Load balancing can be defined as a networking method

used in computers for distributing workloads across multiple

computing resources. The resources can be computers, a

computer cluster, network links, central processing units or

disk drives. Load balancing works to optimize resource use by

maximizing throughput, minimizing response time, and

avoiding overload of any of the resources. Instead of using

single components with load balancing usage of multiple

components may increase reliability through redundancy.

Load balancing is provided by multilayer switch.

B. Load Balancer Features

 Hardware and software load balancers may constitute

various different features. The main concept of a load balancer

is to distribute incoming requests over a number of servers in

the cluster. Most of the following features are vendor specific:

1) Asymmetric load: A ratio of load is manually distributed to

some backend servers such that some servers have a greater

amount of the workload than others.

2) Priority activation: Standby servers can be brought online if

the number of servers falls below a certain number, or when

load gets too high.

 3) TCP offload: Each client accepts HTTP request, which is a

different TCP connection. HTTP/1.1 combines HTTP requests

from multiple clients into a single TCP socket.

4) TCP buffering: Load balancer gather buffer responses from

the server and this data is fed to the slow clients, allowing the

web server to release threads for other tasks faster than it.

5) Direct Server Return: It is an optional for asymmetrical

load distribution, where request and reply follow different

network paths.

6) Content filtering: Balancers arbitrarily modify traffic .

7) HTTP security: Some balancers remove identification

headers from HTTP responses, hides HTTP error pages, , and

encrypt cookies so that it cannot be manipulated by end users.

8) Client authentication: Before allowing users to access a

website the process authenticate users against different

authentication sources .

C. One Time Password

A one-time password (OTP) is said to be valid for

only one login session or transaction. OTPs is used to rectify

several disadvantages that are associated with passwords that

are used traditionally such as static passwords. The important

drawback that is addressed by OTPs is that, they are not

vulnerable to replay attacks in contrast to static passwords. A

potential intruder who has access to an OTP that is already in

use to connect to a service or to conduct a transaction will not

be able to modify it, since it will be no longer valid. One

shortcoming of OTP is that they are difficult to memorize by

human beings. Therefore it requires additional technology to

work.

Authentication-as-a-service providers deliver one-

time passwords by using various web-based methods. To

recognize pre-chosen categories from a grid of pictures

generated randomly is a practical example. One registering for

the first time on a website, the user chooses categories of

things which can be anything from the picture. Each time,

when the user logs into the website they are presented with

generated grid of alphanumeric characters overlaid on it. The

pictures that match with users pre-chosen categories are

identified and then the user enters the associated alphanumeric

characters to form a one-time access code.

International Journal of Advanced and Innovative Research (2278-7844) / # 152 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 152

http://en.wikipedia.org/wiki/Reverse_coding
http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Orthogonal_array_testing
http://en.wikipedia.org/wiki/Orthogonal_array_testing
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Redundancy_%28engineering%29
http://en.wikipedia.org/wiki/Multilayer_switch#Layer_4_Load_Balancer
http://en.wikipedia.org/wiki/Passwords
http://en.wikipedia.org/wiki/Replay_attack
http://en.wikipedia.org/wiki/Password

 Fig 2. SOA Testing

D. Security Testing

Security testing should be carried out throughout the

project test phases and not just when the system has been

delivered at the end of the project life cycle. To cover all

software security issues many organizations perform security

penetration testing at the very end of the life cycle.

Penetration testing is an authorized technique to detect the

security of a system using intruder and/or worm access

techniques. When Penetration testing is carried out at the end

of the project it leads to a significant amount of risk of not

only finding severe security bugs, but also delivering a system

that has an inadequate security design.

E. Software Performance Testing

To determine how a system or sub-system performs

with respect to responsiveness and stability, performance

testing is carried out. Performance testing can also be used

to investigate, measure, and verify other quality attributes

of the system.

V.DISCUSSION

In this paper, we model a service as a finite state

machine. In practice, services may be implemented in BPEL

and other languages. We can apply many existing work to

transform BPEL services into formal models, such as finite

state machines and process algebras to just name a few. Some

existing Web service standards (like OWL-S) provide such

semantics for services (e.g., the pre/post conditions).

A .Asynchronous communication

To ease the presentation and illustration of our approach,

we assume services communicate with each other using

synchronous communication. Our approach is also applicable

to asynchronous communication. To support asynchronous

communication, The queues can be introduced in to buffer the

asynchronous messages from partners.

B. Privacy

In our work, only necessary events are exposed to abstract

and reveal coverage-related internal state changes inside a

service. All other state changes inside a service and how

states are changed (i.e., by what tasks in the business logic)

remain invisible to service consumers.

C. Composite Web services

In a service composition, the involved services may be

composed of other services. The coverage-equivalent event

interface of a composite service should be derived based on

the event interfaces of its composed services.

VI RELATED WORK

Survey revealed many related approaches carried out in

many areas of study.

The first group proposed a framework for Service Oriented

Computing [3]which focuses on the basis of building software

by arranging independent and loosely coupled services.

Industry has given birth to several standards for specifying

and programming such kind of composite services. The

problems faced here are there is no much insight about the

conceptual kind of testing done and No work discusses

strategies for doing integration testing from orchestrations.

The second group focuses on framework for whitening soa

testing [2] in which it concentrates on a whitening approach

that will make web services more transparent with the

addition of an intermediate coverage service. In this paper it

performs a preliminary study to show its feasibility and

potential value using an instance of SOCT approach .Cost of

computation is more in this approach.

The third group focuses on BPEL (Business Process

Execution Language)[4] it acts as a de-facto standard. It

serves as a standard for web service orchestration that has

gained attention from researchers and industries. A semi-

formal flow language which deals with complex features such

as concurrency and hierarchy is called as BPEL. The

operational semantics for BPEL is WSA (Web Service

Automata).The drawback associated with this approach is

additional test coverage required for checking time and effort

of functionality.

The fourth group deals with some ideas for testing the

temporal behaviour of real-time systems [8]. The white-box

temporal testing which make use of evolutionary techniques to

detect system failures in reasonable time and little effort is

used in this approach. It results in degraded performance.

SOA

Performance
Security

Functionality Interoperability

Traditional

Testing

Tool

Web

services

Testing

Tool

In house

Testing

Tool

International Journal of Advanced and Innovative Research (2278-7844) / # 153 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 153

http://en.wikipedia.org/wiki/Software_performance_testing
http://en.wikipedia.org/wiki/Software_performance_testing

The fifth group focuses on a Service-oriented architectures

[7]which proposes loosely coupled interacting services as

building blocks for distributed applications. Negative test

cases are not tested to identify the absence of unintended

partners.

The sixth group focuses on a testing approach for SOAs [6]

in which a SOA’s BPEL business model with pre- and post-

condition contracts defining essential component traits, and

derive a suite of feasible test cases to be executed after

assessing its quality via corresponding coverage criteria.

Empirical results for large samples coverage becomes

infeasible.

The seventh group first discusses the various state-of-the-

art methods for testing SOA applications [9]. The proposed

testing architecture consists of several testing units which

include test engine, test code generator, test case generator,

test executer, and test monitor units. The proposed testing

architecture managed to use parallel agents to test

heterogeneous web services. Testing non-functional aspects of

soa applications are not investigated.

The eight group focuses on Testing Web applications

which is recently a challenging work which can greatly

benefit from test automation techniques. Ontology is used as

a means of test automation. Difficult to maximize the

automation of different activities involved in software testing

process.

CONCLUSION

White-box testing of service compositions is difficult

because service providers usually hide the service

implementation details due to business interests or isolation

concerns. This paper is based on event exposure from Web

services by a unique approach to white-box test service

compositions. By deriving coverage-equivalent event

interfaces from service implementations, events are defined

and exposed from services to accurately determine the test

coverage of a service composition at runtime. In this way,

service consumers can gain confidence on how adequately a

service composition has been tested. This paper also improves

the performance and security of testing as well as detects fake

websites.

REFERENCES

[1]. Chunyang Ye and Hans-Arno Jacobsen, Senior Member,

IEEE‖Whitening SOA Testing via Event Exposure‖ IEEE

transactions on software engineering, VOL. 39, NO. 10,

OCTOBER 2013.

[2]. C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti,

―Whitening SOA Testing,‖ Proc. Seventh Joint Meeting of the

European Software Eng. Conf. and the ACM SIGSOFT Symp.

The Foundations of Software Eng., pp. 161-170, 2009.

[3]. A. Bucchiarone, H. Melgratti, and F. Severoni, ―Testing Service

Composition,‖ Proc. Eighth Argentine Symp. Software Eng.,

2007.

[4]. Y. Zheng, J. Zhou, and P. Krause, ―An Automatic Test Case

Generation Framework for Web Services,‖ J. Software, vol. 2, no.

3, PP64-77, 2007.

[5]. Peter Dencker,and Rix Groenboom‖ Methods for Testing Web
Services‖.

[6]. Seema Jehan, Ingo Pill, and Franz Wotawa‖ Functional SOA

Testing Based on Constraints‖ 978-1-4673-6161-3/13 c 2013

IEEE.

[7]. K. Kaschner and N. Lohmann, ―Automatic Test Case Generation

for Interacting Services,‖ Proc. Int’l Conf. Service-Oriented

Comput-ing Workshops, pp. 66-78, 2008.

[8]. Noura Al Moubayed andAndreas Windisch‖ Temporal White-Box

Testing Using Evolutionary Algorithms‖.

[9]. Youssef Bassil‖ Distributed, Cross-Platform, and Regression
Testing Architecture for Service-Oriented Architecture‖ Advances

in Computer Science and its Applications (ACSA), ISSN: 2166-

2924, Vol. 1, No. 1, March 2012.
[10]. Prachet Bhuyan, Chandra Prakash Kashyap,Durga Prasad

Mohapatra‖ A Survey of Regression Testing in SOA‖

International Journal of Computer Applications (0975 – 8887)
Volume 44– No19, April 2012.

[11]. Antonia BertolinoAndrea Polini‖ SOA Test Governance: enabling

service integration testing across organization andtechnology

borders‖ IEEE International Conference

[12]. Y. Wang, X. Bai, J. Li, R. Huang,―Ontology-Based Test Case

Generation forTesting Web Services‖, ISADS, March2007.

[13]. X. Bai, W. Dong, W. Tsai, and Y. Chen, ―WSDL-Based

Automatic Test Case Generation for Web Services Testing,‖ Proc.

IEEE Int’l Workshop Service-Oriented System Eng., pp. 207-212,

2005

[14]. Ye and H.-A. Jacobsen, ―White-Box Testing of Service

Compositions via Event Interfaces,‖ technical report, Univ. of

Toronto, http://msrg.org/papers/Ye10b. 2010

[15]. G. Canfora and M. Di Penta, ―Testing Services and Service-

CentricSystems: Challenges and Opportunities,‖ IT Professional,

vol. 8,no. 2, pp. 10-17, Mar./Apr. 2006.

[16]. X. Fu, T. Bultan, and J. Su, ―Analysis of Interacting Bpel

WebServices,‖ Proc. 13th Int’l Conf. World Wide Web, pp. 621-

630, 2004.

International Journal of Advanced and Innovative Research (2278-7844) / # 154 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 154

http://msrg.org/papers/Ye10b.%202010

