

Analysis of Cyber-Physical System using FPGA-Based

Plant-on-Chip Platform

T.Murugajothi
Assistant Professor, PSNA College of Engineering & Technology, Tamilnadu, India

jothyece@gmail.com

Abstract— Digital control systems are traditionally designed

independent of their implementation platform, assuming constant

sensor sampling rates and processor response times. Applica-

tions are deployed to processors that are shared amongst control

and noncontrol tasks, to maximize resource utilization. This

potentially overlooks that computing mechanisms meant for

improving average CPU usage, such as cache, interrupts, and

task management through schedulers, contribute to

nondeterministic interference between tasks. This response time

jitter can result in reduced system stability, motivating further

study by both the controls and computing communities to

maximize CPU utilization, while maintaining physical system

stability needs. In this letter, we describe an field-programmable

gate array (FPGA)- based embedded software platform coupled

with a hardware plant emulator (as opposed to purely software-

based simulations or hardware-in-the-loop setups) that forms a

basis for safe and accu-rate analysis of cyber- physical systems.

We model and analyze an inverted pendulum to demonstrate that

our setup can provide a significantly more accurate

representation of a real system.
Index Terms—Cyber-physical systems, embedded systems,

field-programmable gate array (FPGA), hardware emulation,

plant-on-chip.
I. INTRODUCTION

Embedded systems and digital control theory have

inde-pendently developed into mature fields, despite the clear
connection between controllers and embedded platforms. Ini-
tially, each digital control loop was implemented on a
dedicated processor, thus maintaining a separation of concerns.
The de-mand for tighter system integration and the use of
economical commercial-off-the-shelf products has blurred this
separation [1]. In modern systems, the tasks running on the
processor un-knowingly compete for processor resources.
These resources, meant to improve average resource usage for
nonreal-time sys-tems, are becoming sources of
nondeterministic computation time or computation jitter.
Example causes include interrupts [1], branch misprediction
[8], cache misses [11], and task management through
operating systems [12]. These features limit the degree to
which time invariance can be guaranteed, and cause systems to
break control engineers‟ key assumption of constant sample
rates and processor response time [2]. Ulti-mately, control
loop robustness is greatly affected by this tran-sition from a
dedicated processor system to an environment of tasks
competing for resources [5]. Thus, a more holistic view is now
needed to develop and deploy controllers that take into account
cyber-architecture artifacts on a system‟s physical stability.

As a motivating example, Fig. 1 shows the timing response

of an inverted pendulum model as we vary the computational

delay (the time between receiving a sensor sample and sending

the response), while holding sensor sample rate constant. In

Fig. 1(a), a controller computing delay that is 15% of the state

sampling rate has negligible impact on the system‟s stability.

As the delay increases to 65% of the sample period [see Fig.

1(b)], some ringing in the control signal becomes apparent.

Progressing to a delay of 85% of the sample period [see Fig

1(c)] causes the plant to become less stable with oscillations

that are now more pronounced. It is interesting to note that the

state of the plant (i.e., cart position and pendulum angle) still

appears stable. A further increase in the computational delay

[see Fig. 1(d)] leads to loss of controller stability resulting in

an eventual fall for the pendulum.
Previous work has identified jitter in cyber-physical systems

(CPS) as a significant research challenge. The authors in [11]

worked on characterizing Linux for real-time applications and

found that the sources of jitter were implicit to the processor

and were not completely correctable through software. A de-

tailed analysis of branch- prediction schemes [8] concludes

that static branching schemes work better for real-time systems

than dynamic branch prediction. In [4], the authors compare

several scheduling methods and concluded that deadline

advancement was the most consistent, with minimal

degradation in perfor-mance of controllers as the number of

tasks increased and had relatively consistent low jitter.

Controls experts are developing toolflows, like TrueTime-

JitterBug, to evaluate the impact of a controller‟s response-

time jitter on closed-loop stability [5]. In [6], [9] the authors

have developed a set of stability criteria for closed-loop

systems in which the sample rate contains jitter. In [7], a

quantitative metric similar to the concept of phase margin is

proposed, called jitter margin, which is the upper-bound of

delay that a control loop can tolerate before going unstable. In

an approach closely related to ours, the delay and period of

control loops are used in a cost function, which is then treated

as a minimization problem [3], and later a convex optimization

problem [13]. A limitation of many of the previous approaches

is their reliance on analytical tools and simulations of CPS

which mask the jitter caused by hardware architectures. A

challenge in the development of embedded and cyber-physical

systems is the gap between the various involved disciplines,

like software and mechanical engineering. In a marketplace,

where rapid innovation is essential, engineers from all

disciplines need to be able to explore system designs

collaboratively, allocating responsibilities to software and

physical elements, and analyzing trade-offs between them.

Recent advances show that coupling disciplines by using co-

simulation, will allow disciplines to cooperate without

enforcing new tools or design methods. The ECS group

strongly participates to the CPS vision through research on

fault-tolerant distributed algorithms, dependable systems-on-

chip, and asynchronous digital design.

International Journal of Advanced and Innovative Research (2278-7844) / # 106 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 106

Fig. 1. Effect of computational delay on a digital control system.

With the sample period fixed at 15 ms, the delay is varied from 15%

(a) to 90% (d). At 65%, a ringing begins to appear in (b), which

becomes more pronounced at 85% (c). Finally, at 90% (d), the plant

remains stable while the controller con-tinuously oscillates.

In contrast, this letter presents the design and

implementation of a control systems emulation framework that

couples plant emulation hardware with an embedded

processor, together on a field-programmable gate array

(FPGA)-based platform. This hardware/software framework

allows us to more ac-curately study the interaction between an

actual processor and a plant -on-chip (PoC). Our experimental

results, using a state - space model of an inverted pendulum as

captured in the PoC hardware, indicate that this proposed

framework both safely and accurately captures the

nondeterministic effects of modern processor architecture on a

physical plant. Since the setup uses the same interfaces that

the actual system would use, once the PoC is replaced by the

real plant, the input and output jitter from sampling and

actuating are already accounted for in the platform. The PoC

could be integrated via on-chip or off-chip networking

interface to emulate plants being controlled over a network.

II. ARCHITECTURE
Fig. 2 illustrates our FPGA-based infrastructure for CPS anal-

ysis. The FPGA is configured to implement the three main

components: 1) an embedded processor (NIOS II) with

conventional architectural features that is capable of running a

modern oper-ating system (OS);

Fig. 2. Our experimental setup implemented on our in-house

reconfigurable platform, RAVI. Note and of the plant model.

2) a custom PoC emulator that implements a given model for the

system under test; and 3) a profiler module that collects

appropriate performance data and reports back to a host

workstation. Our in-house reconfigurable platform, the re-

configurable autonomous vehicle infrastructure (RAVI) board, is

also shown in Fig. 2. This small form factor (90 grams and 3.4”

3.4”) board was specifically designed and fabricated at Iowa State

University to promote the development of efficient control

systems for mobile autonomous vehicles, hosting an Al-tera

Cyclone III FPGA for deploying the computational stack, an

inertial measurement unit (IMU) for monitoring physical dy-

namics of vehicles, and other features that enable it to support a

wide range of autonomous vehicles and applications.
Our proposed dedicated hardware (see Fig. 3) emulates the

state- space model of the chosen physical plant. Our example

plant is an inverted pendulum from [10], where the state-vector,

 consists of four variables, the pendulum‟s angle and an-gular

rate, and its cart‟s position and velocity . is the input variable

that comes from the controller to stabilize the plant and is stored

in the “Control Input reg.” The previous state of is stored in the

“Old X RAM.” The feed-back matrix and input matrix are

constants and thus stored in “A ROM” and “B ROM.” The new

state of is calculated by the hard-ware, with the help of a finite

state machine (FSM) and internal timers, as follows. is

sequentially multiplied with the “B” ma-trix and the result stored

in “uB RAM.” Next, the dot products of with each row of is

sequentially calculated with the help of the accumulator and

stored in the “AX RAM.” Then, the addition of vectors and

 is performed, resulting in the new, updated state and stored

in the “Xnew RAM.” The processor may sample at any time

through the “Sample Reg.” A hardware interface is dedicated to

nonintrusive transmission of , and their respective time stamps

through the “UART Reg.” Other important evaluation metrics

like sample-to-actua-tion time delay and the energy consumed by

actuators are per-formed during post processing from the

recorded data.
We require a noise source to emulate a noisy environment

and test robustness in the same manner as JitterBug [5]. This

International Journal of Advanced and Innovative Research (2278-7844) / # 107 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 107

Fig. 3. Register Level architecture of the state-space based Plant-on-

Chip em-ulator.

is implemented with the „Dist ROM‟ which contains a sample

array of a white-noise signal similar to JitterBug‟s disturbance.

A value from the “Dist ROM” is periodically injected into the

system by adding it to the input before starting a state-

update. This emulates an external force being exerted on the

cart and can be enabled or disabled through software by an

application designer.
The current hardware utilization is fairly small with 2900

LUTs, 800 fl ip-flops, 32 DSP blocks, and 1 K of RAM/ROM.

With a 50 MHz clock source, the emulator up-dates its state

every 100 s, which is sufficient for emulating our example

inverted pendulum plant. The advantage of our setup is that the

states are periodically updated, independent of the processor

controlling the hardware emulator. This elim-inates the effects

software simulations have on the computer they are usually

running on (for example missing or late up-dates), especially

when that computer is running the control algorithm, as well.

The processor controlling this emulator cannot distinguish

between the actual plant or its emulation, as the interface is

unchanged and the hardware appears as an independent entity.

III. EXPERIMENTAL SETUP AND RESULTS

In evaluating our framework, we attempted a validation of the

PoC against known control system evaluation tools and stan-

dards. Control systems can be evaluated based on transient re-

sponse, energy consumption, or other cost functions. These met-

rics correlate with the amount of effort the controller exerts to

keep the system stable after receiving a change either in ref-

erence value, or when experiencing an external disturbance. We

shall now refer to this metric as . For Jitterbug, is an

“integration of square of error” [5], where error is the devia-tion

of a designer specified variable from zero. The PoC‟s is the

energy (Joules) spent by the actuator. A secondary in-terest was in

comparing the ‟s from JitterBug and the PoC. Method 1

describes our routine for characterizing system costs. We explored

the design space by varying sample period and computational

delay and measured the cost in JitterBug and the energy in our

setup to keep the system stable. The points where JitterBug‟s

plots trend to infinity (equivalent to the plateau re-gion of our

setup‟s plots) correspond to the unstable regions of

the system. To give a physical perspective, these regions

corre-spond to our pendulum example losing balance.
We conducted two sets of experiments. First, we attempted

to maintain the pendulum cart at a fixed location, given

various external disturbances. This can be done in JitterBug

and in our setup. Next, we tested our setup with a step-

response, which Jit-terBug does not permit. We performed a

pro filing of the relevant cost, as outlined in Method 1, and fed

this data into Matlab to create the following surface plots.
Fig. 4 gives a summary of the fi rst experiment‟s results. We

see common trends in both setups. As we increase the compu-

tational delay from 0% of the sample period to a full sample pe-

riod, the cost [see Fig. 4(a)] of keeping the system stable and the

amount of energy [see Fig. 4(b)] needed by the system to keep the

system stable increase in a similar fashion. Both setups show an

increase in cost and energy as the sample period of the con-troller

is increased. The region of instability is almost the same in both

setups, with the PoC setup showing a slightly smaller region. An

example point is where sample period is 15 ms and delay

percentage is 70%. JitterBug shows that the system will be

unstable whereas the PoC setup indicates that the system will be

stable, but will spend more energy to maintain stability. This dif-

ference is because the pattern and magnitude of JitterBug‟s ex-

ternal disturbance is unknown and an estimated pattern is used in

the PoC setup. The major difference between the setups is that

JitterBug predicts that the system will be stable when the sample

period is 20 ms and delay is roughly 40% or less. Since the PoC is

a more realistic setup and shows that a 20 ms sample period even

with no delay will be unstable, we can safely say that JitterBug‟s

prediction is less accurate.
While analyzing our setup‟s step response (see Fig. 5) to

dif-ferent combinations of sample period and delay, we can

refer back to Fig. 1 for additional clarity. Keeping the sample

period fixed to 15 ms, let us observe the impact of increasing

delay. At 15% delay, the system is very stable in the time

response plot [see Fig. 1(a)] and is in the dark-blue plain of

Fig. 5. As we increase delay, we start seeing a damp

oscillation in the con-troller signal begin to increase in Fig.

1(b) and (c) and the en-ergy increase and climb the cliff of the

surface plot of Fig. 5. At 95%, the system is unstable [see Fig.

1(d)] and the corre-sponding point on the surface plot is on the

plateau, further indi-cating instability. A JitterBug version of

this test is not possible as the reference value cannot be set by

a user to produce a step input.

International Journal of Advanced and Innovative Research (2278-7844) / # 108 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 108

Fig. 4. Surface plots of cost (a) and energy (b) while injecting disturbance in cart position . (a) JitterBug. (b) Plant-on-Chip.

Fig. 5. Characterization plot of PoC‟s step-response.

IV. CONCLUSION

We presented a method for analyzing Cyber-Physical

Systems using a hardware plant emulator we designed and
integrated with an embedded processor in an FPGA-based

plat-form. Our framework provides insight for embedded

designers into how computer architecture can infl uence

control loops. Though current simulation-based design tools

provide a good approximation of a system‟s robustness to

sample-period and delay, they work in environments and with

assumptions that the delay can be modeled as a probability

distribution function [4], [5]. Research in [8], [11], and [12]

shows this to be not realistic and that computer elements cause

nondeterministic time-varying delay and sample- period. With

an actual processor under test, our setup inherently contains

these nondeterministic sources of delay jitter and thus gives a

more accurate result, when characterizing a system‟s

robustness against sample period and delay variation.

In the future, we plan to control a plant -on-chip emulator

while sharing processor resources with other tasks, using a

real-time operating system (e.g., RT-Linux).

REFERENCES

[1] K.-E. Arzen and A. Cervin, “Control and embedded computing:

Survey of research directions,” presented at the World Conf. Int.
Federation Automic Contr. (IFAC), 2005.

[2] K. J. Astrom and B. Wittenmark, Comput.-Controlled Syst., 3rd ed.
Englewood Cliffs, NJ, USA: Prentice-Hall Inc., 1997.

[3] E. Bini and A. Cervin, “Delay-aware period assignment in control
sys-tems,” presented at the Real-Time Syst. Symp., 2008.

[4] G. Buttazzo and A. Cervin, “Comparative assessment and evaluation
of jitter control methods,” presented at the Int. Conf. Real-Time
Netw. Syst., 2007.

[5] A. Cervin, K.-E. Arzen, D. Henriksson, M. Lluesma, P. Balbastre, I.
Ripoll, and A. Crespo, “Control loop timing analysis using Truetime
and Jitterbug,” presented at the Int. Conf. Contr. Appl., 2006.

[6] A. Cervin, “Stability and worst-case performance analysis of sam-
pled-data control systems with input and output jitter,” presented at
the Amer. Contr. Conf., 2012.

[7] A. Cervin, B. Lincoln, J. Eker, K. Arzen, and G. Buttazzo, “The jitter
margin and its application in the design of real-time control systems,”
presented at the Int. Conf. Real-Time Embed. Comput. Syst. Appl.,
2004.

[8] J. Engblom, “Analysis of the execution time unpredictability caused
by dynamic branch prediction,” presented at the Real-Time Embed.
Technol. Appl. Symp., 2003.

[9] H. Fujioka, “Stability analysis of systems with aperiodic sample-and-
hold devices,” Automatica, 2009.

[10] K. Ogata, Modern Control Engineering, 5th ed. Upper Saddle River,
NJ, USA: Prentice Hall, 2009.

[11] F. Proctor, “Timing studies of real-time linux for control,” presented
at the Proc. Design Eng. Techn. Conf., 2001.

[12] F. M. Proctor and W. P. Shackleford, “Real-time operating system
timing jitter and its impact on motor control,” presented at the SPIE
Sensors Contr. Intell, Manufact. Conf,, 2001.

[13] Y. Wu, G. Buttazzo, E. Bini, and A. Cervin, “Parameter selection for

real-time controllers in resource-constrained systems,” IEEE Trans.

Ind. Inf., vol. 6, no. 4, pp. 610–620, Nov. 2010.

International Journal of Advanced and Innovative Research (2278-7844) / # 109 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 109

