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Abstract— Digital control systems are traditionally designed 

independent of their implementation platform, assuming constant 

sensor sampling rates and processor response times. Applica-

tions are deployed to processors that are shared amongst control 

and noncontrol tasks, to maximize resource utilization. This 

potentially overlooks that computing mechanisms meant for 

improving average CPU usage, such as cache, interrupts, and 

task management through schedulers, contribute to 

nondeterministic interference between tasks. This response time 

jitter can result in reduced system stability, motivating further 

study by both the controls and computing communities to 

maximize CPU utilization, while maintaining physical system 

stability needs. In this letter, we describe an field-programmable 

gate array (FPGA)- based embedded software platform coupled 

with a hardware plant emulator (as opposed to purely software-

based simulations or hardware-in-the-loop setups) that forms a 

basis for safe and accu-rate analysis of cyber- physical systems. 

We model and analyze an inverted pendulum to demonstrate that 

our setup can provide a significantly more accurate 

representation of a real system.  
Index Terms—Cyber-physical systems, embedded systems, 

field-programmable gate array (FPGA), hardware emulation, 

plant-on-chip. 
I. INTRODUCTION 

 
Embedded systems and digital control theory have 

inde-pendently developed into mature fields, despite the clear 
connection between controllers and embedded platforms. Ini-
tially, each digital control loop was implemented on a 
dedicated processor, thus maintaining a separation of concerns. 
The de-mand for tighter system integration and the use of 
economical commercial-off-the-shelf products has blurred this 
separation [1]. In modern systems, the tasks running on the 
processor un-knowingly compete for processor resources. 
These resources, meant to improve average resource usage for 
nonreal-time sys-tems, are becoming sources of 
nondeterministic computation time or computation jitter. 
Example causes include interrupts [1], branch misprediction 
[8], cache misses [11], and task management through 
operating systems [12]. These features limit the degree to 
which time invariance can be guaranteed, and cause systems to 
break control engineers‟ key assumption of constant sample 
rates and processor response time [2]. Ulti-mately, control 
loop robustness is greatly affected by this tran-sition from a 
dedicated processor system to an environment of tasks 
competing for resources [5]. Thus, a more holistic view is now 
needed to develop and deploy controllers that take into account 
cyber-architecture artifacts on a system‟s physical stability.  

As a motivating example, Fig. 1 shows the timing response 

of an inverted pendulum model as we vary the computational 

delay (the time between receiving a sensor sample and sending 

the response), while holding sensor sample rate constant. In 

Fig. 1(a), a controller computing delay that is 15% of the state 

sampling rate has negligible impact on the system‟s stability. 

As the delay increases to 65% of the sample period [see Fig. 

1(b)], some ringing in the control signal becomes apparent. 

Progressing to a delay of 85% of the sample period [see Fig 

1(c)] causes the plant to become less stable with oscillations 

that are now more pronounced. It is interesting to note that the 

state of the plant (i.e., cart position and pendulum angle) still 

appears stable. A further increase in the computational delay 

[see Fig. 1(d)] leads to loss of controller stability resulting in 

an eventual fall for the pendulum.  
Previous work has identified jitter in cyber-physical systems 

(CPS) as a significant research challenge. The authors in [11] 

worked on characterizing Linux for real-time applications and 

found that the sources of jitter were implicit to the processor 

and were not completely correctable through software. A de-

tailed analysis of branch- prediction schemes [8] concludes 

that static branching schemes work better for real-time systems 

than dynamic branch prediction. In [4], the authors compare 

several scheduling methods and concluded that deadline 

advancement was the most consistent, with minimal 

degradation in perfor-mance of controllers as the number of 

tasks increased and had relatively consistent low jitter. 

Controls experts are developing toolflows, like TrueTime-

JitterBug, to evaluate the impact of a controller‟s response-

time jitter on closed-loop stability [5]. In [6], [9] the authors 

have developed a set of stability criteria for closed-loop 

systems in which the sample rate contains jitter. In [7], a 

quantitative metric similar to the concept of phase margin is 

proposed, called jitter margin, which is the upper-bound of 

delay that a control loop can tolerate before going unstable. In 

an approach closely related to ours, the delay and period of 

control loops are used in a cost function, which is then treated 

as a minimization problem [3], and later a convex optimization 

problem [13]. A limitation of many of the previous approaches 

is their reliance on analytical tools and simulations of CPS 

which mask the jitter caused by hardware architectures.  A 

challenge in the development of embedded and cyber-physical 

systems is the gap between the various involved disciplines, 

like software and mechanical engineering. In a marketplace, 

where rapid innovation is essential, engineers from all 

disciplines need to be able to explore system designs 

collaboratively, allocating responsibilities to software and 

physical elements, and analyzing trade-offs between them. 

Recent advances show that coupling disciplines by using co-

simulation, will allow disciplines to cooperate without 

enforcing new tools or design methods. The ECS group 

strongly participates to the CPS vision through research on 

fault-tolerant distributed algorithms, dependable systems-on-

chip, and asynchronous digital design. 
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Fig. 1. Effect of computational delay on a digital control system. 

With the sample period fixed at 15 ms, the delay is varied from 15% 

(a) to 90% (d). At 65%, a ringing begins to appear in (b), which 

becomes more pronounced at 85% (c). Finally, at 90% (d), the plant 

remains stable while the controller con-tinuously oscillates. 

  
In contrast, this letter presents the design and 

implementation of a control systems emulation framework that 

couples plant emulation hardware with an embedded 

processor, together on a field-programmable gate array 

(FPGA)-based platform. This hardware/software framework 

allows us to more ac-curately study the interaction between an 

actual processor and a plant -on-chip (PoC). Our experimental 

results, using a state - space model of an inverted pendulum as 

captured in the PoC hardware, indicate that this proposed 

framework both safely and accurately captures the 

nondeterministic effects of modern processor architecture on a 

physical plant. Since the setup uses the same interfaces that 

the actual system would use, once the PoC is replaced by the 

real plant, the input and output jitter from sampling and 

actuating are already accounted for in the platform. The PoC 

could be integrated via on-chip or off-chip networking 

interface to emulate plants being controlled over a network. 
 

II. ARCHITECTURE  
Fig. 2 illustrates our FPGA-based infrastructure for CPS anal-

ysis. The FPGA is configured to implement the three main 

components: 1) an embedded processor (NIOS II) with 

conventional architectural features that is capable of running a 

modern oper-ating system (OS); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Our experimental setup implemented on our in-house 

reconfigurable platform, RAVI. Note  and  of the plant model. 

 

 
2) a custom PoC emulator that implements a given model for the 

system under test; and 3) a profiler module that collects 

appropriate performance data and reports back to a host 

workstation. Our in-house reconfigurable platform, the re-

configurable autonomous vehicle infrastructure (RAVI) board, is 

also shown in Fig. 2. This small form factor (90 grams and 3.4”  

3.4”) board was specifically designed and fabricated at Iowa State 

University to promote the development of efficient control 

systems for mobile autonomous vehicles, hosting an Al-tera 

Cyclone III FPGA for deploying the computational stack, an 

inertial measurement unit (IMU) for monitoring physical dy-

namics of vehicles, and other features that enable it to support a 

wide range of autonomous vehicles and applications.  
Our proposed dedicated hardware (see Fig. 3) emulates the 

state- space model of the chosen physical plant. Our example 

plant is an inverted pendulum from [10], where the state-vector, 

 consists of four variables, the pendulum‟s angle  and an-gular 

rate, and its cart‟s position  and velocity .  is the input variable 

that comes from the controller to stabilize the plant and is stored 

in the “Control Input reg.” The previous state of  is stored in the 

“Old X RAM.” The feed-back matrix  and input matrix  are 

constants and thus stored in “A ROM” and “B ROM.” The new 

state of  is calculated by the hard-ware, with the help of a finite 

state machine (FSM) and internal timers, as follows.  is 

sequentially multiplied with the “B” ma-trix and the result stored 

in “uB RAM.” Next, the dot products of  with each row of  is 

sequentially calculated with the help of the accumulator and 

stored in the “AX RAM.” Then, the addition of vectors  and 

 is performed, resulting in the new, updated state  and stored 

in the “Xnew RAM.” The processor may sample  at any time 

through the “Sample Reg.” A hardware interface is dedicated to 

nonintrusive transmission of , and their respective time stamps 

through the “UART Reg.” Other important evaluation metrics 

like sample-to-actua-tion time delay and the energy consumed by 

actuators are per-formed during post processing from the 

recorded data. 
We require a noise source to emulate a noisy environment 

and test robustness in the same manner as JitterBug [5]. This 
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Fig. 3. Register Level architecture of the state-space based Plant-on-

Chip em-ulator. 

 
is implemented with the „Dist ROM‟ which contains a sample 

array of a white-noise signal similar to JitterBug‟s disturbance. 

A value from the “Dist ROM” is periodically injected into the 

system by adding it to the input  before starting a state-

update. This emulates an external force being exerted on the 

cart and can be enabled or disabled through software by an 

application designer.  
The current hardware utilization is fairly small with 2900 

LUTs, 800 fl ip-flops, 32 DSP blocks, and 1 K of RAM/ROM. 

With a 50 MHz clock source, the emulator up-dates its state 

every 100 s, which is sufficient for emulating our example 

inverted pendulum plant. The advantage of our setup is that the 

states are periodically updated, independent of the processor 

controlling the hardware emulator. This elim-inates the effects 

software simulations have on the computer they are usually 

running on (for example missing or late up-dates), especially 

when that computer is running the control algorithm, as well. 

The processor controlling this emulator cannot distinguish 

between the actual plant or its emulation, as the interface is 

unchanged and the hardware appears as an independent entity. 

 
III. EXPERIMENTAL SETUP AND RESULTS 

 
In evaluating our framework, we attempted a validation of the 

PoC against known control system evaluation tools and stan-

dards. Control systems can be evaluated based on transient re-

sponse, energy consumption, or other cost functions. These met-

rics correlate with the amount of effort the controller exerts to 

keep the system stable after receiving a change either in ref-

erence value, or when experiencing an external disturbance. We 

shall now refer to this metric as . For Jitterbug,  is an 

“integration of square of error” [5], where error is the devia-tion 

of a designer specified variable from zero. The PoC‟s  is the 

energy (Joules) spent by the actuator. A secondary in-terest was in 

comparing the ‟s from JitterBug and the PoC. Method 1 

describes our routine for characterizing system costs. We explored 

the design space by varying sample period and computational 

delay and measured the cost in JitterBug and the energy in our 

setup to keep the system stable. The points where JitterBug‟s 

plots trend to infinity (equivalent to the plateau re-gion of our 

setup‟s plots) correspond to the unstable regions of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the system. To give a physical perspective, these regions 

corre-spond to our pendulum example losing balance.  
We conducted two sets of experiments. First, we attempted 

to maintain the pendulum cart at a fixed location, given 

various external disturbances. This can be done in JitterBug 

and in our setup. Next, we tested our setup with a step-

response, which Jit-terBug does not permit. We performed a 

pro filing of the relevant cost, as outlined in Method 1, and fed 

this data into Matlab to create the following surface plots.  
Fig. 4 gives a summary of the fi rst experiment‟s results. We 

see common trends in both setups. As we increase the compu-

tational delay from 0% of the sample period to a full sample pe-

riod, the cost [see Fig. 4(a)] of keeping the system stable and the 

amount of energy [see Fig. 4(b)] needed by the system to keep the 

system stable increase in a similar fashion. Both setups show an 

increase in cost and energy as the sample period of the con-troller 

is increased. The region of instability is almost the same in both 

setups, with the PoC setup showing a slightly smaller region. An 

example point is where sample period is 15 ms and delay 

percentage is 70%. JitterBug shows that the system will be 

unstable whereas the PoC setup indicates that the system will be 

stable, but will spend more energy to maintain stability. This dif-

ference is because the pattern and magnitude of JitterBug‟s ex-

ternal disturbance is unknown and an estimated pattern is used in 

the PoC setup. The major difference between the setups is that 

JitterBug predicts that the system will be stable when the sample 

period is 20 ms and delay is roughly 40% or less. Since the PoC is 

a more realistic setup and shows that a 20 ms sample period even 

with no delay will be unstable, we can safely say that JitterBug‟s 

prediction is less accurate.  
While analyzing our setup‟s step response (see Fig. 5) to 

dif-ferent combinations of sample period and delay, we can 

refer back to Fig. 1 for additional clarity. Keeping the sample 

period fixed to 15 ms, let us observe the impact of increasing 

delay. At 15% delay, the system is very stable in the time 

response plot [see Fig. 1(a)] and is in the dark-blue plain of 

Fig. 5. As we increase delay, we start seeing a damp 

oscillation in the con-troller signal begin to increase in Fig. 

1(b) and (c) and the en-ergy increase and climb the cliff of the 

surface plot of Fig. 5. At 95%, the system is unstable [see Fig. 

1(d)] and the corre-sponding point on the surface plot is on the 

plateau, further indi-cating instability. A JitterBug version of 

this test is not possible as the reference value cannot be set by 

a user to produce a step input. 
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Fig. 4.  Surface plots of cost (a) and energy (b) while injecting disturbance in cart position  . (a) JitterBug. (b) Plant-on-Chip. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.  Characterization plot of PoC‟s step-response. 

 

IV. CONCLUSION 
 

We presented a method for analyzing Cyber-Physical 

Systems using a hardware plant emulator we designed and 
integrated with an embedded processor in an FPGA-based 

plat-form. Our framework provides insight for embedded 

designers into how computer architecture can infl uence 

control loops. Though current simulation-based design tools 

provide a good approximation of a system‟s robustness to 

sample-period and delay, they work in environments and with 

assumptions that the delay can be modeled as a probability 

distribution function [4], [5]. Research in [8], [11], and [12] 

shows this to be not realistic and that computer elements cause 

nondeterministic time-varying delay and sample- period. With 

an actual processor under test, our setup inherently contains 

these nondeterministic sources of delay jitter and thus gives a 

more accurate result, when characterizing a system‟s 

robustness against sample period and delay variation. 

 

 
In the future, we plan to control a plant -on-chip emulator 

while sharing processor resources with other tasks, using a 

real-time operating system (e.g., RT-Linux). 
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