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Abstract—A multi-step scheme is proposed for the input 
quantization of message-passing decoders for low-density 

parity-check (LDPC) codes. The proposed scheme, which 

is applicable to both regular and irregular codes, lowers 
the error floor significantly at the cost of small increase in 

complexity, memory and latency. 
 

Index Terms—low-density parity-check (LDPC) codes, 

error floor, quantization, message-passing decoder, min-

sum. 

 

I. INTRODUCTION 
 

The application of low-density parity-check (LDPC) codes 

in systems requiring very low error rates, such as optical links 

and storage devices, is hampered by the problem of error 

floor. Error floor, generally defined as an abrupt change in the 

slope of the error rate curves versus signal-to-noise ratio 

(SNR), is known to be caused by certain graphical structures 

of the code’s Tanner graph, called trapping sets [1].  
In practice, iterative message-passing algorithms are imple-

mented in fixed-point. Quantization is thus required to map 

the real values at the output of the channel to a finite set of 

values at the input to the decoder. Zhao et al. [2] demonstrated 

that clipping as part of the quantization process creates an 

error floor and that for a given LDPC code, there exists an 

optimal clipping threshold which results in the best 

performance in the waterfall region. In [3], a dual quantization 

scheme was proposed to lower the error floor of belief 

propagation (sum-product) algorithm. For a fixed number of 

quantization bits, this was performed by using different 

quantization step sizes to represent messages at the output of 

variable nodes and check nodes. In [4], [5], Zhang and Siegel 

studied the error floor performance of message-passing 

algorithms with uni-form quantization in comparison with 

floating-point decoders and concluded that the decoder 

message saturation plays a key role in trapping the decoder in 

small trapping sets and in creating early error floors. To lower 

the error floor, they thus proposed a quasi-uniform quantizer 

(with a fixed small quantization step for small messages and 

exponentially larger step sizes for larger messages) that 

significantly increased the dynamic range of the quantizer.  
In this letter, a very simple scheme to lower the error floor 

of LDPC codes decoded by fixed-point message-passing 

decoders is proposed. The scheme is based on successive re-

quantization and re-decoding of the input blocks that cause the 

decoder to be trapped in a trapping set, until the decoding is 

successful or a maximum number of re-quantization/re-

decodings is reached. At each step, the re-quantization is 
simply performed by increasing the clipping threshold (dy-

namic range of the input quantizer) of a uniform quantizer  

 
 

while keeping the same number of quantization bits. The 

experiments with a variety of codes and decoding algorithms 

show that with a rather small number of re-quantization/re-

decodings, a large majority of the input blocks that originally 

failed the decoder will be successfully decoded. This proposed 

scheme is universal in the sense that it can be applied to both 

regular and irregular codes and to any message-passing 

decoder.  
Unlike the schemes of [3], [4] and [5], the modification to 

the quantization in the re-quantization process only affects the 

input to the decoder without affecting the internal modules of 

the decoder. It is important to note that while the idea of 

increasing the dynamic range of the quantizer to lower the 

error floor is already known [2], [3], [4], [5], the simple 

implementation of this idea without sacrificing the waterfall 

performance, as presented here, is novel. In [4], [5], the good 

waterfall performance is maintained by the embedded uniform 

quantizer within the quasi-uniform quantizer, and the 

improvement in error floor is achieved by the non-uniform 

component of quantization which allows for very large 

dynamic ranges. In this work, however, the quantization is 

uniform and the dynamic ranges are not nearly as large as 

those used in [4], [5]. In addition, the results presented in [4], 

[5] are limited to variable-regular LDPC codes. The scheme 

proposed here however, can be applied to any regular or 

irregular code. 

 
II. CHANNEL MODEL, DECODING ALGORITHMS AND  

PROPOSED SCHEME 
 

Here, the transmission of bits using binary phase-shift 

keying (BPSK) modulation over the additive white Gaussian 

noise (AWGN) channel with coherent detection is considered. 

Similar to [2], [4], [5], i consider a quantization scheme (q, 

cth), in which the received values are clipped symmetrically at 

a threshold ±cth, and then uniformly quantized in the range 

[−cth, cth]. There are 2
q
 − 1 quantization intervals, symmetric 

with respect to the origin, and each represented by q quan-

tization bits. Integer numbers −(2
q−1

 − 1), ..., (2
q−1

 − 1) are 

assigned to the quantization intervals. To demonstrate the 

effectiveness of the proposed scheme in reducing the error 

floor, we use min-sum (MS) and MS with unconditional 

correction [2] (also known as offset-MS) in the log-likelihood 

ratio (LLR) domain. Both algorithms are known to have a 

superior error floor performance compared to the sum-product 

algorithm [3].  
In the waterfall region, for each decoding algorithm, the 

pro-posed scheme quantizes the input using the optimal 

clipping threshold copt for the best waterfall performance [2]. 
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There is no re-quantization/re-decoding needed for the 

waterfall region.
1
 In the error floor region, the proposed 

scheme starts by quantizing the input using the clipping 

threshold copt. If the decoding is successful, in that, it 

converges to a codeword, then the decoder moves on to the 

next input block. If unsuc-cessful, the quantization/decoding 

is repeated, this time using c2 from the set C = {c1, c2, . . . , 

cm}, where c1 = copt and ci > copt for i = 2, . . . , m. This process 

of re-quantization/re-decoding will continue until the 

decoding is successful or the last (mth) re-quantization/re-

decoding fails. In the latter case, a failure is declared. 

Parameter m controls the tradeoff between the performance 

and the latency/complexity of the scheme. In general, larger m 

corresponds to better performance at the cost of increased 

latency and complexity. The motivation behind the increase of 

the clipping threshold in the error floor region is that at high 

SNR values, to help the decoder to recover from small 

trapping sets, one should allow for the larger input values to 

be properly represented without undue saturation (clipping) 

[3], [5]. Increasing the dynamic range of the quantizer while 

keeping the number of quantization bits fixed, will also reduce 

the magnitude of the integer values corresponding to the few 

bits that are highly affected by noise and have small LLR 

values with the wrong sign. This in turn helps with the 

correction of such bits in the decoding process. 

 

In this paper, Monte Carlo simulations were used to 

evaluate the performance of the proposed scheme.
2
 Without 

loss of generality, we assume copt < c2 < · · · < cm. For a fixed 

m, finding the optimal set of clipping thresholds in the set C is 

a hard problem. The solution would depend on the code, the 

decoding algorithm and the SNR, and has to be found among 

an infinitely large set of possibilities if clipping thresholds are 

assumed to be real numbers. If, however, i constrain the 

clipping thresholds to belong to a finite set A, and assume that 
c1 = copt, then our search will be limited to (  

|A|
  )  choices 

                                                                     m−1 
which would be manageable for small values of |A| and m. In 

the following, without loss of generality, we assume A to be 

the set of equi-distanced values copt + i , i = 1, . . . , |A|. To 

find the optimal set C \ {copt} for a given m at a given SNR, γ, 

we first find a sufficiently large set S of input blocks that trap 

the decoder by using Monte Carlo simulations with the 

clipping threshold copt at γ. The set S is then re-quantized/re-

decoded by different clipping thresholds, starting from copt+Δ 

all the way up to the maximum value copt+|A| by increments of 

Δ. Suppose the subset of S that is resolved by using the 

threshold copt + i , i = 1, . . . , |A|, is denoted by si. The optimal 

set C \ {copt} is then obtained by finding a collection of m − 1 

sets from {s1, . . . , s|A|} whose union has 

 
1
To distinguish between waterfall and error floor regions, the decoder can rely on the 

SNR value if that information is available at the receiver. At the absence of such 

information, the decoder can use the number of unsatisfied check equations to identify 

the two regions. In the error floor region, when the decoder is trapped, the number of 

unsatisfied check equations is often rather small. In the waterfall region however, if the 

decoder fails to converge to a codeword, the number of unsatisfied check equations is 

often lager. More details on the choice of the threshold τ on the number of unsatisfied 

check equations to distinguish between the two regions are given at the end of this 

section and in Section III. 
 

 

2
If the information about the dominant trapping sets of code/decoding algorithm is 

available, an alternate approach to evaluate (estimate) the performance of the proposed 

scheme in the error floor region is to use that information together with importance 

sampling techniques. 
 

 
the largest size. Suppose this collection is si1 , . . . , sim−1 . 

Then the optimal C\{copt} is the set {copt+ij : j = 1, . . . , m−1}. 

In the proposed scheme, parameter represents the resolution of 

the clipping thresholds, and |A| determines the maximum 

dynamic range of the quantization scheme. In general, higher 

resolution and larger maximum dynamic range (smaller values 

of and larger values of |A|) would improve the performance at 

the expense of more complex search for finding the optimal 

clipping thresholds. 
 
The search process can be simplified by selecting clipping 

thresholds of the set C \{copt } in a greedy fashion, i.e., the first 

element is selected to be the clipping threshold with maximum 

C \ {copt} is selected to be the threshold that can resolve the 

maximum number of blocks in S \ sj . The process continues 

until all the blocks in S are resolved or until m − 1 clipping 

thresholds (in addition to copt) are selected.  
This experiment shows that both the optimal and the greedy 

schemes, described above, are rather sensitive to the change in 

SNR. At the absence of a perfect knowledge of the SNR at the 

receiver, this would degrade the performance of the proposed 

scheme. To mitigate this problem, i have devised an even 

simpler scheme that assigns the clipping thresholds using ci = 

copt + (i − 1)δ, i = 2, . . . , m, where δ > 0 is selected to 

maximize the number of resolved inputs from the set S. This 

scheme, referred to as multi-step quantizer with equal 

increments performs slightly inferior to the greedy scheme but 

is generally more robust to the changes of SNR in the error 

floor region. The parameter δ depends mainly on the code and 

the decoding algorithm. 

 
It is important to note that the improvement in the error 

floor performance by the proposed scheme, in any of its 

incarnations, comes at the cost of a rather small increase in 

complexity, memory requirement and the latency of the 

decoder. The added memory is to store the non-quantized 

outputs of the coherent detector (to be used in possible 

subsequent attempts for re-quantization). An input buffer that 

accommodates a maximum of 16 bits per detector output 

would be sufficient to represent the outputs with the precision 

required for the implementation of the proposed scheme. The 

increased in latency is a result of re-quantization/re-decodings 

of trapped blocks. Since this operation is invoked rarely, the 

effect on average latency is negligible. In the worst-case 

scenario, the latency can increase by a factor of about m. 

Using techniques such as early trap detection [6], the worst-

case latency, however, can be reduced significantly. The 

added complexity is for the extra operations required for re-

quantization/re-decodings. This would include the complexity 

of the early trap detection module. 
 

To implement the early trap detection, we use the algorithm 

described in Section III.A of [6]. This algorithm is called 

within each iteration of the decoding algorithm after the 

number of unsatisfied check nodes |Ccur | is counted. One 

should note that the early trap detection module can also 

function as the unit responsible for distinction between the 

waterfall and error floor regions (see Footnote 1). For this, the 

value |Ccur| is compared with a predetermined threshold τ. If 

|Ccur| ≤ τ , then the early trap detection algorithm is evoked. 

International Journal of Advanced and Innovative Research (2278-7844) / # 97 / Volume 3 Issue 9

    © 2014 IJAIR. All Rights Reserved                                                                                           97



  

 
 10−4         

 

     10−8     
 

E
rr

o
r 

R
a

te
 

10
−6         

 

    
10

−9 
    

 

B
lo

c
k
 

10
−8        

 

          

 10−10         
 

 3 3.5 4 4.5 3.8 4 4.2 4.4 4.6 
 

   Eb/N0    E /N 
0  

 

   

(a)    b   

      (b)   
  

Fig. 1: Block error rate curves of the (1008,504) code of [7]. (a) MS (◦) and 

offset-MS ( ) with (-.-) and without (—) optimal multi-step quantizer (m = 5). 

(b) Optimal (_), greedy (+) and equal-increment ( ) schemes applied to offset-

MS in the error floor region: the scheme is optimized at each SNR (—); and 

the scheme optimized at 4.6 dB is applied to every SNR (-.-) 

 
TABLE I: Multiplicity of different classes of trapping sets after successive 
application of the re-quantization/re-decoding operations for the optimal 
scheme with m = 6 for the (1008,504) code at SNR=4.6 dB using MS 
 

Trapping 
copt= 5.5 c2= 5.6 c3= 8.3 c4= 11.3 c5= 19.3 c6= 21.9  

Set Class  

       

        

(6,2) 673 542 98 24 0 0 
 

        

(8,2) 240 208 49 19 4 0 
 

        

(9,3) 1 1 0 0 0 0 
 

        

(10,2) 52 45 9 0 0 0 
 

        

(12,2) 11 10 6 3 0 0 
 

        

(13,3) 2 0 0 0 0 0 
 

        

(14,2) 1 1 0 0 0 0 
 

        

(15,3) 1 0 0 0 0 0 
 

        

Oscillation 19 11 0 0 0 0 
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in the code’s Tanner graph has b check nodes of odd degree. 

In the second column, we have the multiplicity of different 

classes of trapping sets. The total number of trapping sets is 

|S| = 1000. In 19 out of 1000 cases, the decoder is trapped in 

oscillatory patterns. Using the sets si, i = 1, . . . , 200, i verify 

that U
200

i=1si = S, which means that the sequential 

application of the 200 clipping thresholds will resolve all the 

1000 block errors. I then search for the optimal set C \ copt  
Fig. 2: Block error rate curves of the (775,312) code of [8]. (a) MS (◦) and 

offset-MS ( ) with (-.-) and without (—) optimal multi-step quantizer (m = 5). 
(b) Optimal (_), greedy (+) and equal-increment ( ) schemes applied to offset-

MS in the error floor region: the scheme is optimized at each SNR (—); and 

the scheme optimized at 4 dB is applied to every SNR (-.-) 

 
Parameter τ is selected as the maximum number of unsatisfied 

check nodes in steady-state decoding iterations of the 1000 

blocks in S. 
 

III. SIMULATION RESULTS 
 

To analyze the performance of the proposed multi-step 

quantizers in the error floor region, a field pro-grammable 

gate array (FPGA) to emulate the MS and offset-MS decoders 

is used. In these simulations, the maximum number of 

iterations is set to 100. This experiment is started with two 

regular LDPC codes: a (1008, 504) code with variable and 

check degrees 3 and 6, respectively [7]; and a quasi-cyclic 

(775, 312) code constructed in [8]. The latter code is 

particularly designed to have a good error floor performance. 

For offset-MS, the correction factor is selected as 1. For the 

(1008, 504) code, the optimal clipping threshold in the 

waterfall region copt is found to be 5.5 and 4.0 for MS and 

offset-MS, respectively. These values for the (775, 312) code 

are found to be 1.5 and 3.5, respectively. For both codes and 

decoders, we use q = 5, and at each SNR, i continue the 

simulations until 1000 block errors occur (|S| = 1000). The 

performance of the two codes under MS and offset-MS with 

copt are reported in Figures 1(a) and 2(a), respectively. The 

figures show that for both codes and decoding algorithms, the 

error floor starts at SNR of about 3.25 dB.  
To devise the proposed schemes, i select = 0.1 and |A| = 

200. For the (1008, 504) code, the sets that trap MS with copt = 

5.5 at SNR = 4.6 dB are categorized in Table I. In the first 

column of this table, a pair (a, b) denotes a class of trapping 

sets with a variable nodes whose induced subgraph 

 
for different values of m starting from m = 2. This search 

indicates that m = 6 is the minimum value of m for which all 

the 1000 blocks in S can be resolved with the proposed multi-

step quantizer, i.e., there is no need to apply 200 re-

quantization/re-decodings, only five suffices. The correspond-

ing thresholds are 5.6, 8.3, 11.3, 19.3, 21.9. The size of the 

subset of S that can be resolved by the optimal scheme for 

values of m = 2, 3, 4 and 5 are respectively 947, 992, 998 and 

999. This indicates that by using only one re-quantization/re-

decoding (m = 2, c2 = 18.2), one can still improve the error 

floor significantly. In columns three to seven of Table I, i have 

shown how the multiplicity of different classes of trapping 

sets changes by successive application of the re-

quantization/re-decoding operations for the optimal scheme 

with m = 6. The table demonstrates that an increasingly larger 

portion of small trapping sets are eliminated by the proposed 

scheme until they are all resolved.  
The trends for offset-MS are similar to those of MS. For the 

(1008, 504) code at SNR = 4.6 dB, the maximum number of 

blocks in S that can be resolved with the proposed scheme 

with = 0.1 is 998. The smallest m that can achieve this 

performance is 8, and the sequence of thresh-olds are 4.0, 4.5, 

5.7, 6.6, 7.1, 7.2, 7.4, 7.5. With only one re-quantization/re-

decoding (m = 2, c2 = 6.7), 947 out of 1000 blocks are 

resolved.For the (775, 312) code and MS, at SNR = 4 dB, all the 

blocks in S can be resolved with the proposed scheme using 

thresholds 1.5, 1.6, 8.3, 10.5 and 12.5 (m = 5). With only one re-

quantization/re-decoding with c2 = 12.3, 983 out of 1000 blocks 

are resolved. For offset-MS at 4 dB, 996 of the blocks in S are 

resolved with m = 5 using thresholds 3.5, 5.6, 6.3, 6.7 and 7.1. 

Increasing m beyond 5 does not provide further improvement. 

For m = 2 with c2 = 6.7, 942 blocks are resolved.  
In Figures 1(a) and 2(a), i have plotted the performance of 

the optimal multi-step quantizer with m = 5 for MS and
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TABLE II: Latency Information of the Proposed Scheme for Trapped Cases 
 

Code SNR Decoding Corrected latency (number of iterations) 
 

      
 

 (dB) algorithm Blocks re-decodings initial decoding worst case 
 

        

(1008,504) 4.6 MS 999 9.43 10.4 42 
 

        

(1008,504) 4.6 offset-MS 994 10.75 11.3 45 
 

        

(775,312) 4 MS 1000 12.80 11.2 38 
 

        

(775,312) 4 offset-MS 996 9.61 11.4 43 
 

        

 
offset-MS for the two codes, respectively. The point with a 

downward arrow shows that the error is lower than the estimated 

value on the figure. This happens when all the blocks in S are 

resolved by the proposed scheme, and the error is over-estimated 

by assuming one block error (rather than zero). The figures show 

significant improvement in the error floor region for both codes 

and both decoding algorithms.  
To compare the optimal, greedy and equal-increment multi-

step quantizers, we consider the application of MS to the 

(1008, 504) code at 4.6 dB. We fix m = 5 and the resolution of 

quantization to = 0.1. For this scenario, the optimal scheme 

resolves 999 out of 1000 blocks. The greedy quantizer has 

thresholds 5.5, 9.9, 11.3, 18.2, 19.6 and resolves 996 of the 

trapped blocks. The equal-increment quantizer with m = 5 

performs the best with δ = 5 and resolves 994 of the blocks. In 

general, the optimal quantizer has the best performance, 

followed by the greedy and the equal-increment quantizers. 

To examine the sensitivity of the proposed quantizers to SNR, 

we consider the application of MS to the (1008, 504) code but 

at SNR = 3.8 dB. At this SNR, we find the best performing 

quantizer in each category (optimal, greedy and equal-

increment) for m = 5. These quantizers resolve 994, 992 and 

977 out of 1000 trapped blocks, respectively. Now, if we 

apply the best-performing quantizers devised for 4.6 dB at 3.8 

dB, the number of resolved blocks will decrease to 957, 980 

and 973, respectively. This corresponds to a change of about 

3.7%, 1.2% and 0.4%, respectively, indicating that the optimal 

quantizer is the most sensitive, followed by the greedy 

quantizer, and the least sensitive is the equal-increment 

quantizer. In Figures 1(b) and 2(b), we have reported the 

performance of each of the three schemes with offset-MS for 

two scenarios: the scheme is optimized at each SNR (full 

line), and the scheme optimized at the highest SNR is applied 

to every SNR (dash-dotted line). Similar trends as described 

above can be seen in these figures.  
To investigate how the proposed scheme affects the latency 

of the decoder, in Table II, we have reported the average 

number of iterations for all re-quantization/re-decodings of the 

input blocks in S under the optimal multi-step quantizer with 

m = 5 for both codes and both decoding algorithms at the 

highest SNR reported in Figures 1 and 2. As a reference, for 

each case, i have also reported the average number of 

iterations it takes to detect that the decoder with copt is trapped 

in a trapping set for the blocks in S. For both the initial trap 

detection and the trap detection during the re-decodings, 

I use the early trap detection Algorithm of [6]. Parameters 

(Nrep
max

, τ ) for the four cases of Table II are selected to be 

(3,11), (4,10), (3,18) and (4,11), respectively. In Table II, i 

 
have also reported the largest number of iterations for blocks 

in S as they are processed through the sequence of thresholds 

in C. This corresponds to the worst-case latency. These results 

indicate that, on average, the proposed scheme increases the 

latency of the trapped cases by a factor of about two. Since the 

decoder is rarely trapped, this has negligible effect on the 

overall average latency of the decoder. In the worst-case 

scenario, the latency is increased by a factor of about 4. (The 

latency results of Table II do not appear to be very sensitive to 

the change of SNR for the tested cases. For example, the 

results of MS for the (1008, 504) code at 3.8 dB are 10.20, 

12.5 and 46, respectively.) The size of the input buffer 

required to store the detector outputs for the (1008, 504) and 

(775, 312) codes is about 16 Kbits and 12 Kbits, respectively. 

 

As the final example, i consider the irregular (2304, 1152) 

code in IEEE 802.16e WiMAX standard. For the decoding, i 

choose offset-MS with q = 6, copt = 4.0 and correction factor 1. 

To implement this decoder in FPGA, i have used layered 

architecture [9] with the maximum number of iterations 20. 

An error floor starts at SNR of about 2.2 dB. I devise an 

optimal multi-step quantizer with m = 6 for this combination 

of code/decoder at 2.4 dB. This quantizer has clipping 

thresholds 4.0, 5.0, 5.7, 6.2, 7.3, 7.5, and is capable of 

resolving 991 out of 1000 blocks in S. Using this quantizer, 

the error floor at 2.4 dB, which was about 3 × 10
−6

, is thus 

lowered to about 2.7 × 10
−8

. In terms of the added latency for 

the trapped blocks, using the early trap detection, the average 

number of iterations for re-decodings is 11.02 compared to 

12.3 for the average number of iterations of the initial 

decoding. The largest number of iterations for trapped blocks 

is 39. 
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