

Automated vulnerability detection and prevention

reporting of php-based web applications using

PVRS and comparison between PVRS & RIPS
Santosh Naidu

#1
, Subba Raju KV

#2

#1
Computer Science and Engineering, MVGR College of Engineering, India

#2
Computer Science and Engineering, MVGR College of Engineering, India

1
amsan2015@gmail.com

2
srkakarlapudi@gmail.com

Abstract—Most of the web servers support some sort of scripting

environment today to deploy dynamic web applications. PHP is a

general-purpose server-side scripting language for creating

dynamic webpages. Most people learn PHP syntax quite quickly

and within short period of time they were able to write a script

that works using mainly through online tutorials, references and

books. The major problem is that most of the people forget the

security aspect of PHP that one must consider while writing PHP

based applications. Also mentioned are the common

programming mistakes done by developers when building PHP

web applications and necessary means to protect against such

vulnerabilities. Presented are the most common PHP web

application vulnerabilities and the necessary mechanisms

required to compose secure code by leveraging PHP’s unique

features.

So the paper here finally discusses about the tool PVRS which

was specially developed for vulnerability detection of php-based

web applications and also discusses in brief about the

vulnerabilities that are mentioned in the tool and finally

compares PVRS tool analysis results with the existing tool RIPS.

Keywords—PVRS, RIPS, vulnerability, SQL Injection, Cross-site

Scripting, HTTP Banner Disclosure, Direct Object References,

Scanner, Crawler

I. GENERAL TERMS

Security, Vulnerability Assessment

II. INTRODUCTION

Developing PHP applications is passably easy. People clench

the syntax rather quickly and within short period of time they

will be able to develop a script that works using sessions,

mentions & books.

One of the major problems is that most of the people forget

the most important and serious aspects that one should

consider while developing PHP based web-applications.

Almost every beginner forgets the security aspect of PHP.

Some people instantly do some malicious activities and are

seeking to do malicious activities on website. Those people

scrutinize the application for security defects and exploit these

holes. Several times the beginner doesn’t know that these

things would even be a problem and therefore it might be a

problem to fix the holes.

The purpose of this research is to identify common PHP web

application vulnerabilities & the necessary mechanisms to

write code by leveraging PHP’s unique features. As some

people learn best by illustrations, I use such illustration

vulnerable code and also live vulnerable websites to show

exploitation of vulnerabilities in PHP applications by using

PVRS (Php Vulnerability Reporting System).

III. RELATED WORK

 In 2007,(1) Ettore Merlo along with Dominic Letarte

and Giuliano Antoniol describes about the evolution

of security related vulnerabilities detected by

disseminating and combining CFG (Control Flow

Graph) along with security level DB accesses w.r.t

SQL Injection attacks.

Fig.1: Percentage of vulnerable DB accesses

 In 2010,(2) Johannes Dahse developed a open source

tool named RIPS which automates the process of

vulnerability detection of php based web applications

and implementation of RIPS and also the different

kind of problems while building a static source code

analysis tool for PHP.

International Journal of Advanced and Innovative Research (2278-7844) / # 1 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 1

Fig.2: Web Interface of RIPS with scan result & code

viewer

 In 2009,(3) Nuno Seixas, Jose Fonseca, Marco Vieira

and Henrique Madeira presented different web

security vulnerabilities from programming language

view in 20th International Symposium on Software

Reliability Engineering. And also described about

security patches are reported for a set of widely used

web applications written in different languages (Java,

C#, VB.NET) which are analysed in order to

understand the fault types that are responsible for the

vulnerabilities discovered (SQL injection and XSS).

Fig.3: Vulnerabilities fault type summary

 In 2011, (4) Francisco José Marques Vieira proposed

an architecture for vulnerability injection tool which

allows the intromission of vulnerabilities in a

program/script and is an extensible one that might

support addition of new vulnerabilities to inject.

 In 2013, (5) Jamang Jayeshbha Bhalabha along with

Amit Doegar and Poonam Saini have done some

modifications/extension to RIPS and proposed a new

one RIPS plus modification for injection tool and

also exploited some vulnerabilities in the latest

versions of well-known PHP applications.

 In 2012, (6) Francois Gauthier and Ettore Merlo

designed and developed a tool named ACMA

(Access Control Model Analyzer) which detects

access control vulnerabilities in PHP applications and

uses a lightweight model checker to detect the

privileges of the application.

Fig.4: ACMA architecture

 In 2012, (7) Maureen Doyle and James Walden have

done investigation on the evolution of vulnerabilities

in PHP web applications and also calculating

vulnerability densities.

Fig.5: Aggregate Vulnerabilities by type

 In 2013, (8) XIAOWEI LI and YUAN XUE

surveyed security aspects in web applications by

systemizing the existing techniques which might be

used for further research. Also described about input

validation vulnerabilities, session management

vulnerabilities and application logic vulnerabilities.

Fig.6: Overview of web application

IV. DISTINCTIVE WEB ATTACKS

1. Reflected Cross-Site Scripting

Cross-Site Scripting (XSS) is a vulnerability that

allows code to be injected into the web application

and viewed by users. The code may include HTML,

JavaScript, or other client-side languages. Reflected

XSS is a variation of XSS where user-controllable

data is displayed back to the user, in the HTTP

response of the request used for the attack, without

being validated correctly.

International Journal of Advanced and Innovative Research (2278-7844) / # 2 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 2

2. Stored Cross-Site Scripting

Cross-Site Scripting (XSS) is a vulnerability that

allows code to be injected into the web application

and viewed by other users. The code may include

HTML, JavaScript, or other client-side languages.

Stored XSS is a variation of XSS where user-

controllable data is stored and displayed to users at a

later stage. For example, product reviews or posts on

a forum.

3. Standard SQL Injection

SQL injection is a technique in which a user submits

SQL statements to a web application in an attempt to

exploit the database layer of the application. This can

be performed using a browser and entering the SQL

statements in a form and submitting the form.

4. Broken Authentication using SQL Injection

SQL injection is a technique in which a user submits

SQL statements to a web application in an attempt to

exploit the database layer of the application. This can

be performed using a browser and entering the SQL

statements in a form and submitting the form.The

login form can be bypassed using a form of SQL

Injection that manipulates the SQL query behind the

login form so that it will return one or more results.

Therefore, a malicious user can login to the web

application without the knowledge of valid

credentials.

5. Autocomplete enabled on sensitive fields

'Autocomplete occurs when the browser caches data,

such as a user’s username and password for an

application, so the user will not have to enter them

any time they access the application. Forms that

process sensitive data such as passwords should

always have autocomplete disabled. If an attacker

gains access to a user’s browser cache, he could

easily obtain the sensitive information which may be

saved in plaintext.

6. Direct Object References

'Exposing a reference to an internal implementation

object is known as a direct object reference. An

example of an internal implementation object would

be a file, directory, or database key. If the reference

can be edited by a user and sufficient control is not in

place, the user could manipulate the reference and

possibly access unauthorized resources. For example,

a URL like the following is exposing a direct object

reference:

http://www.example.com/displayFile.php?file=stats.t

xt. However, a malicious user could replace the file

name and re-request the URL again in order to try

and obtain system passwords. For example:

http://www.example.com/displayFile.php?file=/../../..

/../etc/passwd. Automated tools cannot typically

identify such defects as they cannot make out what

requires protection and what is secure or insecure.

Therefore, this result is only indicating that values

which look like direct object references are exposed

and they may be insecure.

7. Directory Listing Enabled

The contents of one or more directories can be

viewed by web users. Therefore, when a user

requests a directory such as

http://www.example.com/directoryname/ using their

browser, a list of all files and directories contained in

the requested directory will be displayed to the user.

This could possibly expose sensitive information

such as executables, text files, documentation, and

installation and configuration files. An attacker could

use these to map out the server’s directory structure

and identify potentially vulnerable files or

applications

8. HTTP Banner Disclosure

'The application discloses information about the

technologies used such as the web server, operating

system, cryptography tools, or programming

languages. An attacker could identify vulnerabilities

in these technologies and use them to exploit the

server, therefore, potentially exploiting the

application.

9. SSL Certificate not trusted

The web application is using a SSL certificate which

has been checked against Mozilla’s bundle of X.509

certificates of public Certificate Authorities and

cannot be found. Therefore, the certificate cannot be

validated and is not trusted.

10. Invalidated Redirects

The application is redirecting the user to a page

based on user-controllable data that is not validated

correctly. An example of this would be a link that

requests the following URL:

http://www.example.com?redirect.php?redirect=user

_can_replace_this.html. This could be edited to

http://www.example.com?redirect.php?redirect=http:

//www.malicous-site.com, and if not validated

correctly, it will redirect to the malicious site. Links

like the latter could then be emailed to potential

victims and they may click on them with no

hesitation as www.example.com may be a trusted

domain.

V. ABOUT PVRS

PVRS-Php Vulnerability Reporting System firstly crawls the

target website to shoot out all URLs belonging to the website.

It tests each URL for different vulnerabilities and generates

detailed report in PDF format, once the scan is complete.

PVRS is a best-in-class web scanning solution that rapidly and

accurately scans large, complex web sites and web

applications to undertake web-based vulnerabilities. PVRS

identifies application vulnerabilities as well as site exposure

risk, ranks threat priority, produces highly graphical, intuitive

HTML reports, and indicates site security posture by

vulnerabilities and threat level.

International Journal of Advanced and Innovative Research (2278-7844) / # 3 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 3

http://www.example.com/displayFile.php?file=/../../../../etc/passwd
http://www.example.com/displayFile.php?file=/../../../../etc/passwd

VI. IMPLEMENTATION & DEPLOYMENT OF PVRS

The whole code is written in php by taking help of some third

party software as mentioned below.

1. PHP Crawl (http://phpcrawl.cuab.de/)
Function: its main function is to search a website to

identify all URL’s belonging to that site.

2. PHP HTTP Protocol Client

(http://www.phpclasses.org/package/3-PHP-
HTTP-client-to-access-Web-site-pages.html)
Function: It provides the functionality of using HTTP

protocol in php code.

3. PHP Simple DOM Parser

(http://simplehtmldom.sourceforge.net/)
Function: It is one of the libraries which is useful for

parsing Document Object Models such as HTML

content in php

4. TCPDF (http://www.tcpdf.org/)
Function:It is one of the libraries which are useful for

generating reports in pdf format.

5. jQuery (http://jquery.com/)
Function: It is one of the java script’s libraries which

provides Java Scripts and Ajax functions.

Software requirements for PVRS are defined as follows:

 Windows XP, 2000 and higher versions or any linux

operating system

 XAMPP or WAMP servers to run the application

developed in php and to setup databases required

Installation of PVRS:

 Install XAMPP server which automatically installs

database of its own (phpmyadmin) on WINDOWS

XP, 2000 or higher versions or any linux operating

systems depending on the requirement of the user.

 Create a database named “webvulscan” using

phpmyadmin.

 Create four tables tests, test_results, users and

vulnerabilities respectively in the database

“webvulscan”

 Copy the whole project of PVRS into htdocs

folder of XAMPP to make project executable.

 Start XAMPP server and run

http://localhost/PVRS on your system.

VII. WORKING OF PVRS

Main functionality of PVRS is scanning of web

applications for vulnerabilities. PVRS automates the scanning

of applications and checks the above mentioned serious

vulnerabilities in the applications and generates the report

mentioning the risk level of the vulnerability in pie-chart and

also the recommendations or necessary precautions to

overcome those vulnerabilities. Below are some of the

screenshots of how the scanning process actually works. For

example test a sample sites http://schemaxitinfra.com/ and

http://gitam.edu/WelcomePage.aspx for scanning. First of all

register into the application and login with registered user

credentials and go to Scanner tab. In that tab, under Enter

URL box enter the website which we want to scan

(http://schemaxitinfra.com/) and

(http://gitam.edu/WelcomePage.aspx) respectively as shown

in Fig 7 for all the vulnerabilities mentioned with check boxes.

Check in boxes for the vulnerabilities to be scanned. By

default all the vulnerabilities will be checked in.

Fig 7: The above interface shows the the URL entered is ready

for scanning by checking all the check boxes for

vulnerabilities mentioned

Fig 8: Interface showing the scanning status after the scanning

process is initiated

Fig 9: Interface showing the scanning status with

vulnerabilities found till that time (http://schemaxitinfra.com/)

International Journal of Advanced and Innovative Research (2278-7844) / # 4 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 4

http://phpcrawl.cuab.de/
http://www.phpclasses.org/package/3-PHP-HTTP-client-to-access-Web-site-pages.html
http://www.phpclasses.org/package/3-PHP-HTTP-client-to-access-Web-site-pages.html
http://simplehtmldom.sourceforge.net/
http://www.tcpdf.org/
http://jquery.com/
http://schemaxitinfra.com/
http://gitam.edu/WelcomePage.aspx
http://schemaxitinfra.com/
http://gitam.edu/WelcomePage.aspx

Fig 10: Interface showing the scanning status after the

scanning process is completed (http://schemaxitinfra.com/)

Fig 11: Interface showing the scanning history along with pdf

reports (http://schemaxitinfra.com/)

Fig 12: Interface showing the scanning history of our example

website (http://schemaxitinfra.com/)

Fig 13: Pdf summary report of the scanning

(http://schemaxitinfra.com/)

Fig 14: Pdf report showing risk level along with pie-chart

representation (http://schemaxitinfra.com/)

Fig 15: Pdf report showing vulnerability description and

recommendations (http://schemaxitinfra.com/)

Fig 16: Interface showing the summary report for another

website (http://gitam.edu/WelcomePage.aspx)

Fig 17: Pdf report showing risk level along with pie-chart

representation (http://gitam.edu/WelcomePage.aspx)

Fig 18: Pdf report showing vulnerability description and

recommendations (http://gitam.edu/WelcomePage.aspx)

International Journal of Advanced and Innovative Research (2278-7844) / # 5 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 5

http://gitam.edu/WelcomePage.aspx
http://gitam.edu/WelcomePage.aspx
http://gitam.edu/WelcomePage.aspx

VIII. FEATURES OF PVRS

 Crawler: Searches a website to discover and show

all URLs belonging to the website.

 Scanner: Searches a website and skims all URLs

found for above mentioned vulnerabilities.

 Scan History: Permits a user to view or download

PDF reports of previous scans that they performed.

 Register: Permits a user to register with the

application of PVRS

 Login: Permits a user to login to the application of

PVRS

 Options: Permits a user to select which

vulnerabilities they wish to test for scanning.

 PDF Generation: PDF report is generated

dynamically once the scanning is completed.

 Report Delivery: The PDF report thus generated is

mailed to the user.

 Precise, comprehensive web application scanning

 Exposure prioritization by risk level

 Overall menace Analysis

 Web services support

IX. BENEFITS OF PVRS

 Gentle, precise scanning of websites and applications

 Less complicated, more effective redress

 Machine-driven assessment process

 Increased web security and protection

 Fast, flexible deployment

 Unparalleled service and support

X. RECOMMENDATIONS TO THE VULNERABILITIES IN PVRS

1. Reflected Cross-Site Scripting

This can be high risk vulnerability and can be

underestimated. Mitigating this vulnerability uses a

two-fold approach. Ensure all user-controllable data

is validated after it is inputted and again before it is

outputted to users. Blacklisting is an approach which

consists of checking the input data for malicious

characters but a more effective approach is

whitelisting. Whitelisting consists of only allowing

certain characters to be submitted. For example

checking if data submitted is alphanumeric and

rejecting the request if it is not. You can use an

approach like this after data is submitted and then

perform a similar approach before data is outputted

to the user.

2. Stored Cross-Site Scripting

This is high risk vulnerability. Mitigating this

vulnerability uses a two-fold approach. Ensure all

user-controllable data is validated before it is stored

and again before it is outputted to users. Blacklisting

is an approach which consists of checking the input

data for malicious characters but a more effective

approach is whitelisting. Whitelisting consists of

only allowing certain characters to be submitted. For

example checking if data submitted is alphanumeric

and rejecting the request if it is not. You can use an

approach like this after data is submitted and then

perform a similar approach before data is outputted

to the user.

3. Standard SQL Injection

'This is a critical vulnerability to have on a web

application and should be addressed immediately.

Validation should be done for user-controllable data

in the earlier stage of any query performance on the

database using the data. Blacklisting is an approach

which consists of checking the input data for

malicious characters but a more effective approach is

whitelisting. Whitelisting consists of only allowing

certain characters to be submitted. For example

checking if data submitted is alphanumeric and

rejecting the request if it is not. Many libraries exist,

such as built-in libraries for programming languages

and open-source libraries, which can assist you in

preventing this vulnerability.

4. Broken Authentication using SQL Injection

This is a critical vulnerability to have on a web

application and should be addressed immediately.

User-controllable data should be validated before any

queries are performed on the database using the data.

Blacklisting is an approach which consists of

checking the input data for malicious characters but a

more effective approach is whitelisting. Whitelisting

consists of only allowing certain characters to be

submitted. For example checking if data submitted is

alphanumeric and rejecting the request if it is not.

Many libraries exist, such as built-in libraries for

programming languages and open-source libraries,

which can assist you in preventing this vulnerability.

5. Autocomplete enabled on sensitive fields

Disable the autocomplete attribute of input fields that

hold sensitive data. This can be done by placing

autocomplete=\\"off\\" inside the tags of the input

field. You can also disable autocomplete for an entire

form by placing it inside the tags of the form.

6. Direct Object References

Use indirect object references. For example, using

the above scenario, pass an integer to the URL and

this could be mapped to a file name once the request

is made. If direct object references must be used,

have an access control check in place to ensure the

user is authorized to view the requested resource.

7. Directory Listing Enabled

This can be high risk vulnerability. This is typically

enabled in the server's configuration file but can

sometimes arise from vulnerability in particular

applications. You can eliminate this vulnerability by

disabling directory listing in the server’s

configuration file and restart the server. The location

and name of this file differs depending on what web

server you are using.

International Journal of Advanced and Innovative Research (2278-7844) / # 6 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 6

8. HTTP Banner Disclosure

You can disable the server from disclosing this

information to users. This is typically done by editing

the configuration files of the various technologies

and then restarting the system.

9. SSL Certificate not trusted

Ensure the SSL certificate has been issued by a

trusted authority.

10. Invalidated Redirects

The target site that the user is being redirected to

should not be exposed. If there is no way around this

or it is simply too much effort to edit this design,

ensure the user-controllable data is validated before

redirecting to it. One countermeasure is to maintain a

list of safe URLs that can be redirected to and check

the user-controllable value against this list before

performing the redirect. Another good counter-

measure is to pass an integer to the URL that is

redirecting. For example:

 http://www.example.com?redirect.php?redirect=3.

This integer acts as an array index and an array of

safe URLs is maintained by the web applications.

XI. METRICS OF PVRS

Graphs are generated by taking every element into

consideration as shown in the respective graphs of each metric.

Note: All the graphs are generated through automated

performance analysis tool name “WAPT” (9)

X axis denotes the time interval of test run. Y axis is different

for various graphs. For example:

: The number of active users is displayed on

the right side of the chart.

: The number of pages executed per second

is displayed on the left side of the chart.

1) Performance:

Fig 19 : Performance Analysis graph of PVRS

Avg response time: Depicts the values of response

time averaged through all user profiles. This is response time

for main page requests (without page elements).

3 possible variants of Response time graph behaviour are

shown below: (9)

1. Flat (or very slight growth): It is an ideal result.

The increase of load on the server doesn't lead to the

increase of response time (or leads to very slight

growth).

2. Gradual growth (essential growth): The increase of

load on the server leads to gradual growth of

response time. It means that the server can handle the

growing level of load until the load exceeds some

maximum value. Possible reasons of such situation

are problems with server hardware, for example,

insufficient network bandwidth or low productivity

of the server.

3. Sharp growth: If response time graph exhibits a

sharp growth beginning from some level of user load

while download time graph doesn't grow essentially,

it means that the server provides a poor performance

when the load reaches this level, or even cannot cope

with such load. Users will see that the server

responds very slowly, or doesn't respond at all.

Avg response time with page elements: Depicts values of

average response time for pages including page elements.

Avg processing time: Depicts values of processing

time averaged through all user profiles. WAPT Pro measures

processing time without page elements.

Avg download time: Depicts values of download

time averaged through all user profiles.

Sessions per second: Depicts the number of sessions

executed per time scale unit (second, minute or hour).

Pages per second: Depicts the number of pages executed per

time scale unit.

Successful hits per second: Depicts the number of hits

executed without errors per time scale unit.

Active users: Depicts the number of virtual users participated

in the test.

All: Exhibits all graphs on this tab.

2) Average Bandwidth:

Fig 20: Bandwidth utilization graph of PVRS

Sent: Depicts how many kilobits per second were sent to the

server.

Received: Depicts how many kilobits per second were

received from the server.

International Journal of Advanced and Innovative Research (2278-7844) / # 7 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 7

Sent per user: Depicts the sending speed per virtual user (in

kilobits per second).

Received per user: Depicts the receiving speed per virtual

user (in kilobits per second).

Active users: Depicts the number of virtual users participated

in the test.

All: Exhibits all graphs on this tab.

3) Errors:

Fig 21: Error control graph of PVRS

HTTP errors on pages, %: Depicts the percentage of

responses with HTTP errors from the total number of

responses.

Network errors on pages, %: Depicts the percentage of

responses with network errors from the total number of

responses.

Timeouts on pages, %: Depicts the percentage of responses

with timeouts from the total number of responses.

HTTP errors on all hits, %: Depicts the percentage of

responses with HTTP errors from the total number of hits,

including the errors of page elements.

Network errors on all hits, %: Depicts the percentage of

responses with network errors from the total number of hits,

including the errors of page elements.

Timeouts on all hits, %: Depicts the percentage of responses

with timeouts from the total number of hits, including the

errors of page elements.

JavaScript errors: Depicts the number of JavaScript errors

occurred during test run. These are the errors of JavaScript

operators and functions included in your profiles.

Total errors on all hits, %: Depicts the percentage of all

responses with errors from the total number of hits, including

the errors of page elements.

Total errors on pages, %: Depicts the percentage of all

responses with errors from the total number of responses.

Active users: Depicts the number of virtual users participated

in the test.

All: Exhibits all graphs on this tab.

This graph will help us to know how error rate changes during

a test when the number of virtual users is increasing. Error

rate is the most valuable result of stress testing where you

need to find the maximum number of users that can be served

correctly, without errors. One also need to watch error rate

during reliability/endurance tests to verify that it is

inacceptable range even after a long run.

XII. COMPARISON BETWEEN PVRS AND RIPS

Comparison is done by taking few elements into consideration

as shown in the respective graphs of each metric.

1. In terms of Performance:

a) PVRS

Fig 22: Overall performance analysis of graph of PVRS by

considering few elements for metric

As seen in the both graphs from Fig 22 and Fig 23, we can

clearly observe that performance is much better in PVRS than

RIPS. In the graph we can observe successful hits per second

works much better in PVRS when compared to RIPS. So this

might be one of the advantages of PVRS when compared to

RIPS.

b) RIPS

Fig 23: Overall performance analysis of graph of

RIPS by considering few elements for metric

International Journal of Advanced and Innovative Research (2278-7844) / # 8 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 8

2. In terms of Bandwidth:

a) PVRS

Fig 24: Overall performance analysis of graph of

RIPS by considering few elements for metric

As seen in the both graphs from Fig 24 and Fig 25, we can

clearly observe that bandwidth utilization is much lesser in

PVRS than RIPS. In the graph we can observe bits received

per user always goes almost in a linear fashion using lesser

bandwidth, whereas in PVRS there are much deviations in

data received per user and doesn’t goes in a linear fashion, in

spite it goes in non-linear with lot of modulations and

deviations in the graph using more bandwidth when compared

to PVRS. So this might be one more advantages of PVRS

when compared to RIPS.

b) RIPS

Fig 25: Overall performance analysis of graph of

RIPS by considering few elements for metric

3. In terms of Average Response Time:

a) PVRS

Fig 26: Overall performance analysis of graph of

RIPS by considering few elements for metric

As seen in the both graphs from Fig 26 and Fig 27, we can

clearly observe that response time is much lesser in PVRS

than RIPS. In the graph we can observe average response time

always goes on decreasing, whereas in PVRS there are many

deviations in average response time and doesn’t degrade but

increases dynamically, so PVRS response time is very less

when compared to RIPS. So this might be one more

advantages of PVRS when compared to RIPS.

b) RIPS

Fig 27: Overall performance analysis of graph of

RIPS by considering few elements for metric

International Journal of Advanced and Innovative Research (2278-7844) / # 9 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 9

Tabular Comparison between PVRS and RIPS:

Table 1: Comparison between PVRS and RIPS showing

PVRS is advantageous than RIPS

XIII. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is to show how easy it is

for attackers to automatically discover and exploit application-

level vulnerabilities in a large number of web applications. To

this end, we presented PVRS, a generic and modular web

vulnerability scanner that analyses web sites for exploitable

SQL and some input validation vulnerabilities. We used

PVRS to identify a large number of potentially vulnerable

web sites. Moreover, we selected one hundred of these web

sites for further analysis and manually confirmed exploitable

flaws in the identified web pages. Among our victims were

well-known global companies, computer security

organizations, and governmental and educational institutions.

We believe that it is only a matter of time before attackers

start using automated vulnerability scanning tools such as

PVRS to discover vulnerabilities that they can exploit. (10)

Such vulnerabilities, for example, could be used to launch

phishing attacks that are difficult to identify even by

technically more sophisticated users. With this paper, we hope

to raise awareness and provide a tool available to web site

administrators and web developers to proactively audit the

security of their applications.

For the future, we are planning to implement simultaneous

scanning of websites at a time which reduces scanning time.

Also, there is certainly some room for improvement in the

performance and throughput of the tool.

XIV. ACKNOWLEDGEMENTS

I would like to thank Department of Computer Science and

Engineering staff and management of MVGR College of

Engineering for their support in doing this work.

REFERENCES

1) SQL-Injection Security Evolution Analysis in PHP by Ettore Merlo*,

Dominic Letarte, Giuliano Antoniol © 2007 IEEE

2) RIPS - A static source code analyser for vulnerabilities in PHP scripts by

Johannes Dahse Seminar Work at Chair for Network and Data Security

3) Looking at Web Security Vulnerabilities from the Programming Language

Perspective: A Field Study by Nuno Seixas, José Fonseca, Marco Vieira,

Henrique Madeira in 20th International Symposium on Software

Reliability Engineering

4) Realistic Vulnerability Injections in PHP Web Applications by Francisco

José Marques Vieira , MESTRADO EM SEGURANÇA

INFORMÁTICA 2011

5) Securing PHP Based Web Application Using Vulnerability Injection by

Jamang Jayeshbha Bhalabha,, Amit Doegar and Poonam Saini,

International Journal of Information and Computation Technology.ISSN

0974-2239 Volume 3, Number 5 (2013), pp. 391-398

6) Fast Detection of Access Control Vulnerabilities in PHP Applications by

Franc¸ois Gauthier, Ettore Merlo in 2012 19th Working Conference on

Reverse Engineering

7) An Empirical Study of the Evolution of PHP Web Application Security

Maureen Doyle, James Walden, Department of Computer Science,

Northern Kentucky University, Highland Heights, KY 41099

8) A Survey on Server-side Approaches to Securing Web Applications by

XIAOWEI LI-Vanderbilt University, YUAN XUE-Vanderbilt University,

ACM Transactions on Computing Surveys, Vol. V, No. N, November

2013

9) http://www.loadtestingtool.com/help/summary-graphs.shtml

10) SecuBat: A Web Vulnerability Scanner by Stefan Kals, Engin Kirda,

Christopher Kruegel, and Nenad Jovanovic

Tool Overall

Performance

Average

Response

Time

Average

Bandwidth

Errors

PVRS Better

performance

results when

compared

with RIPS

Less

Response

Time

when

compared

to RIPS

Less

bandwidth

when

compared

to RIPS

No

errors

RIPS Overall

Performance

is good

Response

Time is

more

More

Bandwidth

Utilization

No

errors

International Journal of Advanced and Innovative Research (2278-7844) / # 10 / Volume 3 Issue 9

 © 2014 IJAIR. All Rights Reserved 10

http://www.loadtestingtool.com/help/summary-graphs.shtml

