
Mining Periodic Interaction Patterns in Social Networks 
 

 
S.RAVI KISHAN

1 
& P.DEVI

2
 

 
1Department of CSE, VR Siddhartha  Engineering College, 

2Pursuing Master Degree in VR Siddhartha Engineering College. 
Email:suraki@vrsiddhartha.ac.in, deviposani@gmail.com  

              

Abstract 
Social interactions that occur regularly typically corre- 

spond to significant yet often infrequent and hard to detect 

interaction patterns. To identify such regular behavior, we 

propose a new mining problem of finding periodic or near 

periodic subgraphs in dynamic social networks.  We ana- 

lyze the computational complexity of the problem, showing 

that, unlike any of the related subgraph mining problems, it 

is polynomial.  We propose a practical, efficient and scal- 

able algorithm to find such subgraphs that takes imperfect 

periodicity into account. We demonstrate the applicability 

of our approach on several real-world networks and extract 

meaningful and interesting periodic interaction patterns. 
 

 
 

1. Introduction 
 

Due largely to recent technological advances, one can 

now monitor large populations of humans, animals and net- 

worked computers, and know precisely when one entity in 

the population interacts with another. Whether it is an ex- 

change of e-mail or a phone call between humans, connec- 

tions made between networked computers or a GPS-tagged 

wild Zebra stallion associating with a specific harem [13], 

real-world patterns of interactions and associations can be 

studied and recorded at a finer time scale than ever before. 

In this paper, we propose a formal and practical method for 

identifying periodically recurring patterns from streams of 

interaction data, and show that the technique can be used to 

explore the inherent periodicity of interactions in a popula- 

tion. 

Social networks are graphs that are used to model and 

analyze the structure of relationships between a set of enti- 

ties. The nature and scope of social network data, however, 

have grown well beyond traditional applications in sociol- 

ogy [28] and contemporary study in physics [2, 26]. Con- 

ventional social networks are now superseded by continu- 

ous streams of dynamic interaction data, or dynamic net- 

works, which have opened the way to new techniques for 

analyzing the underlying populations [2–4, 9, 22, 23]. 

We propose a novel data mining problem for dynamic 

networks:  periodic subgraph mining, or the discovery of 

all interaction patterns that occur at regular time intervals. 

Consider two potential applications of this technique: the 

first, based on the premise that periodic patterns represent 

stable interaction patterns, is that periodic interaction pat- 

terns can be of qualitative interest in and of themselves. 

Ecologists, for example, tag wild herds of animals with 

tracking devices in order to study their movements and so- 

cial patterns [19].  Periodic subgraphs in this case corre- 

spond to seasonal association or mating patterns, which are 

of biological interest, especially if these patterns are hid- 

den in large quantities of effectively random animal move- 

ments and associations [13].  A second application stems 

from the fact that, by virtue of repeating regularly, periodic 

behavior can be predictable behavior. Dynamically mining 

predictable interactions from sensor logs can be used, for 

example, in various types of ubiquitous and mobile com- 

puting [11]. 

We therefore center our work around two fundamental 

claims necessary for both applications: first, that many so- 

cial systems inherently do contain patterns that recur with a 

natural periodicity. Second, that all such patterns can be ex- 

tracted for analysis from a dynamic network in an efficient 

and tractable manner. 

Our contributions in this paper are as follows: 

•  We formally define periodic subgraph mining for dy- 

namic networks in Section 2. Our definition combines 

concepts from frequent pattern mining [14] and earlier 

formulations of periodic pattern mining in other types 

of data (e.g. sequences [30] and eventsets [15, 17]). 

•  We theoretically analyze the problem in Section 3 and 
show that it lies in the complexity class P (polynomial), 

unlike the more general frequent subgraph mining prob- 

lem. We also obtain asymptotic and exact upper bounds 

on the time complexity of enumerating all periodic sub- 
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graphs in a dynamic network. 

•  In Section 4, we propose a novel measure for ranking 

a 

mined periodic subgraph by how close it is to being per- 

fectly periodic, rather than by the number of it occurs. 

•  In Section 5, we describe a polynomial time, parameter- 

free, single-pass algorithm for mining all periodic sub- 

graphs from a dynamic network.  Our algorithm also 

accommodates the mining of noisy periodic subgraphs 

in which the period is ‘almost’ constant. 

•  In Section 6, we evaluate our algorithm and the gen- 
eral characteristics of periodic subgraphs on four di- 

verse, real-world dynamic networks spanning corporate 

executives, college students with Bluetooth cellphones, 

GPS-tagged wild animals and Hollywood celebrities. 

 
2. Problem Definition and Related Work 

data is quantized into temporal segments of equal duration; 

the methods of such quantization are beyond the scope of 

this paper.  The types of data that we deal with, however, 

have natural quantizations such as hours or days. 

Before we formally define the problem of mining peri- 

odic subgraphs, we recall some concepts from the field of 

frequent pattern mining and extend them to dynamic net- 

works. 
 

Definition 2.  For an arbitrary graph F  = (V f ⊆  V , Ef   

⊆  Vf  × Vf ), its support set in G is the set of timesteps 

where F is a subgraph of Gt , denoted F ± Gt . 

S(F ) = {t : F ± Gt } 

F is a frequent subgraph of G if |S(F )| ≥  σ where 1 

≤  
σ ≤  T is a user-defined minimum support threshold. 

Let F (σ) be the set of all frequent subgraphs of G at min- 

imum support σ. Definition 2 implies that for any frequent 
Let V ∈  N represent a set of unique entities whose inter- 

actions are recorded over a period of time and divided into 

T  discrete timesteps of equal duration.  This type of data 

subgraph F  ∈ F  
thus are also in F (σ)

 

, all its subgraphs are also frequent and 

. This is the downward closure property 

constitutes a dynamic network [22], where the objects of in- 

terest are interaction patterns between vertices and how they 

change over time.  The analysis of dynamic networks is a 

relatively new field and recent work has focused on random 

graph models for the generation of dynamic networks [2, 

and is the basis of early pattern mining algorithms like the 

a priori algorithm [1]. Naturally, there is a large amount of 

redundant information in such a set. The concepts of maxi- 

mal and closed frequent subgraphs aim to reduce the size of 
(σ) 

F    without losing much (or any) information. 

22, 25], mining for frequently occurring patterns [4, 9], de- Definition 3.  A frequent subgraph F  ∈  F  is maximal 
tecting communities and analyzing graph theoretic proper- if there is no other frequent subgraph F    ∈  F (σ) where 
ties [3, 20]. F  ≺  F  .  F 

(σ)    
⊆  

F 

(σ) is the set of maximal frequent 

In our case, we are interested in finding interaction pat- 

terns in dynamic networks that occur periodically. The ap- 
subgraphs.  

 
(σ)

 

proach we synthesize is based on two different problems in Definition 4.  A frequent subgraph F  ∈ F  is closed if it 

data mining – frequent pattern mining in transactional and 

graph databases [14, 18, 21], and periodic pattern mining 
is maximal at some support σ  ≥  σ [27]. F 

(σ)
 

(σ) ⊆ F  

in unidimensional and multidimensional sequences [12, 15, 

17, 24, 30, 31].  By combining aspects of both approaches, 

we obtain a theoretically sound characterization of periodic 

behavior in dynamic networks, that we will show in Sec- 

tion 6 is also empirically plausible. 

the set of closed frequent subgraphs. 

In Figure 1, F1    = {(1, 2), (1, 3), (1, 4), (1, 5)} is the 

only frequent maximal subgraph at σ = 2. At the same min- 
imum support, there are three closed frequent subgraphs: 

F1 , F2    = {(1, 2), (1, 3)} and F3    = {(1, 4), (1, 5)}, the 
latter two of which are maximal at σ   = 3.   Note that 

(σ)
 

(σ)
 

(σ)
 

(σ)
 

Definition 1.  A dynamic network G  = ∗ G1 , ..., GT   is a Fmax   ⊆  Fclosed   ⊆  F  , and that Fclosed  can be expo- 
time-series of graphs, where Gt   = (Vt , Et ) is the graph nentially smaller than F (σ) .  Furthermore, both F 

(σ)   
and 

of interactions Et observed at timestep t, among the set of 
uniquely labeled entities Vt  ⊆  V .

 F (σ) can be recovered from F 
(σ)

 (albeit not in polyno- 

 

A key characteristic of each graph G t ∈  G is that ver- 

tices are uniquely labeled. From a computational point of 

view, this class of graphs has more in common with sets, 

and various hard graph problems such as maximum com- 

mon subgraph and subgraph isomorphism are reduced to 

quadratic complexity in the number of nodes [10]. Interac- 

tions can be either directed or undirected, and the exact def- 

inition of what constitutes an ‘interaction’ depends on the 

application. Generally, a continuous stream of interaction 

mial time).  We thus restrict our attention to closed sub- 

graphs only, as they represent in a certain sense coherent 

and complete interaction patterns. 
 

Definition 5.  A periodic support set or periodic subgraph 

embedding (PSE) of an arbitrary graph F = (V f , Ef ) in G, 

where Vf  ⊆  V , is a maximal, ordered set of timesteps where 
F  is a subgraph of Gt , such that the difference between 
consecutive timesteps in the set is constant. 

SP (F ) = ∗ t : F ± Gt  ,    and    ∀i : ti+1 −  ti = p 
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the term ‘purity’ to refer to average purity for the remainder 

of this paper. 
 

Definition 10.  The average purity of a subgraph F   = 

(V, E) is the average purity of all of its edges. 

and manipulated quickly and represented using very little 

space. Since the pattern tree is traversed for each new ob- 

servation, once a new observation is known not to have any 

common subgraph with a particular node, all descendants of 

that node can be eliminated from the tree traversal. Figure 3 

1 
avgP urity(F ) =  

 
purity(e) 

shows an example of a pattern tree. 

The second component of the algorithm, the subgraph 
 

 
 

3. The Algorithm 

|E| 
e∈E hash map, associates an arbitrary subgraph with its node in 

the tree, if one exists, in amortized constant lookup time. 

This is used by the update algorithm, and due to the unique 

node labels of each graph in the dynamic network, hashing 

We now present an efficient, single-pass, polynomial 

time and space algorithm for mining all closed periodic sub- 

graphs in a dynamic network. Our algorithm does not re- 

quire any parameters to be set but optionally accepts the 

following: 

1.   Minimum support threshold σ ≥  2 (default: 2). 

2.   Minimum and maximum period P min and Pmax (de- 

fault: unrestricted). 

3.   Maximum jitter in period J ≥  0 (default: 0). 

Although there is a natural bound on the maximum pe- 

riod if the number of time steps T  is finite and known a 

priori, our algorithm is designed for cases when this infor- 

mation is not available, such as in streaming sensor data. 

Unrestricted period size in such cases places a very large 

computational burden on the algorithm as the entire dataset 

has to be retained. The optional user-defined P max parame- 

ter limits the maximum period of mined patterns and results 

in a truly online algorithm. 

 
3.1. Mining PSEs using a Pattern Tree 

 
The foundation of the algorithm is a pattern tree that 

maintains information about all  patterns that  are  either 

currently periodic or could become periodic at a future 

timestep.  As each new timestep is read, the pattern tree 

is traversed and updated with the information. Any patterns 

that are no longer periodic are flushed, and new periodic 

patterns are possibly created. 

The algorithm maintains two data structures:  the pat- 

tern tree and a subgraph hash map.   Each node in the 

pattern tree contains a subgraph and a descriptor for each 

closed periodic embedding of the subgraph encountered. 

Formally, a descriptor for a subgraph F is an ordered pair 

D = ∗ S  = SP (F ), p , where S is the periodic support set 
of the embedding of F and p the period. Let next(D) rep- 
resent the timestep at which F is next expected, i.e. the last 

element of the support set plus the period. 

The structure of the pattern tree is subject to a single 

constraint:  all descendants of a node F  represent proper 

subgraphs of F , but not all subgraphs of F are necessarily 

its descendants.  This property allows the tree to be built 

subgraphs is efficient. 
 

Proposition 5.  The time complexity of hashing a periodic 

subgraph F  = (V, E) of a dynamic network is at most the 

complexity of hashing a string of length |V | + |E|. 
 

Proof. Since V ∈  N, any given subgraph contains at most 

one node v = n for any n ∈  N. Thus, each edge is uniquely 

identified by an arbitrary mapping τ : v 1 × v2  → N. Since 

no self-loops are allowed in the input, a singleton vertex 

v can be represented as τ (v, v).  Applying τ to every edge 

and singleton vertex in a subgraph maps it to a set of natural 

numbers, which can be hashed as a string. 
 

Redundancy in mined patterns can be reduced by intro- 

ducing the notion of pattern subsumption. For example, a 

periodic embedding of subgraph F at period 2 with support 

5 also contains an embedding at period 4 with support 3, but 

the latter contains no new information given then former. 

Thus, the period 2 pattern subsumes the period 4 pattern. 

Note that subsumption does not strictly fall within Defini- 

tion 6. 
 

Definition 11.  Given two descriptors, D 1  = ∗ S1 , p1  and 

D2   = ∗ S2 , p2  , for the same periodic closed subgraph, D 1 

subsumes D2  if S2   ⊆  S1  and p2  = k · p1  for some integer 

k > 0. 
 

Although the algorithm is designed to operate in a single 

pass of the data, if the Pmax parameter is kept unrestricted, 

the entire dataset will be retained in memory as a subgraph 

of any timestep might become periodic in the future. With 

a restricted Pmax , only the relevant portion of the data will 

be retained. 

 
3.2. Update Algorithm 

 
We now describe the update algorithm for the pattern 

tree. Starting with an initially empty pattern tree, at timestep 

t  the algorithm reads the next graph G t from the input 

stream and traverses the pattern tree to update nodes with 

the new information. At any point in the execution of the 

algorithm, a complete list of periodic subgraphs seen so far 

can be obtained from the tree. 
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For each Gt , we selectively traverse the tree in a breadth- 

first manner.  We end each tree update by ensuring that a 

node for Gt  in its entirety exists in the tree with an anchor 

descriptor for timestep t. This accounts for the possibility 

that Gt  is the first occurrence of a periodic subgraph. Dur- 

ing the breadth-first traversal of the tree, one of the follow- 

ing three conditions hold at each tree node N 1 : 

Update descriptors If N  ± Gt , then N has appeared in its 
entirety at timestep t. For all descriptors D, if next(D) 
= t, then t is added to the support set.  If next(D) <  t, 
then the descriptor is removed from the tree and flushed to 

the output stream if its support is greater than σ. Finally, any 

anchor descriptors at N  are used to generate new periodic 

descriptors if the resultant period p  ≤  Pmax . 

Propagate descriptors Let C = N ∩  Gt  = ∅  be the non- 
empty maximal common subgraph of N  and G t .  A sub- 
graph C of N  is present at timestep t, and if N  has any 

descriptors D such that next(D)= t, then the node for C 

receives a copy of D if it is not subsumed by an existing 

descriptor at C . If a node for C does not already exist in the 

tree (determined using the hash map), it is created as a child 

of N .  Figure 3 illustrates this case.  At timestep 5, there 
is no node for the subgraph F 3  = {(1, 4), (1, 5)}, although 

one exists for the larger F1  = {(1, 2), (1, 3), (1, 4), (1, 5)}. 

However, F3  has been present at timesteps 1 and 3 as well, 
so it needs to receive a copy of the descriptor D  = ∗ S  = 

{1, 3}, p = 2 . 

Dead subtree If C is empty, then Gt  and N  have no com- 

mon subgraph. Furthermore, no child of N  will have any 

common subgraph with Gt  either, since they are all sub- 

graphs of N .  The subtree rooted at N  is therefore elimi- 

nated from the rest of the tree traversal. 

Figure 3 shows the pattern tree at each timestep during 

the execution of the algorithm on the network from Fig- 

ure 1. For brevity, we have described a very basic version 

of the full algorithm.  Clearly, nodes and descriptors ex- 

pire after a certain amount of time and can be deleted from 

the tree, improving efficiency.  Furthermore, subsumption 

of redundant descriptors can be performed efficiently while 

the algorithm is running. The basic outline described here, 

however, is efficient even without these optimizations. 

To output all periodic patterns at any point during the 

execution of the algorithm, we traverse the tree and print 
all descriptors D  = ∗ S, p  and their associated subgraphs 

where |S| ≥  σ. 

 
3.3. Complexity  Analysis 

 
There are two types of nodes in the tree: those with only 

an anchor descriptor, and those with valid periodic descrip- 
 

 

1 When referring to a pattern tree node, we generally refer to the peri- 

odic subgraph which it contains. 

 

 

 
 
 
 

 
Figure 3. Pattern tree for Figure 1. 

 
Algorithm 1 UPDATETREE(Gt) 

Require: Gt  is the graph of timestep t 

1:  Q ← new queue 
2:  push(Q, root.children) 

3:  while N  ← pop front(Q) do 
4:       C ← Gt  ∩  N 
5:       if C is not empty then 

6:            if N  ± Gt  then 
7:                 UPDATEDESCRIPTORS(N ) 

8:            else 

9:                 W  ← FINDNODE(N ) or NEWNODE(N, C ) 
10:                 PROPAGATEDESCRIPTORS(N, W ) 

11:            end if 

12:            push(Q, children(N )) 

13:       end if 

14:  end while 

15:  W  ← FINDNODE(Gt ) or NEWNODE(root, Gt ) 
16:  Add anchor descriptor for Gt  to W . 

 

 

 
tors.  The latter type represent periodic closed subgraphs 

with support greater than or equal to 2.   Since each de- 

scriptor corresponds to a unique periodic embedding, the 

number of non-anchor descriptors (and hence the number 

of such nodes) is bounded by the number of periodic closed 

subgraphs at σ = 2, or O(T 2 ln T ). At most one anchor de- 
scriptor is added per timestep, so the asymptotic bound on 

the total number of nodes does not change. Since the tree is 

traversed exactly once per timestep, the overall worst-case 

time complexity for the algorithm is O((V  + E)T 3 ln T ). 
The maximum period parameter (if set) greatly reduces the 

time and space complexity of the algorithm. 

 
3.4. Jitter Heuristic 
 

 
The jitter heuristic allows the detection of patterns with 

periods that are ‘almost’ constant. For a subgraph with pe- 

riod p, we allow a distance of p ± J timesteps between con- 
secutive occurrences instead of exactly p.  In cases where 

more than one occurrence of a subgraph satisfies this crite- 

ria, the occurrence that minimizes the time difference from 

the expected position is chosen.   We note that the jitter 

heuristic does not preserve the theoretic complexity bounds 

of the algorithm, but is nonetheless efficient in practical 
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cases as we will demonstrate in Section 6. 
 

 

4. Experimental Evaluation 
 

 
We use four real-world dynamic social networks to eval- 

uate our algorithm and the general characteristics of peri- 

odic subgraphs. 

 
41. Datasets 

 

 
The tested dynamic social networks were collected using 

a variety of sources and cover a range of social dynamics. 

Enron E-mails The Enron e-mail corpus is a publicly avail- 

able database of e-mails sent by and to employees of the 

now defunct Enron corporation. 2  Timestamps, senders and 

lists of recipients were extracted from message headers for 

each e-mail on file.  We chose a day as the quantization 

timestep, with a directed interaction present if at least one 

e-mail was sent between two individuals on a particular day. 

Plains Zebra Social interactions of Plains zebra (Equus 

burchelli) in Kenya were recorded by direct observations 

made  by  behavioral  ecologists  from  Princeton  Univer- 

sity [13]. The data is made from visual scans of the popula- 

tions, typically once a day over periods of several months. 

Each entity is a Plains zebra and the interactions represent 

association as determined by GPS spatial proximity and the 

domain knowledge of ecologists. 

Reality Mining Cellphones with proximity tracking tech- 

nology were distributed to 100 students at the Mas- 

sachusetts Institute of Technology over the course of an aca- 

demic year [11]. The timestep quantization was chosen as 

4 hours [8]. 

IMDB Celebrities The Internet Movie Database (IMDB)3 

maintains a large archive of tagged and dated photographs 

of individuals associated with the production of commer- 

cial entertainment, including actors, directors and musi- 

cians. One might reasonably assert that a degree of social 

association exists between people photographed together by 

the popular press. Thus, similar to the methodology of the 

Plains Zebra sightings, we collected metadata on 45,477 

photos with two or more people, which collectively repre- 

sents a partial structure of the social network of people as- 

sociated with the entertainment industry. The quantization 

period was one day. 

 
4.2. Experimental  Setup 

 

 
We implemented our algorithm in C++ and ran it on 

a dual-core AMD Athlon 64 system with 2 GB of RAM 
 

 

2 Available at http://www.cs.cmu.edu/∼enron/ 
3 http://www.imdb.com 

 

Dataset Vertices Timesteps Avg. density 
Enron 82,614 2,588 0.028 ± 0.064 
IMDB 15,011 13,967 0.22 ± 0.23 
Plains Zebra 313 1,276 0.31 ± 0.27 
Reality Mining 100 2,940 0.23 ± 0.17 

Table 1. Dataset characteristics 
 
 
and Linux kernel 2.6.24. The subgraph hash map was im- 

plemented using the Google dense_hash_map library 4, 

which is optimized for speed over memory usage. For fre- 

quent closed subgraph mining, we converted the dynamic 

networks to transactional itemsets using Proposition 5 and 

used the open-source MAFIA algorithm [7] running on an 

Intel Xeon quad-core server with 24 GB of RAM and Linux 

kernel 2.6.22. Since mining frequent subgraphs at low min- 

imum support is generally intractable, we started at a very 

high minimum support value and progressively reduced it 

until either the size of the mined pattern file exceeded 512 

MB or the algorithm did not terminate after 5 days. 5 

We first ran a series of experiments on our algorithm with 

σ  = 3 and no jitter, i.e.  mining only perfectly repeating 

patterns. We then ran a second set of experiments with σ = 

3 and variable amounts of jitter. For Enron and IMDB, we 
chose a jitter of ± 2 days so that the resulting 5-day slack 

window would capture monthly and annual patterns, e.g. 

those that occur on the first Monday of every month. Since 

Reality Mining is a relatively dense and heavily periodic 

dataset, we chose a minimal jitter value of ± 1 timestep, or 
± 4 hours. For the Plains Zebra dataset, we chose the jitter 
to be the average time between consecutive observations. 

Table 2 shows the performance of our algorithm and 

the number of periodic closed subgraphs mined from each 

dataset.  The frequent subgraph mining algorithm took on 

the order of days to complete even at much higher mini- 

mum support values than 3. However, since it is inherently 

an exponential time algorithm, as compared to our poly- 

nomial time periodic subgraph miner, we do not compare 

their relative performances. Note that the P max parameter, 

not the minimum support, is the determining factor in the 

scalability of the algorithm. We left Pmax unrestricted, so 

Table 2 represents worst-case performance in this regard. 

 
4.3. Results 
 

 
We return to our two initial claims:  that dynamic so- 

cial networks have inherent periodicity, and that these pe- 

riodic interaction patterns can be extracted in an efficient 

and tractable manner. We also comment on the usefulness 
 

 

4 http://code.google.com/p/google-sparsehash/ 
5 The time and space requirements of the MAFIA algorithm grew expo- 

nentially with decreasing σ, as is theoretically expected. 
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Dataset                                       No jitter                                                     Variable jitter 

 Time (s) Memory (MB) # Patterns Jitter Time (s) Memory (MB) # Patterns 
Enron 53.5 157 84,017 ± 2 150 180 863,112 
IMDB 1.76 29 68 ± 2 1.89 29 276 
Plains Zebra 3.56 27 2,241 ± 6 5.14 32 34,887 
Reality Mining 156 110 98,258 ± 1 342 120 227,441 

Table 2. Performance of the periodic subgraph mining algorithm at σ = 3. 
 
 

of our proposed measure and on the qualitative properties 

of some interesting mined subgraphs. 
 

 
4.3.1   Inherent Periodicity 

 

Figure 4 shows the distribution of periods of patterns mined 

from the Enron and IMDB datasets. For Enron, we restrict 

our attention to patterns with a high average purity, i.e. pat- 

terns which are likely to capture truly periodic behavior. We 

note that daily interaction patterns are the most prevalent pe- 

riodic patterns, followed by weekly patterns as manifested 

by the clear peak at p = 7. For the IMDB dataset, we no- 

tice a similar peak at about p = 364. This can be explained 

by celebrity sightings at annual events – awards shows, for 

example.  Thus, our algorithm captures the inherent peri- 

odicity in the datasets with no prior knowledge and shows 

supports below 25 for Enron and 11 for Plains (which mani- 

fests in the left-truncated histograms for frequent subgraphs 

in Figure 5), we can see that periodic subgraphs are much 

fewer and exist at lower support levels than frequent sub- 

graphs.  Thus, under practical circumstances, the majority 

of this important class of patterns would be out of reach of 

frequent subgraph mining algorithms. 

Figure 6  shows the  size of  the  pattern tree at  each 

timestep for the Enron and Plains datasets on a logarith- 

mic scale. It can be seen that the actual tree size is a small 

fraction of the theoretical upper bound, even when the jitter 

heuristic is used.  Furthermore, limiting the maximum pe- 

riod of mined patterns has a large impact on reducing the 

tree size, as expected. 
 
 

1e+6
 

promise as a tool for exploratory analysis. The Plains Zebra 

dataset showed a wide range of periodicities, as one might 

expect of animal behavior. 
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(a)  Plains: J  = 6  
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(b)  IMDB: J  = 2  

Figure 5. Partial view of support distribution 
of frequent (gray) and periodic (black) pat- 

terns.   The frequent pattern distribution is 

left-truncated due to intractability. 

 

Figure 4. Number of patterns at each period 
 
 
 

4.3.2   Tractability 
 

Table 2 demonstrates that our algorithm is eminently 

tractable in terms of execution time and space usage. How- 

ever, periodic subgraph mining is also tractable in the sense 

that, unlike frequent subgraph mining, it does not gener- 

ate an overwhelming number of patterns.  Figure 5 shows 

characteristic examples of the support distribution of fre- 

quent subgraphs compared to periodic subgraphs. Ignoring 

the fact that we were unable to mine frequent subgraphs at 

 
 
4.3.3   Qualitative Analysis 
 

We now turn our attention to some qualitatively interesting 

periodic subgraphs discovered by our algorithm illustrating 

a range of periodic behavior. Figure 7(a) illustrates a some- 

what complex pattern from the IMDB photo database that 

repeated approximately every week. Although the support 

is relatively low, what is interesting about this subgraph is 

the repeated non-trivial grouping of people, all of whom 

turned out to be contestants on a weekly ‘reality television’ 

show. Figure 7(b) is also from the IMDB database and is an 

approximately annually repeating pattern.  The three indi- 
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viduals in the clique are actresses in a popular (circa 2004) 

television show, while the fourth node is the spouse (as of 

2008) of one of the actresses.  Given this context, the low 

average purity of the pattern is to be expected as the three 

kevin.cline        eric.saibi        seung-taek.oh        ryan.williams        juan.padron 

 
(c) Enron:  period 1, support 84, avg.  purity 1.  Bold circles 

represent @enron.com e-mail addresses. 

actresses are very likely to have appeared together in be- 

tween what are likely to be award shows.  The nontrivial 

links in such patterns are particularly interesting and are 

indicative of the show’s progression or relationships other 

than co-starring. 

The subgraph shown in Figure 7(c) has the highest pe- 
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riodic support in the Enron dataset, repeating every day for 

84 consecutive days, including weekends.  This is repre- 

(d) Plains: period 7, support 4, avg. purity 0.94. 

sentative of a large number of similar periodic patterns in 

Enron, in which one person emails a group of people with 

periods ranging from 1 to 14 days. As shown earlier in Fig- 

ure 4, weekly emails seem to be particularly popular in a 

corporate setting such as this, and could be used to infer 

functional communities within the corporation. 

Finally, we turn to the Plains Zebra dataset and to one of 

the most intriguing patterns shown in Figure 7(d). Although 
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support 3, avg. purity 0.71 
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(f) Plains: period 
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it is quite likely that the period of 7 days is an artifact of the 

manner in which the population was sampled, the high pu- 

rity of the pattern indicates that this is a relatively stable 

grouping.  It is also by far the largest and most repetitive 

such pattern, parts of which are periodic at other times as 

well.  In contrast, the subgraphs that repeat over multiple 

months are shown in Figures 7(e) and 7(f).  Although the 

support of the latter two patterns is relatively low, the high 

purity of Figure 7(f) stands out and is representative of a 

large number of small but highly periodic patterns. More- 

over, all the patterns are of interactions of stallion male Ze- 

bras and correspond to their harems grouping for a period 

of time. Such groupings are indeed considered more stable 

for short periods of time than bachelor associations [13]. 

 
5. Conclusion 

 
We have proposed and formalized the periodic subgraph 

mining problem for dynamic networks and analyzed the 

Figure 7. Examples interesting periodic sub- 
graphs. 

 
 
 
 
computational complexity of enumerating all periodic sub- 
graphs. We have shown that there are at most O(T 2 ln T ) 

closed periodic subgraphs at minimum support σ in a dy- 

namic network of T timesteps. Furthermore, we have de- 

scribed a polynomial time, one-pass algorithm to mine all 

periodic subgraphs, including a ‘jitter’ heuristic for min- 

ing subgraphs that are not perfectly periodic. We have also 

proposed a new measure, purity, for ranking mined sub- 

graphs according to how perfectly periodic a subgraph is. 

We have demonstrated our algorithm on four real-world dy- 

namic social networks, spanning interactions between cor- 

porate executives, college students, wild Zebra and Holly- 

wood celebrities. Our algorithm efficiently mines all peri- 

odic patterns, and is a provably tractable and meaningful 

alternative to using frequent subgraph mining to look for 
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interesting patterns in dynamic networks. We have shown 

that dynamic social networks contain inherently periodic 

patterns, and our technique shows promise for exploratory 

analysis of natural periodicities. 

 
. 
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