
Mining Periodic Interaction Patterns in Social Networks

S.RAVI KISHAN

1
& P.DEVI

2

1Department of CSE, VR Siddhartha Engineering College,

2Pursuing Master Degree in VR Siddhartha Engineering College.
Email:suraki@vrsiddhartha.ac.in, deviposani@gmail.com

Abstract
Social interactions that occur regularly typically corre-

spond to significant yet often infrequent and hard to detect

interaction patterns. To identify such regular behavior, we

propose a new mining problem of finding periodic or near

periodic subgraphs in dynamic social networks. We ana-

lyze the computational complexity of the problem, showing

that, unlike any of the related subgraph mining problems, it

is polynomial. We propose a practical, efficient and scal-

able algorithm to find such subgraphs that takes imperfect

periodicity into account. We demonstrate the applicability

of our approach on several real-world networks and extract

meaningful and interesting periodic interaction patterns.

1. Introduction

Due largely to recent technological advances, one can

now monitor large populations of humans, animals and net-

worked computers, and know precisely when one entity in

the population interacts with another. Whether it is an ex-

change of e-mail or a phone call between humans, connec-

tions made between networked computers or a GPS-tagged

wild Zebra stallion associating with a specific harem [13],

real-world patterns of interactions and associations can be

studied and recorded at a finer time scale than ever before.

In this paper, we propose a formal and practical method for

identifying periodically recurring patterns from streams of

interaction data, and show that the technique can be used to

explore the inherent periodicity of interactions in a popula-

tion.

Social networks are graphs that are used to model and

analyze the structure of relationships between a set of enti-

ties. The nature and scope of social network data, however,

have grown well beyond traditional applications in sociol-

ogy [28] and contemporary study in physics [2, 26]. Con-

ventional social networks are now superseded by continu-

ous streams of dynamic interaction data, or dynamic net-

works, which have opened the way to new techniques for

analyzing the underlying populations [2–4, 9, 22, 23].

We propose a novel data mining problem for dynamic

networks: periodic subgraph mining, or the discovery of

all interaction patterns that occur at regular time intervals.

Consider two potential applications of this technique: the

first, based on the premise that periodic patterns represent

stable interaction patterns, is that periodic interaction pat-

terns can be of qualitative interest in and of themselves.

Ecologists, for example, tag wild herds of animals with

tracking devices in order to study their movements and so-

cial patterns [19]. Periodic subgraphs in this case corre-

spond to seasonal association or mating patterns, which are

of biological interest, especially if these patterns are hid-

den in large quantities of effectively random animal move-

ments and associations [13]. A second application stems

from the fact that, by virtue of repeating regularly, periodic

behavior can be predictable behavior. Dynamically mining

predictable interactions from sensor logs can be used, for

example, in various types of ubiquitous and mobile com-

puting [11].

We therefore center our work around two fundamental

claims necessary for both applications: first, that many so-

cial systems inherently do contain patterns that recur with a

natural periodicity. Second, that all such patterns can be ex-

tracted for analysis from a dynamic network in an efficient

and tractable manner.

Our contributions in this paper are as follows:

• We formally define periodic subgraph mining for dy-

namic networks in Section 2. Our definition combines

concepts from frequent pattern mining [14] and earlier

formulations of periodic pattern mining in other types

of data (e.g. sequences [30] and eventsets [15, 17]).

• We theoretically analyze the problem in Section 3 and
show that it lies in the complexity class P (polynomial),

unlike the more general frequent subgraph mining prob-

lem. We also obtain asymptotic and exact upper bounds

on the time complexity of enumerating all periodic sub-

International Journal of Advanced and Innovative Research (2278-7844) / # 65 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 65

(σ)

(σ)

max

closed

max

closed

is

graphs in a dynamic network.

• In Section 4, we propose a novel measure for ranking

a

mined periodic subgraph by how close it is to being per-

fectly periodic, rather than by the number of it occurs.

• In Section 5, we describe a polynomial time, parameter-

free, single-pass algorithm for mining all periodic sub-

graphs from a dynamic network. Our algorithm also

accommodates the mining of noisy periodic subgraphs

in which the period is ‘almost’ constant.

• In Section 6, we evaluate our algorithm and the gen-
eral characteristics of periodic subgraphs on four di-

verse, real-world dynamic networks spanning corporate

executives, college students with Bluetooth cellphones,

GPS-tagged wild animals and Hollywood celebrities.

2. Problem Definition and Related Work

data is quantized into temporal segments of equal duration;

the methods of such quantization are beyond the scope of

this paper. The types of data that we deal with, however,

have natural quantizations such as hours or days.

Before we formally define the problem of mining peri-

odic subgraphs, we recall some concepts from the field of

frequent pattern mining and extend them to dynamic net-

works.

Definition 2. For an arbitrary graph F = (V f ⊆ V , Ef

⊆ Vf × Vf), its support set in G is the set of timesteps

where F is a subgraph of Gt , denoted F ± Gt .

S(F) = {t : F ± Gt }

F is a frequent subgraph of G if |S(F)| ≥ σ where 1

≤
σ ≤ T is a user-defined minimum support threshold.

Let F (σ) be the set of all frequent subgraphs of G at min-

imum support σ. Definition 2 implies that for any frequent
Let V ∈ N represent a set of unique entities whose inter-

actions are recorded over a period of time and divided into

T discrete timesteps of equal duration. This type of data

subgraph F ∈ F
thus are also in F (σ)

, all its subgraphs are also frequent and

. This is the downward closure property

constitutes a dynamic network [22], where the objects of in-

terest are interaction patterns between vertices and how they

change over time. The analysis of dynamic networks is a

relatively new field and recent work has focused on random

graph models for the generation of dynamic networks [2,

and is the basis of early pattern mining algorithms like the

a priori algorithm [1]. Naturally, there is a large amount of

redundant information in such a set. The concepts of maxi-

mal and closed frequent subgraphs aim to reduce the size of
(σ)

F without losing much (or any) information.

22, 25], mining for frequently occurring patterns [4, 9], de- Definition 3. A frequent subgraph F ∈ F is maximal
tecting communities and analyzing graph theoretic proper- if there is no other frequent subgraph F ∈ F (σ) where
ties [3, 20]. F ≺ F . F

(σ)
⊆

F

(σ) is the set of maximal frequent

In our case, we are interested in finding interaction pat-

terns in dynamic networks that occur periodically. The ap-
subgraphs.

(σ)

proach we synthesize is based on two different problems in Definition 4. A frequent subgraph F ∈ F is closed if it

data mining – frequent pattern mining in transactional and

graph databases [14, 18, 21], and periodic pattern mining
is maximal at some support σ ≥ σ [27]. F

(σ)

(σ) ⊆ F

in unidimensional and multidimensional sequences [12, 15,

17, 24, 30, 31]. By combining aspects of both approaches,

we obtain a theoretically sound characterization of periodic

behavior in dynamic networks, that we will show in Sec-

tion 6 is also empirically plausible.

the set of closed frequent subgraphs.

In Figure 1, F1 = {(1, 2), (1, 3), (1, 4), (1, 5)} is the

only frequent maximal subgraph at σ = 2. At the same min-
imum support, there are three closed frequent subgraphs:

F1 , F2 = {(1, 2), (1, 3)} and F3 = {(1, 4), (1, 5)}, the
latter two of which are maximal at σ = 3. Note that

(σ)

(σ)

(σ)

(σ)

Definition 1. A dynamic network G = ∗ G1 , ..., GT is a Fmax ⊆ Fclosed ⊆ F , and that Fclosed can be expo-
time-series of graphs, where Gt = (Vt , Et) is the graph nentially smaller than F (σ) . Furthermore, both F

(σ)
and

of interactions Et observed at timestep t, among the set of
uniquely labeled entities Vt ⊆ V .

 F (σ) can be recovered from F
(σ)

 (albeit not in polyno-

A key characteristic of each graph G t ∈ G is that ver-

tices are uniquely labeled. From a computational point of

view, this class of graphs has more in common with sets,

and various hard graph problems such as maximum com-

mon subgraph and subgraph isomorphism are reduced to

quadratic complexity in the number of nodes [10]. Interac-

tions can be either directed or undirected, and the exact def-

inition of what constitutes an ‘interaction’ depends on the

application. Generally, a continuous stream of interaction

mial time). We thus restrict our attention to closed sub-

graphs only, as they represent in a certain sense coherent

and complete interaction patterns.

Definition 5. A periodic support set or periodic subgraph

embedding (PSE) of an arbitrary graph F = (V f , Ef) in G,

where Vf ⊆ V , is a maximal, ordered set of timesteps where
F is a subgraph of Gt , such that the difference between
consecutive timesteps in the set is constant.

SP (F) = ∗ t : F ± Gt , and ∀i : ti+1 − ti = p

International Journal of Advanced and Innovative Research (2278-7844) / # 66 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 66

the term ‘purity’ to refer to average purity for the remainder

of this paper.

Definition 10. The average purity of a subgraph F =

(V, E) is the average purity of all of its edges.

and manipulated quickly and represented using very little

space. Since the pattern tree is traversed for each new ob-

servation, once a new observation is known not to have any

common subgraph with a particular node, all descendants of

that node can be eliminated from the tree traversal. Figure 3

1
avgP urity(F) =

purity(e)

shows an example of a pattern tree.

The second component of the algorithm, the subgraph

3. The Algorithm

|E|
e∈E hash map, associates an arbitrary subgraph with its node in

the tree, if one exists, in amortized constant lookup time.

This is used by the update algorithm, and due to the unique

node labels of each graph in the dynamic network, hashing

We now present an efficient, single-pass, polynomial

time and space algorithm for mining all closed periodic sub-

graphs in a dynamic network. Our algorithm does not re-

quire any parameters to be set but optionally accepts the

following:

1. Minimum support threshold σ ≥ 2 (default: 2).

2. Minimum and maximum period P min and Pmax (de-

fault: unrestricted).

3. Maximum jitter in period J ≥ 0 (default: 0).

Although there is a natural bound on the maximum pe-

riod if the number of time steps T is finite and known a

priori, our algorithm is designed for cases when this infor-

mation is not available, such as in streaming sensor data.

Unrestricted period size in such cases places a very large

computational burden on the algorithm as the entire dataset

has to be retained. The optional user-defined P max parame-

ter limits the maximum period of mined patterns and results

in a truly online algorithm.

3.1. Mining PSEs using a Pattern Tree

The foundation of the algorithm is a pattern tree that

maintains information about all patterns that are either

currently periodic or could become periodic at a future

timestep. As each new timestep is read, the pattern tree

is traversed and updated with the information. Any patterns

that are no longer periodic are flushed, and new periodic

patterns are possibly created.

The algorithm maintains two data structures: the pat-

tern tree and a subgraph hash map. Each node in the

pattern tree contains a subgraph and a descriptor for each

closed periodic embedding of the subgraph encountered.

Formally, a descriptor for a subgraph F is an ordered pair

D = ∗ S = SP (F), p , where S is the periodic support set
of the embedding of F and p the period. Let next(D) rep-
resent the timestep at which F is next expected, i.e. the last

element of the support set plus the period.

The structure of the pattern tree is subject to a single

constraint: all descendants of a node F represent proper

subgraphs of F , but not all subgraphs of F are necessarily

its descendants. This property allows the tree to be built

subgraphs is efficient.

Proposition 5. The time complexity of hashing a periodic

subgraph F = (V, E) of a dynamic network is at most the

complexity of hashing a string of length |V | + |E|.

Proof. Since V ∈ N, any given subgraph contains at most

one node v = n for any n ∈ N. Thus, each edge is uniquely

identified by an arbitrary mapping τ : v 1 × v2 → N. Since

no self-loops are allowed in the input, a singleton vertex

v can be represented as τ (v, v). Applying τ to every edge

and singleton vertex in a subgraph maps it to a set of natural

numbers, which can be hashed as a string.

Redundancy in mined patterns can be reduced by intro-

ducing the notion of pattern subsumption. For example, a

periodic embedding of subgraph F at period 2 with support

5 also contains an embedding at period 4 with support 3, but

the latter contains no new information given then former.

Thus, the period 2 pattern subsumes the period 4 pattern.

Note that subsumption does not strictly fall within Defini-

tion 6.

Definition 11. Given two descriptors, D 1 = ∗ S1 , p1 and

D2 = ∗ S2 , p2 , for the same periodic closed subgraph, D 1

subsumes D2 if S2 ⊆ S1 and p2 = k · p1 for some integer

k > 0.

Although the algorithm is designed to operate in a single

pass of the data, if the Pmax parameter is kept unrestricted,

the entire dataset will be retained in memory as a subgraph

of any timestep might become periodic in the future. With

a restricted Pmax , only the relevant portion of the data will

be retained.

3.2. Update Algorithm

We now describe the update algorithm for the pattern

tree. Starting with an initially empty pattern tree, at timestep

t the algorithm reads the next graph G t from the input

stream and traverses the pattern tree to update nodes with

the new information. At any point in the execution of the

algorithm, a complete list of periodic subgraphs seen so far

can be obtained from the tree.

International Journal of Advanced and Innovative Research (2278-7844) / # 67 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 67

For each Gt , we selectively traverse the tree in a breadth-

first manner. We end each tree update by ensuring that a

node for Gt in its entirety exists in the tree with an anchor

descriptor for timestep t. This accounts for the possibility

that Gt is the first occurrence of a periodic subgraph. Dur-

ing the breadth-first traversal of the tree, one of the follow-

ing three conditions hold at each tree node N 1 :

Update descriptors If N ± Gt , then N has appeared in its
entirety at timestep t. For all descriptors D, if next(D)
= t, then t is added to the support set. If next(D) < t,
then the descriptor is removed from the tree and flushed to

the output stream if its support is greater than σ. Finally, any

anchor descriptors at N are used to generate new periodic

descriptors if the resultant period p ≤ Pmax .

Propagate descriptors Let C = N ∩ Gt = ∅ be the non-
empty maximal common subgraph of N and G t . A sub-
graph C of N is present at timestep t, and if N has any

descriptors D such that next(D)= t, then the node for C

receives a copy of D if it is not subsumed by an existing

descriptor at C . If a node for C does not already exist in the

tree (determined using the hash map), it is created as a child

of N . Figure 3 illustrates this case. At timestep 5, there
is no node for the subgraph F 3 = {(1, 4), (1, 5)}, although

one exists for the larger F1 = {(1, 2), (1, 3), (1, 4), (1, 5)}.

However, F3 has been present at timesteps 1 and 3 as well,
so it needs to receive a copy of the descriptor D = ∗ S =

{1, 3}, p = 2 .

Dead subtree If C is empty, then Gt and N have no com-

mon subgraph. Furthermore, no child of N will have any

common subgraph with Gt either, since they are all sub-

graphs of N . The subtree rooted at N is therefore elimi-

nated from the rest of the tree traversal.

Figure 3 shows the pattern tree at each timestep during

the execution of the algorithm on the network from Fig-

ure 1. For brevity, we have described a very basic version

of the full algorithm. Clearly, nodes and descriptors ex-

pire after a certain amount of time and can be deleted from

the tree, improving efficiency. Furthermore, subsumption

of redundant descriptors can be performed efficiently while

the algorithm is running. The basic outline described here,

however, is efficient even without these optimizations.

To output all periodic patterns at any point during the

execution of the algorithm, we traverse the tree and print
all descriptors D = ∗ S, p and their associated subgraphs

where |S| ≥ σ.

3.3. Complexity Analysis

There are two types of nodes in the tree: those with only

an anchor descriptor, and those with valid periodic descrip-

1 When referring to a pattern tree node, we generally refer to the peri-

odic subgraph which it contains.

Figure 3. Pattern tree for Figure 1.

Algorithm 1 UPDATETREE(Gt)

Require: Gt is the graph of timestep t

1: Q ← new queue
2: push(Q, root.children)

3: while N ← pop front(Q) do
4: C ← Gt ∩ N
5: if C is not empty then

6: if N ± Gt then
7: UPDATEDESCRIPTORS(N)

8: else

9: W ← FINDNODE(N) or NEWNODE(N, C)
10: PROPAGATEDESCRIPTORS(N, W)

11: end if

12: push(Q, children(N))

13: end if

14: end while

15: W ← FINDNODE(Gt) or NEWNODE(root, Gt)
16: Add anchor descriptor for Gt to W .

tors. The latter type represent periodic closed subgraphs

with support greater than or equal to 2. Since each de-

scriptor corresponds to a unique periodic embedding, the

number of non-anchor descriptors (and hence the number

of such nodes) is bounded by the number of periodic closed

subgraphs at σ = 2, or O(T 2 ln T). At most one anchor de-
scriptor is added per timestep, so the asymptotic bound on

the total number of nodes does not change. Since the tree is

traversed exactly once per timestep, the overall worst-case

time complexity for the algorithm is O((V + E)T 3 ln T).
The maximum period parameter (if set) greatly reduces the

time and space complexity of the algorithm.

3.4. Jitter Heuristic

The jitter heuristic allows the detection of patterns with

periods that are ‘almost’ constant. For a subgraph with pe-

riod p, we allow a distance of p ± J timesteps between con-
secutive occurrences instead of exactly p. In cases where

more than one occurrence of a subgraph satisfies this crite-

ria, the occurrence that minimizes the time difference from

the expected position is chosen. We note that the jitter

heuristic does not preserve the theoretic complexity bounds

of the algorithm, but is nonetheless efficient in practical

International Journal of Advanced and Innovative Research (2278-7844) / # 68 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 68

cases as we will demonstrate in Section 6.

4. Experimental Evaluation

We use four real-world dynamic social networks to eval-

uate our algorithm and the general characteristics of peri-

odic subgraphs.

41. Datasets

The tested dynamic social networks were collected using

a variety of sources and cover a range of social dynamics.

Enron E-mails The Enron e-mail corpus is a publicly avail-

able database of e-mails sent by and to employees of the

now defunct Enron corporation. 2 Timestamps, senders and

lists of recipients were extracted from message headers for

each e-mail on file. We chose a day as the quantization

timestep, with a directed interaction present if at least one

e-mail was sent between two individuals on a particular day.

Plains Zebra Social interactions of Plains zebra (Equus

burchelli) in Kenya were recorded by direct observations

made by behavioral ecologists from Princeton Univer-

sity [13]. The data is made from visual scans of the popula-

tions, typically once a day over periods of several months.

Each entity is a Plains zebra and the interactions represent

association as determined by GPS spatial proximity and the

domain knowledge of ecologists.

Reality Mining Cellphones with proximity tracking tech-

nology were distributed to 100 students at the Mas-

sachusetts Institute of Technology over the course of an aca-

demic year [11]. The timestep quantization was chosen as

4 hours [8].

IMDB Celebrities The Internet Movie Database (IMDB)3

maintains a large archive of tagged and dated photographs

of individuals associated with the production of commer-

cial entertainment, including actors, directors and musi-

cians. One might reasonably assert that a degree of social

association exists between people photographed together by

the popular press. Thus, similar to the methodology of the

Plains Zebra sightings, we collected metadata on 45,477

photos with two or more people, which collectively repre-

sents a partial structure of the social network of people as-

sociated with the entertainment industry. The quantization

period was one day.

4.2. Experimental Setup

We implemented our algorithm in C++ and ran it on

a dual-core AMD Athlon 64 system with 2 GB of RAM

2 Available at http://www.cs.cmu.edu/∼enron/
3 http://www.imdb.com

Dataset Vertices Timesteps Avg. density
Enron 82,614 2,588 0.028 ± 0.064
IMDB 15,011 13,967 0.22 ± 0.23
Plains Zebra 313 1,276 0.31 ± 0.27
Reality Mining 100 2,940 0.23 ± 0.17

Table 1. Dataset characteristics

and Linux kernel 2.6.24. The subgraph hash map was im-

plemented using the Google dense_hash_map library 4,

which is optimized for speed over memory usage. For fre-

quent closed subgraph mining, we converted the dynamic

networks to transactional itemsets using Proposition 5 and

used the open-source MAFIA algorithm [7] running on an

Intel Xeon quad-core server with 24 GB of RAM and Linux

kernel 2.6.22. Since mining frequent subgraphs at low min-

imum support is generally intractable, we started at a very

high minimum support value and progressively reduced it

until either the size of the mined pattern file exceeded 512

MB or the algorithm did not terminate after 5 days. 5

We first ran a series of experiments on our algorithm with

σ = 3 and no jitter, i.e. mining only perfectly repeating

patterns. We then ran a second set of experiments with σ =

3 and variable amounts of jitter. For Enron and IMDB, we
chose a jitter of ± 2 days so that the resulting 5-day slack

window would capture monthly and annual patterns, e.g.

those that occur on the first Monday of every month. Since

Reality Mining is a relatively dense and heavily periodic

dataset, we chose a minimal jitter value of ± 1 timestep, or
± 4 hours. For the Plains Zebra dataset, we chose the jitter
to be the average time between consecutive observations.

Table 2 shows the performance of our algorithm and

the number of periodic closed subgraphs mined from each

dataset. The frequent subgraph mining algorithm took on

the order of days to complete even at much higher mini-

mum support values than 3. However, since it is inherently

an exponential time algorithm, as compared to our poly-

nomial time periodic subgraph miner, we do not compare

their relative performances. Note that the P max parameter,

not the minimum support, is the determining factor in the

scalability of the algorithm. We left Pmax unrestricted, so

Table 2 represents worst-case performance in this regard.

4.3. Results

We return to our two initial claims: that dynamic so-

cial networks have inherent periodicity, and that these pe-

riodic interaction patterns can be extracted in an efficient

and tractable manner. We also comment on the usefulness

4 http://code.google.com/p/google-sparsehash/
5 The time and space requirements of the MAFIA algorithm grew expo-

nentially with decreasing σ, as is theoretically expected.

International Journal of Advanced and Innovative Research (2278-7844) / # 69 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 69

http://www.cs.cmu.edu/
http://www.imdb.com/
http://code.google.com/p/google-sparsehash/

C
o

u
n

t

C
o

u
n
t

C
o

u
n
t

C
o

u
n
t

Dataset No jitter Variable jitter

 Time (s) Memory (MB) # Patterns Jitter Time (s) Memory (MB) # Patterns
Enron 53.5 157 84,017 ± 2 150 180 863,112
IMDB 1.76 29 68 ± 2 1.89 29 276
Plains Zebra 3.56 27 2,241 ± 6 5.14 32 34,887
Reality Mining 156 110 98,258 ± 1 342 120 227,441

Table 2. Performance of the periodic subgraph mining algorithm at σ = 3.

of our proposed measure and on the qualitative properties

of some interesting mined subgraphs.

4.3.1 Inherent Periodicity

Figure 4 shows the distribution of periods of patterns mined

from the Enron and IMDB datasets. For Enron, we restrict

our attention to patterns with a high average purity, i.e. pat-

terns which are likely to capture truly periodic behavior. We

note that daily interaction patterns are the most prevalent pe-

riodic patterns, followed by weekly patterns as manifested

by the clear peak at p = 7. For the IMDB dataset, we no-

tice a similar peak at about p = 364. This can be explained

by celebrity sightings at annual events – awards shows, for

example. Thus, our algorithm captures the inherent peri-

odicity in the datasets with no prior knowledge and shows

supports below 25 for Enron and 11 for Plains (which mani-

fests in the left-truncated histograms for frequent subgraphs

in Figure 5), we can see that periodic subgraphs are much

fewer and exist at lower support levels than frequent sub-

graphs. Thus, under practical circumstances, the majority

of this important class of patterns would be out of reach of

frequent subgraph mining algorithms.

Figure 6 shows the size of the pattern tree at each

timestep for the Enron and Plains datasets on a logarith-

mic scale. It can be seen that the actual tree size is a small

fraction of the theoretical upper bound, even when the jitter

heuristic is used. Furthermore, limiting the maximum pe-

riod of mined patterns has a large impact on reducing the

tree size, as expected.

1e+6

promise as a tool for exploratory analysis. The Plains Zebra

dataset showed a wide range of periodicities, as one might

expect of animal behavior.

25
1000

20

1e+5

1e+4

1e+3

1e+2

1e+1

1e+0

Frequent

Periodic

0 10 20 30 40 50

Support

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1

1e+0

Frequent

Periodic

0 10 20 30 40 50 60 70

Support
100

15

10
10

1

(a) Plains: J = 6

(b) Enron: J = 0

0 5 10 15 20 25 30 35 40

Period

(a) Enron: J = 0,

avgP urity > 0.8

5

0 100 200 300 400

Period

(b) IMDB: J = 2

Figure 5. Partial view of support distribution
of frequent (gray) and periodic (black) pat-

terns. The frequent pattern distribution is

left-truncated due to intractability.

Figure 4. Number of patterns at each period

4.3.2 Tractability

Table 2 demonstrates that our algorithm is eminently

tractable in terms of execution time and space usage. How-

ever, periodic subgraph mining is also tractable in the sense

that, unlike frequent subgraph mining, it does not gener-

ate an overwhelming number of patterns. Figure 5 shows

characteristic examples of the support distribution of fre-

quent subgraphs compared to periodic subgraphs. Ignoring

the fact that we were unable to mine frequent subgraphs at

4.3.3 Qualitative Analysis

We now turn our attention to some qualitatively interesting

periodic subgraphs discovered by our algorithm illustrating

a range of periodic behavior. Figure 7(a) illustrates a some-

what complex pattern from the IMDB photo database that

repeated approximately every week. Although the support

is relatively low, what is interesting about this subgraph is

the repeated non-trivial grouping of people, all of whom

turned out to be contestants on a weekly ‘reality television’

show. Figure 7(b) is also from the IMDB database and is an

approximately annually repeating pattern. The three indi-

International Journal of Advanced and Innovative Research (2278-7844) / # 70 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 70

σ

T
re

e
 s

iz
e

T
re

e
 s

iz
e

1e+11
1e+10
1e+9
1e+8
1e+7
1e+6
1e+5
1e+4

Theoretical bound

Max. jitter = 2

Normal

1e+10

1e+9

1e+8

1e+7

1e+6

1e+5

1e+4

1e+3

Theoretical bound

Max. jitter = 6

 Normal

BillyRayCyrus

JoeyFatone

JohnRatzenberger

LailaAli

WilliamH.Macy

NicolletteSheridan

1e+3
1e+2
1e+1
1e+0

Pmax = 30 1e+2

1e+1

1e+0

Pmax = 40
HeatherMills

FelicityHuffman

0 500 1000 1500 2000 2500

Timestep

(a) Enron

0 200 400 600 800 1000 1200

Timestep

(b) Plains

ApoloOhno

(a) IMDB: period 7 ± 2, sup-

EvaLongoriaParker

(b) IMDB: period 364, support 3,

Figure 6. Number of pattern tree descriptors

compared to theoretical bound.
port 3, avg. purity 1 avg. purity 0.4

al@friedwire.com

viduals in the clique are actresses in a popular (circa 2004)

television show, while the fourth node is the spouse (as of

2008) of one of the actresses. Given this context, the low

average purity of the pattern is to be expected as the three

kevin.cline eric.saibi seung-taek.oh ryan.williams juan.padron

(c) Enron: period 1, support 84, avg. purity 1. Bold circles

represent @enron.com e-mail addresses.

actresses are very likely to have appeared together in be-

tween what are likely to be award shows. The nontrivial

links in such patterns are particularly interesting and are

indicative of the show’s progression or relationships other

than co-starring.

The subgraph shown in Figure 7(c) has the highest pe-

659

287

354

027

472

602

717

531

791

1132

050

626

649

139

587

051

191

402

1056

121

131

riodic support in the Enron dataset, repeating every day for

84 consecutive days, including weekends. This is repre-

(d) Plains: period 7, support 4, avg. purity 0.94.

sentative of a large number of similar periodic patterns in

Enron, in which one person emails a group of people with

periods ranging from 1 to 14 days. As shown earlier in Fig-

ure 4, weekly emails seem to be particularly popular in a

corporate setting such as this, and could be used to infer

functional communities within the corporation.

Finally, we turn to the Plains Zebra dataset and to one of

the most intriguing patterns shown in Figure 7(d). Although

485 727 1143

295 744

641

(e) Plains: period 61±6,

support 3, avg. purity 0.71

667

162

(f) Plains: period

81±6, support 4,

avg. purity 1

it is quite likely that the period of 7 days is an artifact of the

manner in which the population was sampled, the high pu-

rity of the pattern indicates that this is a relatively stable

grouping. It is also by far the largest and most repetitive

such pattern, parts of which are periodic at other times as

well. In contrast, the subgraphs that repeat over multiple

months are shown in Figures 7(e) and 7(f). Although the

support of the latter two patterns is relatively low, the high

purity of Figure 7(f) stands out and is representative of a

large number of small but highly periodic patterns. More-

over, all the patterns are of interactions of stallion male Ze-

bras and correspond to their harems grouping for a period

of time. Such groupings are indeed considered more stable

for short periods of time than bachelor associations [13].

5. Conclusion

We have proposed and formalized the periodic subgraph

mining problem for dynamic networks and analyzed the

Figure 7. Examples interesting periodic sub-
graphs.

computational complexity of enumerating all periodic sub-
graphs. We have shown that there are at most O(T 2 ln T)

closed periodic subgraphs at minimum support σ in a dy-

namic network of T timesteps. Furthermore, we have de-

scribed a polynomial time, one-pass algorithm to mine all

periodic subgraphs, including a ‘jitter’ heuristic for min-

ing subgraphs that are not perfectly periodic. We have also

proposed a new measure, purity, for ranking mined sub-

graphs according to how perfectly periodic a subgraph is.

We have demonstrated our algorithm on four real-world dy-

namic social networks, spanning interactions between cor-

porate executives, college students, wild Zebra and Holly-

wood celebrities. Our algorithm efficiently mines all peri-

odic patterns, and is a provably tractable and meaningful

alternative to using frequent subgraph mining to look for

International Journal of Advanced and Innovative Research (2278-7844) / # 71 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 71

mailto:al@friedwire.com
mailto:@enron.com

interesting patterns in dynamic networks. We have shown

that dynamic social networks contain inherently periodic

patterns, and our technique shows promise for exploratory

analysis of natural periodicities.

.

References

[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining As-

sociation Rules in Large Databases. In Proc. of the 20th Intl.

Conf. on Very Large Data Bases, pg. 487–499, 1994.
[2] A. L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert,

and T. Vicsek. Evolution of the social network of scientific

collaborations. Physica A, 311(3–4):590–614, 2002.

[3] T. Y. Berger-Wolf and J. Saia. A framework for analysis of

dynamic social networks. In Proc. of the 12th ACM SIGKDD

Intl. Conf. on Knowledge Discovery and Data Mining, pg.

523–528, 2006.
[4] K. M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther. Pat-

tern Mining in Frequent Dynamic Subgraphs. In Proc. of the

6th IEEE Intl. Conf. on Data Mining, pg. 818–822, 2006.
[5] E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On

the complexity of generating maximal frequent and minimal

infrequent sets. In Proc. of the 19th Annual Symp. on Theo-

retical Aspects of Computer Science, pg. 133–141, 2002.
[6] B. Bringmann and A. Zimmermann. The chosen few: On

identifying valuable patterns. In Proc. of the 7th IEEE Intl.

Conf. on Data Mining, pg. 63–72, 2007.
[7] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal

frequent itemset algorithm for transactional databases. Proc.

of the 17th Intl. Conf. on Data Eng., pg. 443–452, 2001.
[8] A. Clauset and N. Eagle. Persistence and Periodicity in a

Dynamic Proximity Network. DIMACS/DyDAn Wkshp. on

Comput. Methods for Dynamic Interaction Networks, 2007.
[9] P. Desikan and J. Srivastava. Mining Temporally Evolving

Graphs. In Proc. of WebKDD 2004, pg. 22–25, 2004.
[10] P. J. Dickinson, H. Bunke, A. Dadej, and M. Kraetzl. On

Graphs with Unique Node Labels, LNCS vol. 2726, pg. 409–

437. Springer Berlin, 2003.
[11] N. Eagle and A. S. Pentland. Reality mining: sensing com-

plex social systems. Personal and Ubiquitous Computing,

10(4):255–268, 2006.
[12] M. G. Elfeky, W. Aref, and A. Elmagarmid. Periodicity de-

tection in time series databases. IEEE Trans. on Knowledge

and Data Engineering, 17(7):875–887, 2005.
[13] I. R. Fischhoff, S. R. Sundaresan, J. Cordingley, H. M.

Larkin, M.-J. Sellier, and D. I. Rubenstein. Social rela-

tionships and reproductive state influence leadership roles

in movements of plains zebra, Equus burchellii. Animal Be-

haviour, 73(5):825–831, May 2007.

[14] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent Pattern

Mining: Current Status and Future Directions. Data Mining

and Knowledge Discovery, 15(1):55–86, 2007.

[15] J. Han, Y. Yin, and G. Dong. Efficient Mining of Partial Pe-

riodic Patterns in Time Series Database. In Proc. of the 15th

Intl. Conf. on Data Engineering, pg. 106–115, Los Alami-

tos, CA, 1999. IEEE Computer Society.

[16] H. He and A. Singh. Graphrank: Statistical modeling and

mining of significant subgraphs in the feature space. In Proc.

of the 6th Intl. Conf. on Data Mining, pg. 885–890, 2006.

[17] K.-Y. Huang and C.-H. Chang. SMCA: A General Model

for Mining Asynchronous Periodic Patterns in Tempo-

ral Databases. IEEE Trans. on Knowl.and Data Eng.,

17(6):774–785, 2005.

[18] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based al-

gorithm for mining frequent substructures from graph data.

In Proc. of the 4th Eur. Conf. on Principles of Data Mining

and Knowl. Disc., pg. 13–23, 2000.

[19] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and

D. Rubenstein. Energy-efficient computing for wildlife

tracking: design tradeoffs and early experiences with Ze-

braNet. ACM SIGPLAN Notices, 37(10):96–107, 2002.

[20] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and

inference problems for temporal networks. In Proc. of the

32nd annual ACM Symp. on Theory of Comput., pg. 504–

513, 2000.

[21] M. Kuramochi and G. Karypis. Frequent subgraph discov-

ery. Proc. of the 2001 IEEE Intl. Conf. on Data Mining, pg.

313–320, 2001.

[22] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over

time: densification laws, shrinking diameters and possible

explanations. In Proc. of the 11th ACM SIGKDD Intl. Conf.

on Knowl. Disc. in Data Mining, pg. 177–187, 2005.

[23] D. Liben-Nowell and J. Kleinberg. The link prediction prob-

lem for social networks. In Proc. of the 12th Intl. Conf. on

Inf. and Knowl. Management, pg. 556–559, 2003.

[24] S. Ma and J. L. Hellerstein. Mining partially periodic event

patterns with unknown periods. In Proc. of the 17th Intl.

Conf. on Data Eng., pg. 205–214, 2001.

[25] M. E. J. Newman. Clustering and preferential attachment in

growing networks. Physical Review E, 64(2):25102, 2001.

[26] M. E. J. Newman. The structure of scientific collaboration

networks. PNAS, 98:404–409, 2001.

[27] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient

mining of association rules using closed itemset lattices. In-

formation Systems, 24(1):25–46, 1999.

[28] S. Wasserman and K. Faust. Social Network Analysis: Meth-

ods and Applications. Cambridge University Press, 1994.

[29] G. Yang. The complexity of mining maximal frequent item-

sets and maximal frequent patterns. In Proc. of the 10th

ACM SIGKDD Intl. Conf. on Knowl. Disc. and Data Min-

ing, pg. 344–353, 2004.

[30] J. Yang, W. Wang, and P. S. Yu. Infominer+: Mining partial

periodic patterns with gap penalties. In Proc. of the 2002

IEEE Intl. Conf. on Data Mining, page 725, 2002.

[31] J. Yang, W. Wang, and P. S. Yu. Mining asynchronous pe-

riodic patterns in time series data. IEEE Trans. on Knowl.

and Data Eng., 15(3):613–628, 2003.

International Journal of Advanced and Innovative Research (2278-7844) / # 72 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 72

