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Abstract – This Paper deals with an autonomic, decentralized, 

QoSaware, middleware, whose function is to establish 

checkpointing arrangements among MHs dynamically within 

the MoG, allowing its constituent MHs to support practical 

collaborative computation. As wireless links are less reliable and 

MHs move at will, a given job executed by multiple MHs 

collaboratively, relies on efficient checkpointing to enable 

execution recovery upon a MoG component failure by 

transferring recently saved intermediate data and machine 

states to a substitute MoG component, so that execution can 

resume from the last checkpoint, saved prior to the failure. Our 

checkpointing methodology requires no BS to achieve its 

function as checkpointing is handled within the MoG by keeping 

checkpointed data from a given MH at immediate neighboring 

MHs. Our methodology also facilitates encapsulation of the 

checkpointing function within the MoG, making it transparent 

to the wired-Grid or mobile client being served. Thus, in order 

to limit the use of relatively unreliable wireless links, and 

further to minimize the consumption of wireless host’s memory 

resources and energy, each MH sends its checkpointed data to 

one selected neighboring MH, and also serves to take 

checkpointed data from one approved neighboring MH, 

realizing a decentralized form of checkpointing. It provides 

implications for resource scheduling, checkpoint interval 

control, and application QoS level negotiation. It fills a novel 

niche component of the ever developing field of MoG 

middleware, by proposing and demonstrating how QoS-aware 

functionality can be practically and efficiently added. 
 

Keywords—Checkpointing, computational Grids, Mobile Grid 

systems, Decentralized Checkpointing, Bayesian Estimation, 

Grid Computing, Mobile Computing 

 

 

I. INTRODUCTION 

While most existing Grids refer to clusters of computing and 

storage resources which are wire-interconnected for offering 

utility services collaboratively, Mobile Grids (MoGs) are 

receiving growing attention and expected to become a critical 

part of a future computational Grid involving mobile hosts to 

facilitate user access to the Grid and to also offer computing 

resources. A MoG can involve a number of mobile hosts 

(MHs), i.e., laptop computers, cell phones, PDAs, or 

wearable computing gear, having wireless interconnections 

among one another, or to access points. Indeed, a recent push 

by HP to equip business notebooks with integrated global 

broadband wireless connectivity, has made it possible to form 

a truly mobile Grid (MoG) that consist of MHs providing 

computing utility services collaboratively, with or without 

connections to a wired Grid. 
Due to mobility and intermittent wireless link loss, 

all such scenarios call for robust checkpointing and recovery 

to support execution, minimizing execution rewind, and 

recovery rollback delay penalties. Depending upon the 

application’s or job’s tolerance for such delay, its 

performance can be poor or it can be rendered totally 

inoperative and useless. Our Reliability Driven middleware, 

ReD, allows an MoG scheduler to make informed decisions, 

selectively submitting job portions to hosts having superior 

checkpointing arrangements in order to ensure successful 

completion by 1) providing highly reliable checkpointing, 

increasing the probability of successful recovery, minimizing 
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rollback delay, and 2) providing performance prediction to 

the scheduler, enabling the client’s specified maximum delay 

tolerance to be better negotiated and matched with MoG 

resource capabilities. Suitable for scientific applications, 

MoGs are particularly useful in remote areas where access to 

the wired Grid is infeasible, and autonomous, collaborative 

computing is needed.  
Checkpointing is thus crucial for practical and 

feasible job completion, for without it, the MoG’s potential is 

severely limited. ReD works to maximize the probability of 

checkpointed data recovery during job execution, increasing 

the likelihood that a distributed application, executed on the 

MoG, completes without sustaining an unrecoverable failure. 

It allows collaborative services to be offered practically and 

autonomously by the MoG. Simulations and actual testbed 

implementation show ReD’s favorable recovery probabilities 

with respect to Random Checkpointing Arrangement (RCA) 

middleware, a QoS-blind comparison protocol producing 

random arbitrary checkpointing arrangements.  
The rest of this paper is organized as follows: 

Section 2 outlines related checkpointing work in wire-

connected Grid systems and wireless systems with BSs. 

Section 3 discusses our proposed Reliability Driven (ReD) 

middleware. Section 4 Bayesian Estimation Algorithm 

Description. Section 5 concludes the article. 
 

II. RELATED WORK 
 

At any time during job execution, a host or link failure may 

lead to severe performance degradation or even total job 

abortion, unless execution checkpointing is incorporated. 

Checkpointing forces hosts involved in job execution to 

periodically save intermediate states, registers, process 

control blocks, messages, logs, etc., to stable storage. This 

stored checkpoint information can then be used to resume job 

execution at a substitute host chosen to run the recovered 

application in place of the failed host. Upon  host failure or 

inadvertent link disconnection, job execution at a substitute 

host can then be resumed from the last good checkpoint. This 

crucial function avoids having to start job execution all over 

again from the very beginning in the presence of every 

failure, thus substantially enhancing the performance realized 

by grid applications. 

 

A. Checkpointing in Wired Grid Systems 
Checkpointing in wired Grid systems has been investigated 

earlier with various methodologies proposed [7], [8], [9], 

[10],  [11], [12], [13], [14]  where hosts are connected by low 

latency, high-speed, wired links having low link and host 

failure rates [8], [11]. Diskless checkpointing sends 

checkpointed data to a cluster neighbor (instead of a local 

disk), in an attempt to reduce checkpointing time overhead 

on a LAN [10]. This works if message transmission time is 

less than disk-write time, a realistic possibility for a wired 

network. The method fails, however, to consider which 

neighbor or network path is best used to reach storage. 

Recent work on portable checkpointing for wired Grids 

assumes a centralized “middleware” support for applications, 

checkpointing, and recovery [10]. However, the MoG often 

requires decentralized ad-hoc support of Checkpointing and 

recovery, due to its highly unreliable wireless connections 

and mobile environment. 
 

B. Checkpointing in Wireless Systems with BSs 
 

Mobile devices will be an integral part of distributed 

computing as their computational and storage abilities grow. 

Wireless communications advances, leading to high 

bandwidth and robustness, will enable such devices to 

practically operate as part of the computational Grid. Hence, 

checkpointing in wireless computing systems has received 

growing attention, with solution approaches treated. 

Specifically, a checkpointing tool for the Palm Operating 

System has been developed [15] providing a set of APIs to 

enable checkpointing functionality on top of the Palm OS. It 

is useful because the Palm OS causes a reset of the handheld 

computer upon power loss. With this methodology, 

checkpointed data must be stored on stable safe storage (i.e., 

a computer server or PC, dubbed a base station, BS, on a 

wired network). The methodology is supported by recent 

routing mechanisms that interconnect inadvertently 

partitioned adhoc MH networks [19]. Checkpointing wireless 

MHs to BSs has its own drawbacks, however, when not all 

MHs are adjacent to BSs or when BSs do not exist (like the 

MoG at hand).  Mobility is a major impediment to moving 

checkpointed data from MH to BS. A complication is that 

routes between MH and BS change frequently due to varying 

wireless links, complete and intermittent disconnections, and 

mobility. The frequent need for multihop relays of 

checkpoint messages to access wired storage can lead to 

heavy traffic, significant latency, and needless power 

consumption due to collisions and  interference. 
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III. DECENTRALIZED CHECKPOINTING IN THE 

MOG 

This work focuses on the MH checkpointing arrangement 

mechanism, seeking superior checkpointing arrangements to 

maximize the probability of distributed application 

completion without sustaining an unrecoverable failure. It 

deals with MoG checkpointing among neighboring MHs 

without any access point or BS. 

 

A. ReD’s Heuristic Basis 

ReD’s algorithm takes into account desired behavioural 

controlling heuristics in the following ways. First, we require 

the MoG to be capable of autonomous operation without an 

access point or BS and further to reduce the use of relatively 

unreliable wireless links. ReD ensures this by storing 

checkpointed data only at neighboring MHs, within the MoG, 

and not requiring BS access or checkpoint transmission over 

multiple hops. Second, in a MoG, dynamicity ensures that a 

checkpointing arrangement must be converged rapidly and 

efficiently, even though it may only be close to optimal. 

While it is true that poor checkpointing arrangements play a 

role in reducing the Ri, we seek to maximize, so too do 

unconverged arrangements (i.e., arrangements where a 

significant percentage of consumers are still seeking to 

establish Checkpointing relationships with providers). To 

ensure convergence within a reasonable time, ReD employs 

four strategies: 

 

1. ReD is supported by a clustering algorithm, which 

partitions the global MoG into clusters, allowing ReD to 

quickly and concurrently find superior arrangements within 

each cluster instead of having to labor toward a global MoG 

solution. While many clustering algorithms have been 

proposed for general ad-hoc networks, a simple clustering 

algorithm is devised and adopted both in our simulator and in 

our working testbed as a functional support layer for ReD,  
2. ReD makes decisions about whether to request, accept, or 

break checkpointing relationships, locally (at the MH level) 

and in a fully distributed manner, instead of attempting a 

high-level centralized or global consensus, 
3. ReD keeps checkpoint transmissions local, i.e., neighbor to 

neighbor, not requiring multiple hops and significant 

additional transmission overhead to achieve checkpointing 

relationships, and 
4. ReD allows a given consumer or provider to breakits 

existing checkpointing relationship (when a provider breaks a 

checkpointing relationship, a break message is transmitted to 

the consumer) only when the arrangement reliability 

improvement is significant, thus promoting stability. 

 

B. ReD’s Methodology 
An executing host is considered to be in “failure,” if wireless 

connections to all of its neighbors are disrupted temporarily 

or permanently, resulting in its isolation and inability to 

achieve timely delivery of intermediate or final application 

results to other hosts. Executing MHs with poor connectivity, 

have greater likelihood of experiencing failure than do those 

with greater connectivity and are thus in greater need of 

checkpointing to the best, most reliably connected providers. 

In order to evaluate and compare the strength of progressive 

checkpointing arrangements, we calculate the reliability, Ri, 

of the whole arrangement on the MoG structure (Mi). Link 

signal strength decreases inversely with the square of the 

distance between linked hosts. Reliability mapping for the 

link is thus based on this assumed signal strength profile with 

environment. ReD’s heuristic method ensures that 

checkpointing arrangement decisions aremade locally and 

individually at the host level,  promoting rapid convergence, 

while a threshold mechanism is included in order to provide 

stability control. 

 

 

 

 
 

Fig: 1. Architecture Diagram 
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IV. BAYESIAN ESTIMATION ALGORITHM DESCRIPTION 

Given parametric model and data, estimate model paramters 

(→ same setting as MLE). Bayesian estimation ≠ Bayes’ 

rule. Pick the class which is most probable given the data. 
For Bayes’ rule, probability distribution is assumed to be 

given. Even if we use parametric inference to obtain it, we 

may e. g. use MLE rather than Bayesian estimation. Modeled 

by parametric likelihood. Considers only maximizer of the 

likelihood. Consider all possible values of θ.  

1) To rank them against one another, we need their 

distribution.  

2) To take the data into account, we need a conditional 

distribution of θ|x.  

→ how can we obtain p(θ|x) from likelihood?. Posterior: 

Start with p(θ, x) and plug in definition of conditional 

distribution. 

Result:   

p(θ|x) = p(x|θ)p(θ)/p(x) 

Consequence: To obtain data conditional distribution of θ 

(“posterior”) from likelihood p(x|θ), we have to provide p(θ) 

(“prior”). In other words: For MLE, we need one model 

assumption (likelihood). To work with a full distribution of 

the parameter, we need a second model assumption (prior). 

Since distribution of θ|x is provided by Bayes’ formula, 

estimation based on posterior distribution is called Bayesian 

estimation. 

Terms of Bayes’ formula: 

p(θ|x) = p(x|θ)p(θ) / p(x) 

posterior = likelihood × prior / evidence 

Evidence p(x): Since data is assumed to be given (→ x 

fixed), p(x) is a normalization constant. Always think of the 

likelihood as a function of θ:  

1) Likelihood p(x|θ) is a density w.r.t. x, but x is fixed to one 

particular value.  

2)  p(x|θ) is no density w.r.t. θ (i. e. not normalized). Some 

people emphasize this by writing e. g. l(θ) instead of p(x|θ). 

Generative model of the data. Prior - User input! This is the 

key point of criticism often voiced concerning Bayesian 

methods 

Approach 1: Maximize it. This is called maximum a 

posteriori estimation (MAP) and is the direct counterpart to 

MLE (Considers only maximizer of the likelihood). We can 

apply the logarithm trick and obtain: 

 

Evidence p(x) not required. Not really Bayesian estimation: 

Estimate once again restricted to single value. We have 

penalized MLE by prior knowledge. 

Approach 2: Compute expectations. 

1. If interested in parameter estimate: Compute expectation 

w.r.t. posterior, 

 
2. If interested in some statistic f(θ): Compute Eθ|x [f(θ)]. 

This is a “full” Bayesian approach. 

Problem 1: Normalization. How do we compute the 

normalization constant p(x) (the evidence)? 

 

1) Evidence is value of joined distribution of sample x1, ..., 

xn at the single point (x1, ..., xn). We cannot hope to estimate 

p(x) from a single point!  

 

2)  Evidence is also normalization constant of posterior, so   
 

 
 

integrate. 
Problem 2: Expectations require integration against 

Analytic integration- Perfect if it works, but 

even for many simple standard models (e. g. Gaussian 

likelihood + Cauchy prior), integral has no analytic solution. 

Quadrature-Next step if analysis does not work. Problem: 

Curse of dimensionality. (Example: Estimate parameters of 

       Monte Carlo 

integration-E. g. MCMC sampling. Very powerful, but 

requires some expertise. 
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C. Conjugate pairs 
Let the likelihood be in a family P1 of distributions (e. g. P1 

= Gaussian densities), and the prior in P2. Likelihood and 

prior form a conjugate pair, if the resulting posterior is again 

in P2. This Meaning is Many standard models have a known 

conjugate prior, which is also a standard model. Most 

standard models can be handled analytically. Therefore: If 

our model has a conjugate prior, and if it is a meaningful 

prior for our problem, we will be able to deal with the 

posterior. Some examples (likelihood/prior): Gaussian 

multinomial/Dirichlet. The data “updates” the parameter 

values. 
 

V. CONCLUSION 

As earlier proposed checkpointing approaches cannot be 

applied directly to MoGs and are not QoS-aware, we have 

dealt with QoS-aware checkpointing and recovery 

specifically for MoGs, with this paper focusing solely on 

Checkpointing arrangement. It has been demonstrated via 

simulation and actual testbed studies, that ReD achieves 

significant reliability gains by quickly and efficiently 

determining checkpointing arrangements for most MHs in a 

MoG. ReD is shown to outperform its RCA counterpart in 

terms of the average reliability metric and does so with fewer 

required messages and superior stability (which is crucial to 

the checkpoint arrangement, minimization of latency, and 

wireless bandwidth utilization). Because ReD was tailored 

for a relatively unreliable wireless mobile environment, its 

design achieves its checkpoint arrangement functions in a 

lightweight, distributed manner, while maintaining both low 

memory and transmission energy footprints.This work has 

marked implications for resource scheduling, checkpoint 

interval control, and application QoS level negotiation. It fills 

a novel niche component of the ever developing field of 

MoG middleware, by proposing and demonstrating how 

QoS-aware functionality can be practically and efficiently 

added and how Bayesian estimation algorithm used for 

updating the data’s. 
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