
Frequent Data Updating Using Random

Checkpointing Arrangement in Decentralized

Mobile Grid Computing

Mr. S. P. Santhoshkumar
#1

, Mr. D. Prabakar
#2

, Dr. S. Karthik
#3

#1

Assistant Professor, Department of CSE, SNS Collefe of Technology, Coimbatore, India.
E-Mail ID: spsanthoshkumar@gmail.com

#2
Assistant Professor, Department of CSE, SNS Collefe of Technology, Coimbatore, India.

E-Mail ID: prabakaralam@gmail.com
#3

professor & Dean, Department of CSE, SNS Collefe of Technology, Coimbatore, India.

E-Mail ID: profskarthick@gmail.com

Abstract – This Paper deals with an autonomic, decentralized,

QoSaware, middleware, whose function is to establish

checkpointing arrangements among MHs dynamically within

the MoG, allowing its constituent MHs to support practical

collaborative computation. As wireless links are less reliable and

MHs move at will, a given job executed by multiple MHs

collaboratively, relies on efficient checkpointing to enable

execution recovery upon a MoG component failure by

transferring recently saved intermediate data and machine

states to a substitute MoG component, so that execution can

resume from the last checkpoint, saved prior to the failure. Our

checkpointing methodology requires no BS to achieve its

function as checkpointing is handled within the MoG by keeping

checkpointed data from a given MH at immediate neighboring

MHs. Our methodology also facilitates encapsulation of the

checkpointing function within the MoG, making it transparent

to the wired-Grid or mobile client being served. Thus, in order

to limit the use of relatively unreliable wireless links, and

further to minimize the consumption of wireless host’s memory

resources and energy, each MH sends its checkpointed data to

one selected neighboring MH, and also serves to take

checkpointed data from one approved neighboring MH,

realizing a decentralized form of checkpointing. It provides

implications for resource scheduling, checkpoint interval

control, and application QoS level negotiation. It fills a novel

niche component of the ever developing field of MoG

middleware, by proposing and demonstrating how QoS-aware

functionality can be practically and efficiently added.

Keywords—Checkpointing, computational Grids, Mobile Grid

systems, Decentralized Checkpointing, Bayesian Estimation,

Grid Computing, Mobile Computing

I. INTRODUCTION

While most existing Grids refer to clusters of computing and

storage resources which are wire-interconnected for offering

utility services collaboratively, Mobile Grids (MoGs) are

receiving growing attention and expected to become a critical

part of a future computational Grid involving mobile hosts to

facilitate user access to the Grid and to also offer computing

resources. A MoG can involve a number of mobile hosts

(MHs), i.e., laptop computers, cell phones, PDAs, or

wearable computing gear, having wireless interconnections

among one another, or to access points. Indeed, a recent push

by HP to equip business notebooks with integrated global

broadband wireless connectivity, has made it possible to form

a truly mobile Grid (MoG) that consist of MHs providing

computing utility services collaboratively, with or without

connections to a wired Grid.
Due to mobility and intermittent wireless link loss,

all such scenarios call for robust checkpointing and recovery

to support execution, minimizing execution rewind, and

recovery rollback delay penalties. Depending upon the

application’s or job’s tolerance for such delay, its

performance can be poor or it can be rendered totally

inoperative and useless. Our Reliability Driven middleware,

ReD, allows an MoG scheduler to make informed decisions,

selectively submitting job portions to hosts having superior

checkpointing arrangements in order to ensure successful

completion by 1) providing highly reliable checkpointing,

increasing the probability of successful recovery, minimizing

International Journal of Advanced and Innovative Research (2278-7844) / # 426/ Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 426

mailto:spsanthoshkumar@gmail.com

rollback delay, and 2) providing performance prediction to

the scheduler, enabling the client’s specified maximum delay

tolerance to be better negotiated and matched with MoG

resource capabilities. Suitable for scientific applications,

MoGs are particularly useful in remote areas where access to

the wired Grid is infeasible, and autonomous, collaborative

computing is needed.
Checkpointing is thus crucial for practical and

feasible job completion, for without it, the MoG’s potential is

severely limited. ReD works to maximize the probability of

checkpointed data recovery during job execution, increasing

the likelihood that a distributed application, executed on the

MoG, completes without sustaining an unrecoverable failure.

It allows collaborative services to be offered practically and

autonomously by the MoG. Simulations and actual testbed

implementation show ReD’s favorable recovery probabilities

with respect to Random Checkpointing Arrangement (RCA)

middleware, a QoS-blind comparison protocol producing

random arbitrary checkpointing arrangements.
The rest of this paper is organized as follows:

Section 2 outlines related checkpointing work in wire-

connected Grid systems and wireless systems with BSs.

Section 3 discusses our proposed Reliability Driven (ReD)

middleware. Section 4 Bayesian Estimation Algorithm

Description. Section 5 concludes the article.

II. RELATED WORK

At any time during job execution, a host or link failure may

lead to severe performance degradation or even total job

abortion, unless execution checkpointing is incorporated.

Checkpointing forces hosts involved in job execution to

periodically save intermediate states, registers, process

control blocks, messages, logs, etc., to stable storage. This

stored checkpoint information can then be used to resume job

execution at a substitute host chosen to run the recovered

application in place of the failed host. Upon host failure or

inadvertent link disconnection, job execution at a substitute

host can then be resumed from the last good checkpoint. This

crucial function avoids having to start job execution all over

again from the very beginning in the presence of every

failure, thus substantially enhancing the performance realized

by grid applications.

A. Checkpointing in Wired Grid Systems
Checkpointing in wired Grid systems has been investigated

earlier with various methodologies proposed [7], [8], [9],

[10], [11], [12], [13], [14] where hosts are connected by low

latency, high-speed, wired links having low link and host

failure rates [8], [11]. Diskless checkpointing sends

checkpointed data to a cluster neighbor (instead of a local

disk), in an attempt to reduce checkpointing time overhead

on a LAN [10]. This works if message transmission time is

less than disk-write time, a realistic possibility for a wired

network. The method fails, however, to consider which

neighbor or network path is best used to reach storage.

Recent work on portable checkpointing for wired Grids

assumes a centralized “middleware” support for applications,

checkpointing, and recovery [10]. However, the MoG often

requires decentralized ad-hoc support of Checkpointing and

recovery, due to its highly unreliable wireless connections

and mobile environment.

B. Checkpointing in Wireless Systems with BSs

Mobile devices will be an integral part of distributed

computing as their computational and storage abilities grow.

Wireless communications advances, leading to high

bandwidth and robustness, will enable such devices to

practically operate as part of the computational Grid. Hence,

checkpointing in wireless computing systems has received

growing attention, with solution approaches treated.

Specifically, a checkpointing tool for the Palm Operating

System has been developed [15] providing a set of APIs to

enable checkpointing functionality on top of the Palm OS. It

is useful because the Palm OS causes a reset of the handheld

computer upon power loss. With this methodology,

checkpointed data must be stored on stable safe storage (i.e.,

a computer server or PC, dubbed a base station, BS, on a

wired network). The methodology is supported by recent

routing mechanisms that interconnect inadvertently

partitioned adhoc MH networks [19]. Checkpointing wireless

MHs to BSs has its own drawbacks, however, when not all

MHs are adjacent to BSs or when BSs do not exist (like the

MoG at hand). Mobility is a major impediment to moving

checkpointed data from MH to BS. A complication is that

routes between MH and BS change frequently due to varying

wireless links, complete and intermittent disconnections, and

mobility. The frequent need for multihop relays of

checkpoint messages to access wired storage can lead to

heavy traffic, significant latency, and needless power

consumption due to collisions and interference.

International Journal of Advanced and Innovative Research (2278-7844) / # 427/ Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 427

III. DECENTRALIZED CHECKPOINTING IN THE

MOG

This work focuses on the MH checkpointing arrangement

mechanism, seeking superior checkpointing arrangements to

maximize the probability of distributed application

completion without sustaining an unrecoverable failure. It

deals with MoG checkpointing among neighboring MHs

without any access point or BS.

A. ReD’s Heuristic Basis

ReD’s algorithm takes into account desired behavioural

controlling heuristics in the following ways. First, we require

the MoG to be capable of autonomous operation without an

access point or BS and further to reduce the use of relatively

unreliable wireless links. ReD ensures this by storing

checkpointed data only at neighboring MHs, within the MoG,

and not requiring BS access or checkpoint transmission over

multiple hops. Second, in a MoG, dynamicity ensures that a

checkpointing arrangement must be converged rapidly and

efficiently, even though it may only be close to optimal.

While it is true that poor checkpointing arrangements play a

role in reducing the Ri, we seek to maximize, so too do

unconverged arrangements (i.e., arrangements where a

significant percentage of consumers are still seeking to

establish Checkpointing relationships with providers). To

ensure convergence within a reasonable time, ReD employs

four strategies:

1. ReD is supported by a clustering algorithm, which

partitions the global MoG into clusters, allowing ReD to

quickly and concurrently find superior arrangements within

each cluster instead of having to labor toward a global MoG

solution. While many clustering algorithms have been

proposed for general ad-hoc networks, a simple clustering

algorithm is devised and adopted both in our simulator and in

our working testbed as a functional support layer for ReD,
2. ReD makes decisions about whether to request, accept, or

break checkpointing relationships, locally (at the MH level)

and in a fully distributed manner, instead of attempting a

high-level centralized or global consensus,
3. ReD keeps checkpoint transmissions local, i.e., neighbor to

neighbor, not requiring multiple hops and significant

additional transmission overhead to achieve checkpointing

relationships, and
4. ReD allows a given consumer or provider to breakits

existing checkpointing relationship (when a provider breaks a

checkpointing relationship, a break message is transmitted to

the consumer) only when the arrangement reliability

improvement is significant, thus promoting stability.

B. ReD’s Methodology
An executing host is considered to be in “failure,” if wireless

connections to all of its neighbors are disrupted temporarily

or permanently, resulting in its isolation and inability to

achieve timely delivery of intermediate or final application

results to other hosts. Executing MHs with poor connectivity,

have greater likelihood of experiencing failure than do those

with greater connectivity and are thus in greater need of

checkpointing to the best, most reliably connected providers.

In order to evaluate and compare the strength of progressive

checkpointing arrangements, we calculate the reliability, Ri,

of the whole arrangement on the MoG structure (Mi). Link

signal strength decreases inversely with the square of the

distance between linked hosts. Reliability mapping for the

link is thus based on this assumed signal strength profile with

environment. ReD’s heuristic method ensures that

checkpointing arrangement decisions aremade locally and

individually at the host level, promoting rapid convergence,

while a threshold mechanism is included in order to provide

stability control.

Fig: 1. Architecture Diagram

International Journal of Advanced and Innovative Research (2278-7844) / # 428/ Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 428

IV. BAYESIAN ESTIMATION ALGORITHM DESCRIPTION

Given parametric model and data, estimate model paramters

(→ same setting as MLE). Bayesian estimation ≠ Bayes’

rule. Pick the class which is most probable given the data.
For Bayes’ rule, probability distribution is assumed to be

given. Even if we use parametric inference to obtain it, we

may e. g. use MLE rather than Bayesian estimation. Modeled

by parametric likelihood. Considers only maximizer of the

likelihood. Consider all possible values of θ.

1) To rank them against one another, we need their

distribution.

2) To take the data into account, we need a conditional

distribution of θ|x.

→ how can we obtain p(θ|x) from likelihood?. Posterior:

Start with p(θ, x) and plug in definition of conditional

distribution.

Result:

p(θ|x) = p(x|θ)p(θ)/p(x)

Consequence: To obtain data conditional distribution of θ

(“posterior”) from likelihood p(x|θ), we have to provide p(θ)

(“prior”). In other words: For MLE, we need one model

assumption (likelihood). To work with a full distribution of

the parameter, we need a second model assumption (prior).

Since distribution of θ|x is provided by Bayes’ formula,

estimation based on posterior distribution is called Bayesian

estimation.

Terms of Bayes’ formula:

p(θ|x) = p(x|θ)p(θ) / p(x)

posterior = likelihood × prior / evidence

Evidence p(x): Since data is assumed to be given (→ x

fixed), p(x) is a normalization constant. Always think of the

likelihood as a function of θ:

1) Likelihood p(x|θ) is a density w.r.t. x, but x is fixed to one

particular value.

2) p(x|θ) is no density w.r.t. θ (i. e. not normalized). Some

people emphasize this by writing e. g. l(θ) instead of p(x|θ).

Generative model of the data. Prior - User input! This is the

key point of criticism often voiced concerning Bayesian

methods

Approach 1: Maximize it. This is called maximum a

posteriori estimation (MAP) and is the direct counterpart to

MLE (Considers only maximizer of the likelihood). We can

apply the logarithm trick and obtain:

Evidence p(x) not required. Not really Bayesian estimation:

Estimate once again restricted to single value. We have

penalized MLE by prior knowledge.

Approach 2: Compute expectations.

1. If interested in parameter estimate: Compute expectation

w.r.t. posterior,

2. If interested in some statistic f(θ): Compute Eθ|x [f(θ)].

This is a “full” Bayesian approach.

Problem 1: Normalization. How do we compute the

normalization constant p(x) (the evidence)?

1) Evidence is value of joined distribution of sample x1, ...,

xn at the single point (x1, ..., xn). We cannot hope to estimate

p(x) from a single point!

2) Evidence is also normalization constant of posterior, so

integrate.
Problem 2: Expectations require integration against

Analytic integration- Perfect if it works, but

even for many simple standard models (e. g. Gaussian

likelihood + Cauchy prior), integral has no analytic solution.

Quadrature-Next step if analysis does not work. Problem:

Curse of dimensionality. (Example: Estimate parameters of

 Monte Carlo

integration-E. g. MCMC sampling. Very powerful, but

requires some expertise.

International Journal of Advanced and Innovative Research (2278-7844) / # 429/ Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 429

C. Conjugate pairs
Let the likelihood be in a family P1 of distributions (e. g. P1

= Gaussian densities), and the prior in P2. Likelihood and

prior form a conjugate pair, if the resulting posterior is again

in P2. This Meaning is Many standard models have a known

conjugate prior, which is also a standard model. Most

standard models can be handled analytically. Therefore: If

our model has a conjugate prior, and if it is a meaningful

prior for our problem, we will be able to deal with the

posterior. Some examples (likelihood/prior): Gaussian

multinomial/Dirichlet. The data “updates” the parameter

values.

V. CONCLUSION

As earlier proposed checkpointing approaches cannot be

applied directly to MoGs and are not QoS-aware, we have

dealt with QoS-aware checkpointing and recovery

specifically for MoGs, with this paper focusing solely on

Checkpointing arrangement. It has been demonstrated via

simulation and actual testbed studies, that ReD achieves

significant reliability gains by quickly and efficiently

determining checkpointing arrangements for most MHs in a

MoG. ReD is shown to outperform its RCA counterpart in

terms of the average reliability metric and does so with fewer

required messages and superior stability (which is crucial to

the checkpoint arrangement, minimization of latency, and

wireless bandwidth utilization). Because ReD was tailored

for a relatively unreliable wireless mobile environment, its

design achieves its checkpoint arrangement functions in a

lightweight, distributed manner, while maintaining both low

memory and transmission energy footprints.This work has

marked implications for resource scheduling, checkpoint

interval control, and application QoS level negotiation. It fills

a novel niche component of the ever developing field of

MoG middleware, by proposing and demonstrating how

QoS-aware functionality can be practically and efficiently

added and how Bayesian estimation algorithm used for

updating the data’s.

VI. REFERENCES

[1] Paul J. Darby and Nian-Feng Tzeng, “Decentralized QoS-Aware

Checkpointing Arrangement in Mobile Grid Computing” IEEE

transactions on Mobile Computing, vol. 9, no. 8, August 2010.

[2] SUN Microsystems, “Sun Grid Compute Utility,”

http://www.sun.com/service/sungrid, 2006.

[3] Hewlett-Packard Development Company, L.P., “Grid-

Computing—Extending the Boundaries of Distributed IT,”

http://h71028.www7.hp.com/ERC/downloads/4AA03675ENW.p

df?jumpid=reg_R1002_USEN, Jan. 2007.

[4] “IBM Grid Computing,” http://www-

1.ibm.com/grid/about_grid/what_is.shtml, Jan. 2007.

[5] S. Wesner et al., “Mobile Collaborative Business Grids—A

Short Overview of the Akogrimo Project,” white paper,

Akogrimo Consortium, 2006.

[6] Computerworld, “HP Promises Global Wireless for Notebook

PCs,”

http://www.computerworld.com/mobiletopics/mobile/story/0,108

01,110218,00.html?source=NLT_AM&nid=110218, Apr. 2006.

[7] J. Long, W. Fuchs, and J. Abraham, “Compiler-Assisted Static

Checkpoint Insertion,” Proc. Symp. Fault-Tolerant Computing,

pp. 58-65, July 1992.

[8] K. Ssu, B. Yao, and W. Fuchs, “An Adaptive Checkpointing

Protocol to Bound Recovery Time with Message Logging,” Proc.

18th Symp. Reliable Distributed Systems, pp. 244-252, Oct.

1999.

[9] N. Neves and W. Fuchs, “Coordinated Checkpointing without

Direct Coordination,” Proc. Int’l Computer Performance and

Dependability Symp., pp. 23-31, Sept. 1998.

[10] W. Gao, M. Chen, and T. Nanya, “A Faster Checkpointing and

Recovery Algorithm with a Hierarchical Storage Approach,”

Proc. Eighth Int’l Conf. High-Performance Computing in Asia-

Pacific Region, pp. 398-402, Nov. 2005.

[11] R. de Camargo, F. Kon, and A. Goldman, “Portable

Checkpointing and Communications for BSP Applications on

Dynamic Heterogenous Grid Environments,” Proc. Int’l Symp.

Computer Architecture and High Performance Computing, pp.

226-234, Oct. 2005.

[12] L. Wang et al., “Modeling Coordinated Checkpointing for Large-

Scale Supercomputers,” Proc. Int’l Conf. Dependable Systems

and Networks, pp. 812-821, July 2005.

[13] A. Agbaria and W. Sanders, “Application-Driven Coordination-

Free Distributed Checkpointing,” Proc. 25th IEEE Conf.

Distributed Computing Systems, pp. 177-186, June 2005.

[14] A. Oliner, R. Sahoo, J. Moreira, and M. Gupta, “Performance

Implications of Periodic Checkpointing on Large-Scale Cluster

Systems,” Proc. 19th IEEE Int’l Conf. Parallel and Distributed

Processing Symp., Apr. 2005.

[15] C. Lin, S. Kuo, and Y. Huang, “A Checkpointing Tool for Palm

Operating System,” Proc. Int’l Conf. Dependable Systems and

Networks, pp. 71-76, July 2001.

[16] D. Pradhan, P. Krishna, and N. Vaidya, “Recoverable Mobile

Environment: Design and Trade-Off Analysis,” Proc. Symp.

Fault- Tolerant Computing, pp. 16-25, June 1996.

[17] H. Higaki and M. Takizawa, "Checkpoint-Recovery Protocol for

Reliable Mobile Systems," Proc. 17th IEEE Symp. Reliable

Distributed Systems, pp. 93-99, Oct. 1998.

International Journal of Advanced and Innovative Research (2278-7844) / # 430/ Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 430

[18] C. Ou, K. Ssu, and H. Jiau, "Connecting Network Partitions with

Location-Assisted Forwarding Nodes in Mobile Ad Hoc

Environments," Proc. 10th IEEE Pacific Rim Int'l Symp.

Dependable Computing, pp. 239-247, Mar. 2004.

[19] K. Ssu et al., "Adaptive Checkpointing with Storage Management

for Mobile Environments," IEEE Trans. Reliability, vol. 48, no.

4, pp. 315-324, Dec. 1999.

[20] G. Cao and M. Singhal, "Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing Systems," IEEE

Trans. Parallel and Distributed Systems, vol. 12, no. 2, pp. 157-

172, Feb. 2001.

International Journal of Advanced and Innovative Research (2278-7844) / # 431/ Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 431

