
Framework for XML Document Classification
N.J.Divya Sree

#
, P.Kavya Lekha

*
, M.Divya

#

#
Dept of CSE, K.L. University

Vaddeswaram,Guntur,A.P.India
1
divya.nuti@gmail.com

3
divyam.1293@gmail.com

*
 Dept of CSE, K.L. University

Vaddeswaram,Guntur,A.P.India
2
kavyalekha25@gmail.com

Abstract- For a wide variety of information systems XML

has turn into an Universal format. As huge amounts of

XML documents present on the web, classification is an

important and immense task. XML documents have both

structures and contents for a semi-structured data. Thus,

text learning techniques are not very suitable for XML

document classification as structures are not considered.

This paper presents a novel complete framework for XML

document classification. We first present a knowledge

representation method for XML documents which is

based on a typed higher order logic formalism. With this

representation method, an XML document is represented

as a higher order logic term where both its contents and

structures are captured. We then present a decision-tree

learning algorithm driven by precision/recall breakeven

point (PRDT) for the XML classification problem which

can produce comprehensible theories. Finally, a semi-

supervised learning algorithm is given which is based on

the PRDT algorithm and the co-training framework.

Experimental results demonstrate that our framework is

able to achieve good performance in both supervised and

semi-supervised learning with the bonus of producing

comprehensible learning theories.

Keywords—XML document, machine learning, knowledge
representation, semi-supervised learning.

I. INTRODUCTION

 XML, a simple, powerful, and extensible data format

that can be used to represent hierarchical data, has

become the standard for data representation and

exchange on the web.

 First, Knowledge representation (KR) is usually

the first step toward intelligent reasoning. Generally

speaking, KR involves using some formal symbols to

represent the knowledge around us. Second, in many

cases comprehensible learning theories are traded-off

for high accurate but incomprehensible theories. The

advantage of comprehensibility of the output learning

theory has been recognized by machine learning

researchers. Third, learning with minimal labeled

training examples is desirable for web intelligence.

Supervised learning often requires a large number of

labeled examples in order to learn accurately.

The contributions of this paper can be

summarized as follows:

 A knowledge representation approach for

XML documents based on a typed higher

order logic formalism that is suitable for

representing structured data.

 A decision-tree learning algorithm driven

by the precision/recall (PRDT) heuristic for

XML document classification.

 A semi-supervised learning algorithm for

XML document classification which

combines the Co-training framework and the

PRDT algorithm.

II. RELATED WORK

The related work is reviewed from three aspects:

knowledge representation of XML documents,

learning with XML documents, and semi-supervised

learning.

A. Representation of Individuals:

Individuals refer to the object of a learning problem.

For example, XML documents are the individuals in

the context of the learning problem of this paper. The

formal basis for the representation of individuals is

provided by the concept of a basic term.

 The basic principle is that an individual

should be represented by a closed term. This

formalism provides a rich catalogue of data types

with which to model individuals. The types appearing

in this paper and their symbols are listed as follows:

Base types include integers (Int), natural numbers

(Nat), floats (Float), characters (Char), strings

(String), and booleans (Ω). Other types that will

appear in this paper include Tuples, Sets, and Lists. A

tuple type is denoted by , and a

term of this type is denoted by where

t1; . . . ; tn are type , respectively. A

International Journal of Advanced and Innovative Research (2278-7844) / #384 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 384

list type is denoted by List α or [α] , and a term of

this type is denoted by [t1; . . . , tn] where t1, . . ., tn

is of type α. A set type is denoted by , and a term

of this type is denoted by {t1, . . . , tn} where t1, . . . ,

tn are type .

B. Representation of Features

Features refer to boolean predicates on the type of

individuals. All the candidate features form the

feature space of the learning problem. The learning

algorithms intend to find the target function in the

feature space. We outline how this higher order logic

formalism supports expressing and constructing

features. Simply put, predicates are built up

incrementally by composition of simpler functions

called transformations.

 A transformation f is a function having a

signature of the form

wh

ere any parameters (type variables) in and

 appear in

 , and Ω is the type of the booleans.

The type µ is distinguished and is called the source

of the transformation, while the type is called the

target of the transformation. The number k is called

the rank of the transformation. The intuitive idea

behind the definition of transformation is that, given

predicates for

is a function that takes

individuals of type µ to individuals of type . By

composing several such functions, the last of which is

a transformation with target type boolean, a predicate

on individuals of the desired type is obtained.

III. KNOWLEDGE REPRESENTATION FOR

XML DOCUMENT CLASSIFICATION

In this section, we describe how to represent XML

documents using the higher order logic formalism.

XML documents are a typical type of semistructured

data.1 semi structured data are data that have some

structures but these structures are not fixed. XML

documents have nesting structures which could be

complex. Structures add more information to the

contents of an XML document. The nesting

structures of an XML document provide a way of

information aggression and correlation. Both

structures and contents play important roles in XML

document classification.

A. Representation of XML Document

Individuals Elements are the basic building blocks of

an XML document. An XML document must contain

at least one element. Each element is enclosed by a

start tag and an end tag. Tags of elements usually

indicate the semantic meaning of the structure. The

content of an element could be another element or

plain text. An XML document can be validated using

a Document Type Definition (DTD) or an XML

schema. DTDs and XML schemas basically fulfill the

same purpose, i.e., to serve as the grammar of a set of

XML documents. However, they have very different

syntax. We focus on the XML document

representation with DTDs in this paper, as the XML

schema is itself an XML document while the DTD

has its own syntax. Moreover, an XML schema may

contain an DTD.

a) Structure Representation

Formally, an XML document is represented as a six-

tuple term.

type XML = XMLDecl *Misclist * DTD * Misclist *

Element *Misclist

Here, XMLDecl represents the XML declaration;

Misclist represents a list of miscellaneous items such

as comments, processing instructions, and spaces;

DTD represents the document type declaration; and

Element represents the root element of the document.

Though all these six components are non atomic type

values, only the definition of type Element is

recursive. The formal representation of an element is

given as follows:

data Element = Elem TagName [Attribute]

[Content]

Here, type Element is defined via a data constructor

Elem which has three arguments representing the

element name, the attributes and the element

contents, respectively. TagName is a synonym of

type String. [Attribute] and [Content] are the list of

attributes and the list of content, respectively.

An attribute is composed of the attribute

name and attribute value, and is represented using a

tuple type Attribute = AttName * AttV alue, where

AttNameandAttV alue are both synonym of strings.

It is the element content that makes an XML

document nested and hierarchical. The content of an

element can be another element, a piece of text, a

reference to some entities, a CDATA section, a

processing instruction or a comment,string.

International Journal of Advanced and Innovative Research (2278-7844) / #385 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 385

Fig. 1 .An example XML document

An element content is formally represented

using data constructors.

data Content = El Element | Tx CharData |

Ref Reference | . . .

Here, El, Tx, and so on, are data constructors of type

Content. Data constructor El needs an argument of

type Element to construct data of type Content, and

Tx needs a type CharData to construct data of a type

Content, and so on.

b) Content Representation

The text content in an XML document node is

represented using the traditional vector-space model.

We adopt the traditional text dimension reduction

approach which includes stop words removal,

stemming, and feature selection.

 Structured feature selection is a method to

conduct the feature selection procedure on the same

part (element) of the document. In more detail, our

method is to build n independent corpora of text by

analyzing the DTD, where n is the number of

elements in the DTD. Each corpus is identified by the

path of the element which it corresponds to. The text

features of the same element of all XML documents

are collected and stored in this corpus. The feature

selection will be conducted for each corpus

independently.

B. Representation of Features for XML

Learning

Transformations on XML are classified into two

categories: generic transformations and data-specific

transformations. Generic transformations come

straight from the XML document representation and

are applicable to all wellformed XML documents.

a) Generic Transformations

Generic transformations are determined by the

individual representations and are fixed to all data

sets having the same representation. We introduce

some typical generic transformations for XML

documents here.

 The transformations corresponding to the

document level of the XML document

representations include projRootElement:

XML→Element, which projects an XML document

onto the root element.

 Usually, most of the information of an XML

document is stored in its root element and its nested

structure. An important transformation on the

element is proj Contents : Element -> Contents,

which projects an element onto its nested contents.

We use a setExists1 transformation to check whether

the set contents has content satisfying a predicate.

Fig 2. The DTD file of the XML document in fig.1.

The transformation is setExists1 :

(Content . The following are

conjunction transformations on type Element:

b) Data-Specific Transformations

Data-specific transformations are associated with the

specified DTD and XML documents in the

application, which may include transformations on

the element names, on the attribute names and values,

and on features of the text content.

International Journal of Advanced and Innovative Research (2278-7844) / #386 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 386

We can obtain a collection of useful data-

specific transformations by analyzing the DTD. We

use a Perl script to create data-specific

transformations from a DTD by using the following

rules:

 Rule1:Atransformation (=„„elementName‟‟):

 TagName →Ω is generated if a line starts

with <!ELEMENT, where variable

elementName is the string followings the

<!ELEMENT;

 Rule2:Atransformation (=“attributeName‟‟):

 AttName is generated if a line starts

ith

 <!ATTLIST, where variable attributeName is

the string that comes second after the

<!ATTLIST;

 Rule3:Ntransformations

are generated if the

string following the attribute name is in the

form of where

i=1……,N;

c) Predicate Search Space

Predicate search space is constructed by using

predicate rewrite systems. We now use an example to

illustrate the predicate representation and generation

on XML documents.

IV. A PRECISION/RECALL-DRIVEN

DECISION TREE LEARNING

ALGORITHM

This section describes a novel decision-tree learning

algorithm based on the precision and recall criterion

for XML document classification. To the best of our

knowledge, this is the first work of using precision

and recall as node splitting criteria in decision-tree

algorithms.

A. The Precision/Recall Heuristic

Precision and recall were originally two statistical

measures widely used in information retrieval.

Precision measures the “soundness” of the classifier,

and recall measures the “completeness” of it.

The precision Pr and recall Rc can be

defined using TP (True Positive), FP (False Positive),

FN (False Negative), and TN (True Negative).

where TP is defined as the number of documents

correctly assigned to the positive class; FP, the

number of documents incorrectly assigned to the

positive class; FN, the number of documents

incorrectly assigned to the negative class; and TN,

the number of documents correctly assigned to the

negative class. When precision and recall are equal

(or very close), this point is called the

precision/recall-breakeven point (BEP) of the system.

 Our motivation of choosing the precision

and recall heuristic in XML document classification

is mainly that XML documents have strong

connections with text documents. Most XML

documents contain text contents. Another reason is

that for binary decision-trees, precision/recall is a

more sensitive criteria than those single-criterion

heuristics such as accuracy, especially when the

number of examples in each class is very unbalanced,

or the number of documents belonging to each

category very small.

Fig. 3.Decision-tree algorithm based on the

precision/recall heuristic.

B. The Precision/Recall-Driven Decision-Tree

Algorithm

We first describe the main decision-tree algorithm,

followed by a predicate selection algorithm and a

node selection algorithm.

a) The Decision Tree Algorithm

The goal of this algorithm is to find a tree that can

produce the best BEP value. Starting from a single

node which is composed of the training data, the

algorithm works toward two goals at the same time:

looking for the point where the global precision recall

are equal, and improving the F1 measure. The first

goal is achieved by selecting the node which can

most balance the precision and recall, which is done

by a novel node selection algorithm. The second goal

International Journal of Advanced and Innovative Research (2278-7844) / #387 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 387

is achieved by finding a predicate to split this node

which can best improve the F1 value of the tree,

which is done by a predicate selection algorithm.

The PRDT algorithm requires two inputs: a

set of training examples and a predicate rewrite

system. The tree T is initialized as a single node

containing all the training examples. The algorithm

then enters an iteration which performs node

selection and node splitting.

 Function Predicate takes inputs of the TP,

FP, and FN of the current tree T, the set of training

examples in the selected leaf and the predicate

rewrite system and outputs the best predicate to split

ɛ. An openlist is used to keep all the candidate

predicates. Variable predicate is used to keep the

current best predicate, and bestScore is used to keep

the F1 of the current best predicate.

Fig 4.Algorithm for finding a predicate to spilt a node

b) The predicate selection Algorithm

Initially, the openList contains only the weakest

predicate top, and the bestScore is set to be the F1 of

the current tree T. The algorithm then enters an

iteration. In each iteration, the first candidate

predicate is drawn from the openlist and a subsearch

space is generated from this predicate. Each predicate

q in this subsearch space is tested by creating a new

partition P using it. The F1 of the tree after adding

the new partition P is computed using the updated

TP, FP, and FN. If F1 is higher than the current

bestScore, the best predicate and the best score are

set as q and its corresponding F1, respectively.

Predicate q is also inserted into the openlist as a

candidate for further subsearch space. The iteration

terminates when the openlist is empty. Finally the

predicate that best improves the F1 of the tree by

splitting the selected leaf is returned.

c) The Node Selection Algorithm

In our PRDT algorithm, we use a novel node

selection method to control the system to work

toward reducing the difference between the precision

and recall. Next, we give some theoretical analysis

for our node selection method..

First, we define the TP, FP, and FN values for the

node associated with ɛ, where ɛ is a(non-empty) set

of example.

Fig 5. Algorithm for finding a predicate to spilt a

node

V. CONCLUSION

Rapid growth in e-world has lead to a significant

importance to the XML Documents such that

automatic learning with these kinds of data by

machines is predominant. This paper explores the

learning issues with XML documents from three

major research areas: knowledge representation,

symbolic machine learning, and semi-supervised

learning. In the knowledge representation part, we

explored how to represent an XML document using

higher order logic terms which can easily capture

both the structure and the content of the data. In the

symbolic machine learning part, we presented a new

decision-tree learning algorithm driven by the

precision/recall breakeven point for XML document

classification. In the semi-supervised learning part,

we explored how to use a small number of labeled

data to get a good classifier with the help of a large

number of unlabeled data by using the co-training

algorithm and the PRDT algorithm. We conclude this

International Journal of Advanced and Innovative Research (2278-7844) / #388 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 388

paper with addressing its limitations with possible

solutions.

REFERENCES

[1] J.X. Wu and J. Zhang, “Knowledge Representation and

Learning for Semistructured Data,” Technical Report,

CSIRO ICT Centre, 2009.

[2] Bouchachia.A, Hassler.M, “Classification of XML

Documents”,2007
[3] Clark.M,Watt.S “Classifying XML Documents by Using

Genre Features”,2007

[4] Qingjiu Zhang, “Shiliang sun, “Evolutionary classifier

ensembles for semi-supervised learning”,2010

[5] Yuanyuan Guo, Xiaoda Niu ; Zhang.H “An Extensive

Empirical Study on Semi-supervised Learning”,2010

[6] A. McCallum and K. Nigam, “Employing EM and Pool-

Based Active Learning for Text Classification,” Proc. 15th
Int‟l Conf. Machine Learning, 1998.

[7] X. Zhu and A.B. Goldberg, “Introduction to Semi-
Supervised Learning”, 2009

[8] Nodes coupling in a Bayesian network for the automatic

classification of XML documents, International Conference
on machine and Web Intelligence (ICMWI), 2010. Ecole Nat.

Super. d'Inf. ESI, Algiers, Algeria

[9] Classification Tree Embedded XML Document Structure
Design for Enhanced Web Document Utilization, Sixth

International Conference on Advanced Language Processing

and Web Information Technology, 2007,pages: 542-547.
[10] Applications of Data Mining in the Education Resource

Based on XML, International Conference on advanced

Computer Theory and Engineering, 2008, ICACTE‟08.
Pages: 943-946.

[11] Graph-based Semi-supervised Learning Algorithm for Web

Page Classification, Sixth International Conference on
Intelligent Systems Design and Applications,2006.

Pages:856-860.

[12] Research on Multi-View Semi-Supervised Learning

Algorithm Based on Co-Learning, International Conference

on Machine Learning and Cybernatics, 2006. Xing-Qi wang

[13] A Passive-Aggressive Algorithm for Semi-supervised

Learning, International Conference on Technologies and
Applications of Artificial Intelligence, 2010. Chien-chung

Chang. Pages: 335-341.

[14] A new semi-supervised support vector machine learning

algorithm based on active learning , International Conference

on Future Computer and Communication (ICFCC), 2010. Li
Cunhe. Vol 3, May 2010.

International Journal of Advanced and Innovative Research (2278-7844) / #389 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 389

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bouchachia,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Clark,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Clark,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Qingjiu%20Zhang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shiliang%20Sun.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shiliang%20Sun.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shiliang%20Sun.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shiliang%20Sun.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiaoda%20Niu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang,%20H..QT.&newsearch=partialPref

