

ABSTRACT

Data outsourcing is an emerging paradigm that

allows users and companies to give their

(potentially sensitive) data to external servers

that then become responsible for their storage,

management, and dissemination. Although

data outsourcing provides many benefits,

especially for parties with limited resources for

managing an ever more increasing amount of

data, it introduces new privacy and security

concerns. In this paper we discuss the main

privacy issues to be addressed in data

outsourcing, ranging from data confidentiality

to data utility. We then illustrate the main re-

search directions being investigated for

providing effective data protection to data

externally stored and for enabling their

querying.

General Terms
Security, Design

Keywords

Data outsourcing, privacy, confidentiality, data

protection, data fragmentation, encryption,

access control

1. INTRODUCTION

In the last years, the rapid evolution of

storage, processing, and communication

technologies has changed the traditional ways

in which data are managed, stored, and

disseminated. Users are more and more

interested in sharing and disseminating their

personal information using the services

provided by external parties (e.g., Web sites

such as Face-book or MySpace have millions of users

using their services). Companies are also interested in

exploiting external services for managing their (potentially

sensitive) data since the design, realization, and

management of a secure system able to grant the

confidentiality of sensitive information might be very

expensive. Due to the growing costs of in-house storage

and management of large collections of sensitive data,

since it demands for both storage capacity and skilled

administrative personnel, data outsourcing and

dissemination services have then recently seen widespread

diffusion. Data out-sourcing presents important advantages:

management costs are reduced and higher availability and

more effective disaster protection than in-house operations

are provided. On the other hand, data outsourcing opens

the door to possible violations to the data and introduces

therefore new issues to be addressed. Being stored

externally, data are not under the control of their owners anymore,

their confidentiality and integrity can therefore be at risk. That

explicitly requires specific categories of sensitive information to

be either encrypted or kept separate from other personally

identifiable information to ensure data confidentiality. In many

cases, the server it-self might not be allowed to read the actual

content of the data outsourced to it for storage and management.

In this case, the honest-but-curious server should provide

effective service while operating on data that should result not

intelligible to it. Honest-but-curious servers are then relied upon

for ensuring availability of data and for enforcing the basic

security control on the data they store. While trustworthy with

respect to their services in making outsourced information

available, these external servers are however trusted neither to

access the content nor to fully enforce access control policy and

privacy protection requirements. It is there-fore of primary

Data Protection in Outsourcing using JOIN operation

RESHMA SULTANA
1
, CHEEKATLA SWAPNA PRIYA

2

1 M.TECH STUDENT IN PYDAH ENGG ,2 ASST PROFESSOR IN PYDAH COLLEGE OF ENGG,A.P,INDIA

International Journal of Advanced and Innovative Research (2278-7844) / # 38 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 38

importance to provide means of protecting the

confidentiality of the information remotely stored,

with-out necessarily requiring trust in the subject

managing the information, while guaranteeing its

availability to legitimate users. A solution to these

data protection issues would then allow users and

companies to use a dissemination service offering

strong guarantees about the protection of user

privacy against both adversaries breaking into the

system and the server itself. Query execution,

access control enforcement, information utility and

exposure to privacy breaches are all issues that

require careful investigation and development of

novel techniques for allowing the effective and

widespread use of outsourcing services in a

secure and private way.

In particular, we illustrate approaches based

on: complete encryption of the data (Section

3), combination of encryption and splitting of

data over two non-communicating servers

(Section 4), combination of encryption and

splitting of data among unlink able fragments

(Section 5), and proposals based on the

involvement of the owner of the data as a

trusted party storing a limited amount of

information (Section 6).

2. PROTECTION ISSUES IN DATA

OUT-
SOURCING SCENARIOS

i) users require access to the outsourced

data by querying one or more external servers

via a client front-end; ii) a client transforms

the queries posed by users into equivalent

queries operating on the data stored on the

servers; iii) a server manages the outsourced

data and make them available for distribution

to the authorized users. A server operates on

behalf of one or more data owners that outsource their

data (or a portion of them) to it. Also, for simplicity, in the

discussion and examples we assume outsourced data are

stored within a relational database management system

(DBMS), where data are organized in tables. We note,

however, that many of the issues discussed as well as of

the proposals illustrated apply to generic resources and

data models.

We now describe the main issues that need to be

addressed for guaranteeing proper protection and access to

outsourced data.

• Data protection. Outsourced data are stored at

external servers and outside the control of their

owners. Since data might be sensitive, their content

should be properly protected. Sensitive data might

need to be protected from the server itself, that, while

providing data storage and management should not be

authorized to know the actual data content. The

problem of protecting data when outsourcing them to

external servers has emerged to the attention of

researchers quite recently, with the introduction of the

so called Database As a Service (DAS) paradigm [24,

25]. Different approaches have been proposed,

typically relying on encrypting the information

outsourced to the server (e.g., [7, 24, 25]) or on

splitting information (fragments of the original data)

across several servers or tables (e.g., [1, 9, 10]).

These solutions use fragmentation, possibly

combined with encryption, to break sensitive

associations among outsourced data.

• Query execution. Since outsourced data must be

protected also by the server itself, the server does not

have complete visibility of the data necessary to execute

possible queries independently. As a matter of fact, when

data are encrypted, the DBMS running at the server is

not trusted to decrypt them for the purpose of query

execution; when data are split among different fragments,

International Journal of Advanced and Innovative Research (2278-7844) / # 39 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 39

the server cannot join them for responding

to queries. The application of a data

protection technique on the outsourced data

must therefore be ac-companied by

corresponding techniques enabling the

execution of queries on encrypted or

fragmented data. Techniques that have been

investigated associate with encrypted data

indexing information) on which queries

can be executed. The challenges for

indexing methods is the trade-off between

precision and privacy: more precise indexes

provide more efficient query execution but a

greater exposure to possible privacy violations.

Data protection measures must also be

accompanied by proper query transformation

techniques defining how queries on the original

table are to be translated into queries on the

encrypted or fragmented data [1, 9, 10].

• Private access. Data protection mentioned

above re-lates to guaranteeing the privacy of

the data stored at an external server. Another

important issue that arises when accessing

data stored at a third party is preserving the

confidentiality of the query itself. The need

for protecting query confidentiality can arise

regardless of whether outsourced data are

encrypted or not. In the first case,

maintaining query confidentiality might be

needed since queries themselves might be

exploited by the server or by external

observers for inferring information on the

data content. In the second case, the reason

for protecting queries arises since it is the

query itself that is confidential. Consider, for

ex-ample, scenarios allowing users to query

external med-ical databases. The fact that a

user queries the data in search for treatments

for a given illness discloses the fact that the user is

interested in the specific illness (and therefore the user,

or a person close to her, might be suffering from it).

Effective protection of query confidentiality requires not

only protecting confidentiality of individual queries, but

also protecting confidentiality of access patterns. In other

words, it should not be possible for an observer, or for

the server storing data, to infer that two queries aim at

accessing the same or different data. Private access and

private access pattern have recently raise attention of

researchers and some directions are being investigated

the definition of B-tree indexes .

• Data integrity and correctness. Database As a Service

scenarios and proposals addressing the protection of data

stored at an external server, typically assume the server

to be curious (i.e., the server is not allowed to see the

data content) but trustworthy, that is, relied upon for

properly enforcing data storage and management. The

server is then assumed reliable for properly responding

to queries (provided correctness of the query translation

process mentioned above). In scenarios where such a

trust on the server is not applicable, there is the need to

provide the data owner (or the users accessing the data)

with techniques to assess the integrity and the

correctness of the returned data.

Guaranteeing integrity and correctness implies

guaranteeing that the server does not improperly modify

data as well as the fact that the server provides a correct

response to queries (i.e., the server does not delete or

modify data improperly either in storage or in query

computation). Few proposals have investigated the

problem of guaranteeing correctness of the data stored or

returned by external outsourcing servers. Typically they

are based on the use of signatures attached to tuples in

the database (e.g., [31, 39]) or on chain structures (e.g.,

skip lists [19]) that allow the client to assess the integrity

of the returned tuples.

International Journal of Advanced and Innovative Research (2278-7844) / # 40 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 40

• Access control enforcement. In many

scenarios access to data is selective, with

different users enjoying different views over

the data. When data are outsourced there is

therefore the problem of enforcing possible

access control restrictions on it. On one

hand, having the owner enforcing the access

control restrictions would require the owner

to mediate every query and response to filter

out accesses that should not be authorized to

the requesting users, causing a possible

bottleneck in the system and impacting

performances. On the other hand, simply

outsourcing the authorization policy and its

enforcement at the external server is not

possible. First, the access control policy

itself, like the data, might be sensitive and

therefore cannot be completely disclosed.

Second, access control restrictions might

depend on the data content, which the server

is not permitted to see. Third, completely

outsourcing the management of the access

control policy to the external server requires

complete trust in the external server in its

enforcement. There is therefore the need for

developing techniques for enforcing access

control in a reliable way without requesting

the run time involvement of the owner.

Some directions have started to be

investigated relying on the combination of

encryption and access control policies,

towards a selective encryption enforcing

itself access control. Intuitively, the key with

which data are encrypted is regulated by the

access authorizations holding on the data.

• Support for selective write privileges.

Data outsourcing proposals have

concentrated on the management and execution of read

accesses. The assumption of limiting the large com-

munity of users to a read access while reserving the write

privileges to the owner is applicable in the out-sourcing

scenarios as well as in social network-like set-tings,

where outsourcing is meant for data publication by

owners. There are however other contexts where the

consideration of read privileges only is limiting. For

instance, within a multi-owner scenario selective write

privileges may need to be enforced. It would then be

interesting to extend current approaches for enforcing

selective access to the consideration of write operations.

• Data publication and utility. In data outsourcing, the

main goal is to give the data to an external server to

avoid the burden of managing and storing them.

Techniques developed for protecting data in outsourcing

scenarios could also be extended and applied to data

publication scenarios, where the goal is to make certain

information publicly or semi-publicly available while

ensuring proper protection of sensitive data. While in

data outsourcing scenarios, the plaintext availability of

certain data or associations among them might impact

query efficiency, in data publication scenarios it im-pacts

data visibility and therefore becomes of outmost

importance. In data publication it is in fact crucial to

guarantee a proper balance between data protection on

one hand and data utility on the other hand.

• Private collaborative computation. Previous

approaches in data outsourcing have been focused on the

data exchange between an external server and a client.

However, advances in communication technologies

make it easy to share information among multiple servers

that often need to interact to accomplish a common goal

or to provide a service. This collaboration among

International Journal of Advanced and Innovative Research (2278-7844) / # 41 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 41

different servers to reach a common goal

resembles the secure multi-party

computation problem, where different parties

need to collaborate to perform a

computation on their data without however

revealing the data used in the computation

[21]. However, while multi-party

computation approaches aim at not

disclosing any of the data source content, in

many scenarios selective disclosure (i.e.,

release of portions of data) can be

applicable. In this case, the problem is to

deter-mine an effective and safe execution

plan for a query computation in which the

servers collaborate releasing each other only

information that can be disclosed for the aim

of computing the query result. This problem

requires the definition of approaches for the

specification of the different views servers

and users can have over the different data

sources. Authorized views could also span

data across different servers, then requiring a

collaborative approach in the definition of

the authorizations.

3. DATA ENCRYPTION

A first solution used for preventing a server

from accessing data stored on its own

machines consists in encrypting the data

before outsourcing them. We now describe

how data can be encrypted and accessed to

minimize the workload at the client side [18].

We then discuss how to support different

access privileges [15, 17].

3.1 Data model

In principle, data encryption can be

performed by using either symmetric or

asymmetric encryption schemas. Since

however symmetric encryption is cheaper than

asymmetric encryption, many proposals are based on

symmetric encryption [28]. Encryption can also be applied

at different granularity levels, depending on the data that

need to be accessed. When data are organized as tables,

encryption can be applied at the finer grain of table,

attribute, tuple, and element [28]. Both table level and

attribute level encryption imply the communication to the

requesting client of the whole table involved in a query, as

it is not possible to extract any subset of the tuples in the

encrypted representation of the table. On the other hand,

encrypting at the element level would require an excessive

workload for data owners and clients in

encrypting/decrypting data. For balancing client workload

and query execution efficiency, most proposals assume that

the database is encrypted at tuple level. To directly query

the encrypted data (remember that confidentiality demands

that data decryption must be possible only at the client

side), additional indexing information is stored together

with the encrypted database [24, 25]. Such indexes can be

used by the DBMS to select the data to be returned in

response to a query (see Section 3.2) and are computed

starting from the plaintext values of the attributes with

which they are associated. Before outsourcing a plain-text

database D, each relation r over schema R(A1, . . . , An) in

D is therefore mapped onto an encrypted relation r
e
 over

schema R
e
 (ID, Etuple , I1, . . . , In) in D

e
 , where ID is the

pri-mary key, Etuple is the attribute containing the

encrypted tuple, and Ii , i = 1, . . . , n, is the index

associated with the i-th attribute in R (without loss of

generality and for sim-plicity we assume that the encrypted

relation has always an index for each attribute of the

corresponding plaintext relation). For each tuple t ∈ r,

there is a tuple t
e
 ∈ r

e
 where t

e
 [Etuple] = Ek (t), with k the

symmetric encryption key, and t
e
 [Ii] = f (t[Ai]), i = 1, . . . ,

n, with f an indexing function computing the index value t
e

[Ii] according to the specific indexing method adopted.

Figure 1(a) illustrates an example of plaintext relation

reporting information about the patients of a hospital and

Figure 1(b) illustrates the corresponding encrypted relation.

International Journal of Advanced and Innovative Research (2278-7844) / # 42 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 42

The encrypted relation has Patients

SSN Name DoB Zip Treatment Illness

123-45-6789 Alice 1969/01/01 90012 actifed flu
652-98-3471 Bob 1965/07/23 90022 altace heart disease
842-74-9249 Carol 1971/10/27 90010 actifed cold

843-42-8251 Dave 1950/11/22 90005 alendronate osteoporosis

(a)
Patients

e
ID Etuple IS IN ID IZ IT II

id1 hsh7wmdn ρ θ ε δ ν β
id2 kjsjhc82 ι ϕ ε ǫ ϑ α
id3 ks6b98hc χ µ ζ ζ ϑ α
id4 j0jmkdd3 π µ υ δ ω γ

(b)

Figure 1: An example of plaintext relation (a) and
corresponding encrypted relation (b) exactly the
same number of tuples as the original relation.

3.2 Query execution

The introduction of indexes makes it

possible to partially evaluate any query Q at

the server side, provided it is previously

translated into an equivalent query operating

on the encrypted data. In general, a user

submits a query Q that refers to the schema of

the plaintext relations in D. This query is

passed to the client that maps it into a query Qs

working on the encrypted relations in D
e
 at the

server side and a query Qc working on the

result of query Qs at the client side. In

particular, the server executes query Qs and

returns a set of encrypted tuples to the client

that decrypts them and eventually discards

spurious tuples (i.e., tuples that do not satisfy

the query submitted by the user). These

spurious tuples are removed by executing

query Qc. The final plaintext result is then

returned to the user.

The process of transforming Q in Qs and Qc

depends both on the indexing method adopted

and on the kind of query Q. There are

operations that need to be executed by the client, since the

indexing method does not support them (e.g., range queries

are not supported by all types of indexes) and the server

cannot decrypt data. Also, there are operations that the

server could execute over the index, but that require a pre-

computation that only the client can per-form and therefore

must be postponed in Qc.

In the literature, different indexing methods have been

proposed (e.g., [2, 7, 24, 27, 37]). In [24] the authors first

introduce an indexing method that consists in partitioning

the domain of an attribute Ai of plaintext relational schema

R in a number of non-overlapping subsets of values

containing contiguous values. Each partition is then

associated with a unique value and the set of these values is

the domain for index Ii associated with Ai . Given a

plaintext tuple t in r over relational schema R, the

corresponding index value is then the unique value

associated with the partition to which the plaintext value

t[Ai] belongs. The domain of index Ii may or may not

follow the same order as the one of the plain-text attribute

Ai and the partitions may be chosen so that they have all

the same length or contain the same number of tuples. The

partition-based indexing method allows the server side

evaluation of equality queries (i.e., queries with equality

conditions in the where clause). Also, equality conditions

involving attributes defined on the same domain can be

evaluated by the server, provided that attributes are

indexed using the same partition. Such methods do not

easily support range queries. Since the index domain does

not necessarily preserve the plaintext domain ordering, a

range condition of the form Ai ≥ v, where v is a constant

value, must be mapped into a series of equality conditions

operating on index Ii of the form Ii = v1
′
 ∨ . . . ∨ Ii = vl

′
 ,

where v1
′
 . . . vl

′
 are the values associated with partitions

that correspond to plaintext values greater than or equal to

v. Note also that since the same index value is associated

with more than one plaintext value, partition-based

indexing usually produces spurious tuples that need to be

International Journal of Advanced and Innovative Research (2278-7844) / # 43 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 43

filtered out by the client front-end. It is easy to

see that the number of spurious tuples is

inversely proportional to the number of

partitions since a large number of partitions

increase query precision while however

compromising privacy. On the other hand, a

small number of partitions increases privacy

but affects performance. The problem of

computing an optimal partition that maximizes

efficiency has been studied in [27].

Another indexing method supporting

equality queries has been presented in [13].

The proposed index is based on a one-way

secure hash function that takes in input the

plain-text values of an attribute and returns the

corresponding index values. A secure hash

function satisfies important properties that turn

out to be fundamental for the definition of an

index. First, like the partition-based indexes, a

secure hash function is deterministic, meaning

that the application of a secure hash function

to a given attribute value produces always the

same index value, thus making easy the

translation of a query Q into an equivalent

query Qs on the encrypted data. Second, a

secure hash function produces collisions,

meaning that different plaintext values are

mapped onto the same index value. This

property guarantees that even if an adversary

knows the distribution of plaintext values in

the original database, from the index values it

is not possible to infer the corresponding

plaintext values (i.e., frequency-based attacks

are not applicable). Third, a secure hash

function does not preserve the domain order of

the attribute on which it is applied.

In addition to these two simple indexing methods, other

solutions have been proposed (e.g., [2, 7, 26]). In [7] the

authors present a B+-tree indexing method supporting both

equality and range conditions appearing in the where

clause of a query. The idea consists in using a B+-tree data

structure for physically indexing data. An encrypted

version of the B+-tree is then stored at the server side and

is iteratively used to retrieve the desired data. The B+-tree

indexing method, being order preserving, also allows the

evaluation of order by and group by clauses, and of most of

the aggregate operators, directly on the encrypted data. In

[26] the authors present an indexing method based on

privacy homomorphism [32]. In [2] an order preserving

encryption schema (OPES) is presented to support equality

and range queries as well as max, min, and count queries

over encrypted data. The basic idea is that given a target

distribution, the plaintext values are transformed by using

an order-preserving transformation in such a way that the

transformed values follow the target distribution. OPES is

applicable to numeric data and is secure against cipher

text-only attacks. In [36] the authors present an order

preserving encryption with splitting and scaling (OPESS)

schema. Splitting and scaling techniques are used to create

index values so that the distribution of plaintext values is

different from that of index values. Orders of plaintext

values are preserved so that range queries can be easily

sup-ported. Other works (e.g., [6, 20]) illustrate techniques

for performing arithmetic operations (+, −, ×, ‚) on data

encrypted using a privacy homomorphic encryption

function. Recently a fully homomorphic encryption schema

has been proposed [22] that allows the computation of an

arbitrary functions over encrypted data without the

decryption key.

On a different but related line of work, other proposals

have been presented for searching keywords in encrypted

data (e.g., [5, 35]).

Note also that when defining the indexing method for an

International Journal of Advanced and Innovative Research (2278-7844) / # 44 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 44

attribute, it is important to consider two

conflicting requirements: on one hand, the

indexing information should be related to the

data well enough to provide for an effective

query execution mechanism; on the other

hand, the relation-ship between indexes and

data should not open the door to inference and

linking attacks that can compromise the

protection granted by encryption. Different

indexing methods can provide a different trade-

off between query execution efficiency and

data protection from inference. A deep

analysis of the level of protection provided by

an indexing method against inference and

linking attacks is then an important aspect that

has been however considered only for few

proposals (e.g., [7, 27]). In [7] the authors

consider the problem of quantitatively

measuring the level of exposure due to the

publication of indexes computed either with

direct encryption or with a secure hash

function. They show that even a

straightforward direct encryption can provide

an adequate level of protection against

inference attacks, as long as a limited number

of index attributes are used.

3.3 Selective access

A recent proposal for enforcing selective

access to out-sourced data puts forward the

idea of using selective encryption [15, 17].

The proposed approach consists in encrypting

different portions of the data with different keys

that are then distributed to users according to

their access privileges. This idea is not new

per se since it has been applied in other

contexts, for example, for selectively sharing

XML documents [30]. However, the problems

related to the definition, management, and evolution of the

authorization policy, and therefore of the corresponding

encryption have been never addressed before and are

instead the focus of the proposals in [15, 17]. These

proposals integrate access control and encryption, meaning

that the data to be out-sourced are encrypted with different

keys depending on the authorizations to be enforced on the

data. The authorization policy defined by the data owner is

expressed through an access matrix. Such a policy is then

translated into an equivalent encryption policy regulating

which data are encrypted with which key and regulating

key release to users. This translation process is performed

by having in mind two important desiderata: i) at most one

key is released to each user, and ii) each resource is

encrypted at most once. To achieve these desiderata, the

authors exploit a hierarchical organization of keys allowing

the derivation of keys from other keys and public tokens

[3, 4]. Basically, users with the same access privileges are

grouped and each resource is encrypted with the key

associated with the set of users that can access it (i.e., the

set of users forming its access control list). In this way, a

single key can be possibly used to encrypt more than one

resource. The key derivation hierarchy used in [15, 17]

exploits the hierarchy among sets of users induced by

 t1 t2 t3 t4

 E 1 0 1 1

 F 1 1 0 0

 G 0 1 1 1

 H 1 0 1 1

 (a) Authorization policy

Figure 2: An example of authorization policy (a), key derivation

hierarchy (b), and minimized key derivation hierarchy (c) for the

relation in Figure 1(a)

the partial order relationship based on set containment (⊆). Each

vertex v in the hierarchy is associated with a key k and a public

label l, and each edge connecting two vertices, say vi and vj , is

associated with a public token ti,j computed as kj ⊕h(ki ,lj), with

International Journal of Advanced and Innovative Research (2278-7844) / # 45 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 45

⊕ the xor operator and h a deterministic

cryptographic function [4]. Each resource is then

encrypted by using the key of the vertex

representing its access control list, and each user is

given the key of the vertex representing herself in

the hierarchy. From such a key and the public

tokens, each user can derive the keys of the vertices

representing groups of users containing herself.

This implies that each user can decrypt all and only

the resources she can access. Intuitively, the key

derivation hierarchy so generated defines an

encryption policy (i.e., a set of keys, a set of tokens,

an association user-key, and an association

resource-key) that is equivalent to the authorization

policy specified by the data owner. In [17] the

authors illustrate a heuristic algorithm for

computing a minimal encryption policy, that is, an

encryption policy where the number of tokens used

(i.e., the number of edges in the key derivation

hierarchy) is minimal. The rationale is to reduce the

user’s overhead in deriving keys maintaining only

the information strictly needed to correctly

enforcing an authorization policy. As an example,

consider relation Patients in Figure 1(a) and

Server’s view User’s view
SEL SEL SEL SEL SEL

BEL BEL BEL BEL BEL
r r r r r

 open locked sel locked bel locked
(a) (b) (c) (d) (e)

Figure 3: Possible views on resource r [15]

suppose that the tuples of this relation should be

protected according to the authorization policy

represented through the access matrix A in Figure

2(a). The access matrix has four columns, one for

each tuple in the relation, and four rows, one for

each authorized users, that is, Ellen (E), Frank (F),

George (G), and Hilary (H). An entry A[u, t] in the

matrix is set to 1 when user u can access tuple t; it is set to 0

otherwise. Figure 2(b) shows the key derivation hierarchy

induced by the partial order relationship based on the set

containment relationship defined over {E,F ,G,H }. In the figure,

each vertex reports between square brackets the set of users that it

represents, and the dotted edges represent the associations user-

key and resource-key. It is easy to see that this key derivation

hierarchy represents an encryption policy equivalent to the

authorization policy in Figure 2(a). User Ellen, for example, can

derive from her key (i.e., the key associated with vertex v1) the

keys associated with all vertices representing sets of users that

contain E, including the keys of vertices v12 and v13 that have

been used to encrypt tuples t1, t3, and t4 that are all and only the

tuples that Ellen can access. The key derivation hierarchy in

Figure 2(b) however requires the publication of more keys and

tokens than actually needed. For instance, the key associated with

vertex v11 is not needed for enforcing the authorization policy

since it is not used for encrypting any resource. Based on this

observation, in [17] the authors present a heuristic algorithm that

generates a key derivation hierarchy with the goal of minimizing

the number of tokens to be maintained by the server to improve

the efficiency of the key derivation process at the client side. The

algorithm creates a minimized version of the key derivation

hierarchy equivalent to the given authorization policy. Figure 2(c)

illustrates a minimized key derivation hierarchy equivalent to the

authorization policy in Figure 2(a).

Figure 3(a) illustrates the view of the server, which knows only

the keys at the SEL and does not know the key at the BEL. Figure

3(b) illustrates the view (open) of authorized users who know

both the keys at the SEL and BEL. Figures 3(c)-(e) illustrate the

views of non-authorized users who do not know the keys at SEL

and BEL (locked), the key at SEL (sel locked), or the key at BEL

(bel locked), respectively. In [15] the authors presents an

algorithm that through the combination of an encryption policy at

the BEL and of an encryption policy at the SEL allows the

outsourcing of the the management of the authorization policy

defined by the data owner.

4. DATA FRAGMENTATION AND EN-

CRYPTION: NON-COMMUNICATING
SERVERS

Encrypting data for storing them at the external server

bears a considerable cost. More than the cost of encrypting

International Journal of Advanced and Innovative Research (2278-7844) / # 46 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 46

and decrypting data, the problem relates to the

efficiency of query execution. As a matter of

fact, since the server itself is not trusted for

decrypting data for querying them, query

execution needs to operate on indexes. As

noted there is a trade-off between precision of

the index (and therefore effectiveness of the

queries) and privacy protection: most precise

indexes allow for more efficient execution but

can leak information about the indexed data,

therefore opening the door to possible privacy

breaches. Alternative solutions have therefore

been devised trying to depart from the use of

encryption to protect data since encryption

might be an overdue for two main reasons.

First, not all data items are sensitive and

therefore should be encrypted. Non sensitive

values could then be left in the clear, thus

enabling the precise enforcement of selection

conditions on them at the server side. Second,

in many situations data themselves are not

sensitive; rather their associations are

sensitive. For instance, with respect to the

relation in Figure 1(a), the list of patients’

names and the list of illness could be made

publicly available, while the association of

specific illnesses with individual patients is

sensitive and must be protected. Therefore,

there is no need to encrypt both patients’

names and illnesses if there are alternative

ways of protecting their association.

4.1 Data model

The first proposal putting forward the idea

of breaking associations among attributes

rather than encrypting them in an outsourcing

scenario is the work in [1]. In this work the

authors start from the identification of the

privacy requirements of the data to be

outsourced. Privacy requirements are characterized as sets

of attributes: singleton sets identify attributes that are

sensitive per se, non singleton sets identify attributes

whose association is sensitive. For instance, Figure 4

illustrates a set of privacy requirements related to relation

Patients in Figure 1(a): p0 states that Social Security

Numbers individually taken are sensitive; p1 and p2 state

that the associations between the values of attribute Name

and of attributes Treatment and Illness, respectively, are

sensitive; p3 states that the association between the values

of attributes Treatment and Illness is sensitive; p4 and p5

state that the association of the values of attributes DoB

and Zip with the values of attributes Treatment and

Illness are considered sensitive. These last two protection

require

p0 = {SSN}
p1 = {Name,Treatment}
p2 = {Name,Illness}
p3 = {Treatment,Illness}
p4 = {DoB,Zip,Treatment}
p5 = {DoB,Zip,Illness}

Figure 4: Examples of protection requirements associated with the
relation in Figure 1(a)

ments derive from the observation that DoB and Zip together can

be exploited to infer the identity of patients (i.e., they can work as

a quasi-identifier [33]), consequently their associations with other

pieces of information are considered sensitive.
It is easy to see that, while simple, such a characterization of

privacy requirements captures most requirements of real

scenarios. To outsource data in such a way that the protection

requirements identified are preserved, the approach in [1] stores

the data to two independent non-communicating servers. Data

stored at a server can be either encoded or stored in the clear. The

authors propose different encoding techniques that consist in

storing an attribute A as two separate attributes A1 and A2 in the

two servers. For in-stance, the encrypted value of A can be stored

at one server (i.e., A1 =Ek (A)) and the encryption key at the other

server (i.e., A2=k). For simplicity, in the following we assume

that encryption is used as an encoding technique. Basically,

sensitive attributes (singleton constraints) need to be encrypted,

while sensitive associations can be protected by splitting

International Journal of Advanced and Innovative Research (2278-7844) / # 47 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 47

(fragmenting) the involved attributes among the two

servers. In addition to sensitive attributes, other at-

tributes might need to be encrypted if storing them

at any of the two servers in the clear would break at

least one sensitive association. A relational schema

R is then split into two fragments, each stored at a

diff erent server. The fragments are obtained by a

vertical fragmentation of the relational schema R,

with some of the attributes possibly encrypted. A

fragmentation of R is then a triple hF1,F2 ,Ei, where

fragments F1 and F2 contain a set of attributes in the

clear (including a tuple identifier to ensure lossless

decomposition) and a set E of attributes encrypted

(i.e., E ⊆ F1 and E ⊆ F2). The encrypted attributes,

as well as the tuple identifier, are reported in both

fragments. To guarantee protection, the set of

attributes in the clear in each fragment must not be a

superset of any privacy requirements, that is, for

each protection requirement pi over relational

schema R, pi 6⊆(F1 − E) and pi 6⊆(F2 − E). For

instance, consider relation Patients in Figure 1(a)

and the protection requirements in Figure 4.

Attribute SSN is a sensitive at-tribute (p0) that can

be protected only through encryption. Protection

requirement p1 can be satisfied by storing at-tribute

Name in fragment F1 and attribute Treatment in

fragment F2 . Protection requirement p2 can instead

be satisfied only by encrypting attribute Illness

since it can be stored in the clear neither in F1 nor

F2 as p2 or p3, respectively, would be violated. The

encryption of attribute Illness guarantees then also

the satisfaction of protection requirements p3 and p5

. Protection requirement p4 can be satisfied by

storing attributes DoB and Zip in fragment F1 . The

final decomposition is: hF1 (ID,Name,DoB,Zip),

F2 (ID,Treatment),{SSN,Illness}i. Given an

original relational schema R and a set P of privacy

requirements, a solution decomposing the relation

in two fragments as pre-scribed above always exist

(in the worst case each attribute is encrypted). In

general, there might exist more than one solution. A

key question is therefore what is the best de-

composition to use. In [1] the authors assume that

the best solution is a solution that minimizes the

cost of the workload being executed against the

database. The characterization of the diff erent costs

of decompositions is based on the use of an affinity matrix M

typically used in databases, which is adapted as follows: entry M

[i, j] represents the ‘cost’ of splitting attributes i and j (i.e.,

placing them in the clear in diff erent fragments); entry M [i, i]

represents the cost of encrypting attribute i. The best solution is

therefore a solution that minimizes the overall cost, that is, the

sum of the costs of the encryption and splitting involved. The

authors model the problem of finding such a solution as a hyper

graph coloring problem. The hyper graph is obtained by

considering a node for each attribute, where node i is associated

with weight M [i, i] and each edge hi, ji is associated with weight

M [i, j]. Also, each privacy requirement is represented as an

hyper-edge connecting the involved attributes. Encrypting an

attribute corresponds to deleting the corresponding node. Storing

an attribute in the clear on a server corresponds to coloring the

node with the color of the server. The problem is therefore to

determine a 2-coloring of the graph in such a way that the sum of

the weights of deleted nodes and of bichromatic edges is

minimized. Clearly the problem is NP-hard. The authors then

propose diff erent heuristics for its solution, which make use of

approximate min-cuts and of approximate weighted set cover as

basic techniques.

4.2 Query execution

Since the original relation is split among the two external

servers, query execution may need to access information at both

servers and properly combining it. Reformulating a query over the

two fragments is rather straightforward, as it reduces to

substituting the join among the two fragments (F1 ⊲⊳ F2) in

place of the original relational schema R in the query plan. The

query plan can then undergo traditional query optimization, with

minor modifications to account for attribute fragmentation. For

instance, projections may be pushed down to both fragments,

taking care not to project out tuple identifiers necessary for the

join; selection conditions involving an individual attribute may be

pushed down to the corresponding fragment (if the at-tribute

appears in the clear); selection conditions involving more

attributes may be pushed down to the fragment containing them in

the clear (if any). Once the query plan is optimized, the physical

plan determines how the query execution is partitioned across the

two servers and the client. The basic partition of the plan is

straightforward: all operations above the top-most join have to be

executed at the client side; all operations under the join and above

Fi are executed by the server storing Fi . In some cases, it may be

possible to push all operators to either F1 or F2 , thus eliminating

International Journal of Advanced and Innovative Research (2278-7844) / # 48 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 48

the need for a join. Otherwise, the join must be

executed. There are essentially three options for

executing the sub-queries and the join. The first

option is to execute the sub-queries on F1 and F2 in

parallel and join the results at the client side. The

second option and third option are to execute a sub-

query at one of the server first, and to per-form a

semi join of the returned tuple identifiers with the

select Name,Illness

from Patients
where DoB<1970/01/01 and Treatment like ‘actifed’

 (a) Original query Q

Q1 Q2
select ID ,Name,Illness select ID ,Illness as k
from F1 from F2
where DoB<1970/01/01 where Treatment like ‘actifed’

(b) Sub-queries at the servers

select Name, Decrypt(ResQ1
.Illness, k) as Illness from ResQ1 ,
ResQ2
where ResQ1 .ID = ResQ2 .ID

(c) Query at the client

Figure 5: An example of query translation in the
non-communicating servers scenario

fragment on the other server in addition to

executing the sub-query on it. The first option

is more expensive, since it requires more data

to be transmitted from the servers to the client

and the execution of the join at the client side.

The second and third options potentially enjoy

a lower cost (de-pending on the selectivity of

the sub-query executed first) but imply a

sequential computation and a possible risk of

privacy breaches. In fact, it implies disclosing

to one of the servers the tuple identifiers that

satisfy the condition on the other server. Even

assuming the query is not known (as otherwise

privacy would be compromised), the fact that

some tuple identifiers enjoy some common

characteristics may be exploited for

withdrawing inferences on possible values in the tuples.

As an example of query execution, suppose that a user

submits query Q in Figure 5(a) that returns the name and

illness of all patients born before 1970 and whose

treatment is Actifed. Suppose also that the encrypted

values of at-tribute Illness are stored at the first server and

the encryption key at the second server. Query Q is

translated into two sub-queries Q1 and Q2 (see Figure 5(b))

that are executed over fragments F1 and F2 , respectively.

Query Q1 retrieves from the first server the tuple identifier

(ID), the encrypted attribute Illness, and the Name of

patients born before 1970. Query Q2 applies the selection

on attribute Treatment and returns the tuple identifier

(attribute ID) and attribute Illness (renamed as k)

corresponding to the key used for encrypting the values of

attribute Illness in Patients. Finally, the client executes a

query that performs a join between the results of queries Q1

and Q2, denoted ResQ1 and ResQ2 , respectively, and

decrypts attribute ResQ1 .Illness using the key retrieved

from Q2 (see Figure 5(c)).

5. DATA FRAGMENTATION AND EN-

CRYPTION: UNLINKABLE FRAG-
MENTS

While presenting an interesting direction, the approach

in [1] suffers from two major limitations. First, privacy

relies on the absence of communication between the two

servers,which have to be completely unaware of each

other. This assumption is clearly too strong and difficult to

enforce in real environments. A collusion among the

servers (or the users accessing them) easily breaches

privacy. Second, the assumption of two servers limits the

number of associations that can be solved by fragmenting

data, often forcing the use of encryption. In [10] the

authors address these limitations while exploiting the

combined use of fragmentation and encryption proposed in

[1]. We now describe this proposal more in details.

5.1 Data model

International Journal of Advanced and Innovative Research (2278-7844) / # 49 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 49

The starting point of the problem, that is, a

relational schema R and a set of privacy

requirements (called confidentiality constraints

in [10]) are the same as in [1]. Differently

from [1], in [10] the authors assume that

multiple fragments can be created and stored

at diff erent servers or even at the same server.

Rather than relying on the storing servers not

knowing each other, the approach in [10] relies

on the fact that fragments are guaranteed to be

not linkable (i.e., it is not possible for parties

diff erent from the client to reconstruct the

original relation and determine the sensitive

values and associations). Encryption is applied

at the at-tribute level, that is, it involves an

attribute in its entirety. Encrypting an attribute

means encrypting (tuple by tuple) all its

values. To protect encrypted values from

frequency attacks [34], a salt is applied to each

encryption. Fragmentation, like encryption,

applies at the attribute level, that is, it involves

an attribute in its entirety. Fragmenting means

splitting sets of attributes so that they are not

visible together, that is, the associations among

their values are not available without access to

the encryption key. While singleton constraints

can be solved only by encryption, every

association constraint could be solved by

either: i) encrypt-ing any (one success) of the

attributes involved in the constraint, so to

prevent joint visibility, or ii) fragmenting the

attributes involved in the constraint so that

they are not visible together. For instance, with

respect to relation Patients in Figure 1(a) and

the protection requirements in Figure 4, a

possible fragmentation, denoted F, is

{{Name,DoB,Zip}, {Illness}, {Treatment}}.

At the physical level the original relation is

represented as a set of physical fragments each

containing: a salt (also exploited as tuple

identifier), a set of attributes of R in the clear,

and an encrypted attribute corresponding to the

encrypted subtuple of all the attributes that are

not represented in the clear. Privacy is

guaranteed by requesting that: i) no fragment contains in

the clear all the attributes appearing together in a confidentiality

constraint and ii) fragments do not have attributes in common

(i.e., they cannot be linked). Note that the use of a salt guarantees

that the encrypted values cannot be used for linking. Figure 6

illustrates the physical fragments corresponding to fragmentation

F ={Name,DoB,Zip}, {Illness}, {Treatment}} of relation

Patients in Figure 1(a).
Since the availability of attributes in the clear in a

fragment permits an efficient execution of queries,

fragmentation is considered to be preferred over encryption

whenever possible. In other words, association constraints

are solved via fragmentation, and encryption is limited to

those attributes that are sensitive by themselves (i.e.,

singleton constraints). Similarly to what noted in [1],

diff erent fragmentations can exist, all limiting encryption

to sensitive attributes but differing in how the attributes are

distributed in the fragments

 F1 F2
Salt Enc Name DoB Zip Salt Enc Illness

s1 α Alice 1980/01/01 90012 s5 ǫ flu
s2 β Bob 1965/07/23 90022 s6 ε heart disease
s3 γ Carol 1971/10/27 90010 s7 δ cold
s4 δ Dave 1950/11/22 90005 s8 ε osteoporosis

 F3
 Salt Enc Treatment

 s9 ζ actifed

 s10 ϑ altace

 s11 η actifed

 s12 θ alendronate

Figure 6: Physical fragments for the relation in Fig-ure 1(a) and
enforcing the requirements in Figure 4

and/or in the number of fragments. Again, the goal is to

determine a solution that provides minimality. In [10] the

authors assume minimality to be characterized by the num-ber

of fragments in a fragmentation and investigate therefore the

problem of determining a fragmentation with a mini-mum

number of fragments. Since the problem is NP-hard, the authors

introduce an alternative definition of minimality and assume that

a solution is minimal if merging any two fragments would break

at least a confidentiality constraint. They then propose a

heuristic approach to its solution. The minimization of the

number of fragments exploits the basic principle according to

which the presence of a high number of attributes in the clear

permits an efficient execution of queries. While this principle

may be considered acceptable in many situations, diff erent

combinations of attributes can be accessed all together a

International Journal of Advanced and Innovative Research (2278-7844) / # 50 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 50

diff erent number of times, depend-ing on the

queries executed on the data. In [10] the authors

then acknowledge the need for keeping together

some specific attributes according to the queries

that are frequently executed on the data. Given a

query Q and a fragmentation F, the execution cost

of Q varies according to the specific fragment used

for computing the query. This implies that, with

respect to a specific query workload, diff erent

fragmentations may be more convenient than

others in terms of query performance.

To take into consideration the query workload

in the fragmentation process, the authors exploit

the concept of at-tribute affinity, where attribute

affinity is also a measure of how strong the need

of keeping the attributes in the same fragment is

(i.e., what is the cost of splitting the attributes in

diff erent fragments). Attribute affinity is then

naturally extended to fragments and

fragmentations. Intuitively, the affinity of a

fragment is the sum of the affinity of the different

pairs of attributes in the clear in the fragment; the

affinity of a fragmentation is the sum of the

affinity of its fragments. Fragmentations that

maintain together attributes with high affinity are

to be preferred. Again, the problem is NP-hard,

and the authors present a heuristic approach to its

solution.

In [8] the authors go a step further in aiming at

characterizing what fragmentation can provide

best with respect to a given workload and, instead

of characterizing the workload with the affinity

matrix, they assume that a query workload is given

as a set of queries together with their frequency of

execution. The authors then present a query cost

model that is used to evaluate the cost of a query,

and therefore of a query workload, against a

fragmentation and introduce the problem of

determining a fragmentation that minimizes

select Name,Illness from
Patients
where DoB<1970/01/01 and Treatment like ‘actifed’

(a) Original query Q

select Salt,Enc,Name
from F1
where DoB<1970/01/01

(b) Query operating on fragment F1

select Name,Illness
from Decrypt(ResQF1 , k) where

Treatment like ‘actifed’

(c) Query operating at the client

Figure 7: An example of query translation in the unlinkable
fragments scenario

the cost of executing the given query workload. Their

formulation of the problem is based on the definition of the

space of the different fragmentation and on its organization

as a lattice (with bottom and top elements the extreme

fragmentations represented by putting all attributes in the

same fragments or each attribute in a diff erent fragment,

respectively). Noting the monotonicity of the

fragmentation cost over the lattice, the authors propose a

heuristic algorithm that partially visits the lattice, following

a top-down strategy to compute a locally minimal

fragmentation that, as proved by experimental results has a

cost near to the optimum.

5.2 Query execution

Since each fragment contains all the original attributes, in

either the clear or encrypted form, it is sufficient to access a

fragment (any fragment) for executing a query, although diff erent

fragments may differ with respect to the efficiency (i.e., the cost)

of running the query. In [10] the authors ad-dress the translation

and execution of select-from-where queries. Query execution is

rather simple. The only observation is that a selection conditions

can be pushed down to a fragment only if all involved attributes

appear in the fragment in the clear, otherwise it needs to be

executed at the client (returning all the attributes needed for

evaluation). Hence, the execution of a query on a given fragment

re-quires translating the query into two diff erent queries. First, a

query, executed at the external server on the stored fragment that

evaluates all selection conditions that operate on attributes that

are in the clear in the fragment and returns the requested attributes

as well as the salt (attribute Salt) and the encrypted field (attribute

International Journal of Advanced and Innovative Research (2278-7844) / # 51 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 51

Enc), if the query needs to evaluate attributes that

are encrypted in the fragment. Then, a query is

executed at the client: the returned data are

decrypted, the remaining conditions are evaluated,

and the attributes requested as result are returned.

As noted, any query could be executed on any

fragment although different fragments may

diff erent with respect to the query cost. In

particular, it is better to execute the query on a

fragment that allows the most selective conditions

to be pushed down to the fragment. As an example,

consider again the query returning the name and

illness of patients born before 1970 and whose

treatment is actifed (see Figure 7(a)). Sincefragment

F1 contains attribute DoB in the clear, which we

assume to be more selective than attribute

Treatment, F1 is chosen for query evaluation. The

server storing fragment F1 then executes a query

that selects the tuples that satisfy the condition on

DoB and returns attributes Salt, Enc, and Name

(see Figure 7(b)). Finally, the client decrypts the

con-tent of attribute Enc of the tuples returned by

the server and on the decrypted tuples executes a

query that retrieves those satisfying the condition on

attribute Treatment. Figure 7(c) illustrates the

query executed at the client side, where k is the

decrypting key and ResQF1 denotes the result of the

query in Figure 7(b).

6. DATA FRAGMENTATION

WITH OWNER

INVOLVEMENT

Proceeding along the directions of minimizing

the use of encryption, in [9] the authors put forward

the idea of completely departing from encryption

and adopt fragmentation as the only means of

protecting privacy when outsourcing data. The

rational for the assumption that data should not be

encrypted is that encryption is sometimes

considered a too rigid tool, delicate in its

configuration, and requiring careful management to

fulfill its potential. Systems protecting sensitive

information based on an extensive use of encryption

suffer from significant consequences due to both the

compromise and loss of keys. In the real world, key management,

particularly the operations at the human side, is a difficult and

delicate process. Also, as already noted, while the computational

cost of symmetric encryption for modern computer architectures

is usually negligible, the presence of encryption often causes an

increase in the computational load, affecting the performance of

query execution.

6.1 Data model

In [9] the authors depart from encryption by involving the data

owner in storing, and managing, a small portion of the data, while

delegating the management of all other data to the external server.

The management of a small portion of data is considered an

advantage with respect to the otherwise required encryption. The

need for the data owner to maintain control on part of the data is

to avoid exposing sensitive attributes or associations externally.

Sensitive attributes are maintained at the owner side. Sensitive

associations are protected by ensuring that not all the attributes in

an association are stored externally. In other words, for each

sensitive association, the owner should locally store at least one

attribute. The original relational schema R is split in two

fragments: Fo , stored at the data owner, and Fs , stored at the

external server. To correctly reconstruct the content of a relation r

over schema R, at the physical level, Fo and Fs have a common

tuple identifier that corresponds to the primary key of R, if it is

not sensitive, or can be an attribute that does not belong to the

schema of R and that is added to Fo and Fs after the fragmentation

process. A fragmentation hFo, Fs i is considered correct if it

satisfies the following conditions: 1) all attributes in R should

appear in at least one fragment, to avoid loss of information; 2)

the external fragment should not violate any confidentiality

constraint. Note that this condition applies only to Fs since Fo is

under the data owner control and therefore is accessible only to

authorized users. Also, a fragmentation should be non redundant,

that is, the two fragments should have
Fo

ID SSN Treatment Illness

id1 123-45-6789 actified flu
id2 652-98-3471 altace heart disease
id3 842-74-9249 actified cold
id4 843-42-8251 alendronate osteoporosis

 Fs
 ID Name DoB Zip

 id1 Alice 1980/01/01 90012
 id2 Bob 1965/07/23 90022
 id3 Carol 1971/10/27 90010
 id4 Dave 1950/11/22 90005

Figure 8: An example of physical fragments with owner

International Journal of Advanced and Innovative Research (2278-7844) / # 52 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 52

involvement

no attribute in common. While not needed for

preserving privacy, non redundancy avoids

unnecessary storage at the data owner side

(there is no need to maintain information that

is outsourced); it also avoids usual replica

management problems. Figure 8 illustrates a

possible fragmentation of relation Patients in Figure

1(a) that satisfies the protection requirements in

Figure 4.
Similarly to previous approaches, given a

relation and a set of protection requirements

(confidentiality constraints) on it, the problem

is to determine a fragmentation that pro-vides

best, where ‘best’ is to be defined with respect

to a cost for the owner of executing queries

against the fragmented data. The starting

observation is that storage and computational

resources offered by the external server are

considered, for a given level of availability and

accessibility, less expensive than the resources

within the trust boundary of the owner. The

owner has then a natural incentive to rely as

much as possible, for storage and computation,

on the external server. In the absence of

confidentiality constraints, all data would then

be remotely stored and all queries would be

computed by the external server. In the case of

confidentiality constraints, the owner

internally stores some attributes, and

consequently is involved in some computation.

In [9] the authors discuss several metrics

(and corresponding weight functions to be

minimized) that could be used to characterize

the quality of a fragmentation, and therefore to

determine which attributes are stored at the

owner side and which attributes are outsourced

at the external server. The diff erent metrics

may be applicable to different scenarios,

depending on the owner’s preferences and/or

on the specific knowledge (on the data or on

the query workload) available at design time.

The authors consider four possible scenarios,

in increasing level of required knowledge. The

first two scenarios support measuring storage,

while the latter two scenarios support measuring

computation.

• Min-Attr . Only the relation schema (set of

attributes) and the confidentiality constraints are

known. The only applicable metric aims at

minimizing the storage

required at the owner side by minimizing the

number of attributes in Fo .

• Min-Size. Besides the mandatory knowledge of the

relation schema and confidentiality constraints on it,

the size of each attribute is known. In this case, it is

possible to produce a more precise estimate of the

storage required at the owner side, aiming at

minimizing the

physical size of Fo , that is, the actual storage

required by its attributes.

• Min-Query . In addition to the relation schema and

the confidentiality constraints, a representative profile

of the expected query workload is known. The profile

defines, for each query, the frequency of execution

and the set of attributes evaluated by its conditions.

Here, the goal is to minimize the number of query

executions that require processing at the owner

side, producing immediate benefits in terms of the

reduced level of use of the more expensive and less

powerful computational services available at the

owner.

• Min-Cond . In addition to the relation schema and

the confidentiality constraints, a complete profile of

the expected query workload is known. The complete

pro-file assumes that the specific conditions (not only

the attributes on which they are evaluated) appearing

in each query are known. The precise characterization

International Journal of Advanced and Innovative Research (2278-7844) / # 53 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 53

of the workload allows the definition of a

metric to minimize the number of

conditions that require processing at

the owner side. Note that the

minimization of the conditions executed

at the owner side has a direct relationship

with the minimization of the traffic

needed for receiving results of the

portion of queries outsourced to the

external server. As a matter of fact,

minimizing the conditions executed by

the owner is equivalent to maximizing

the conditions outsourced to the external

server, and therefore delegating to it as

much computation as possible. In fact,

since the result of evaluating a condition

on a relation is a smaller relation, the

greater the number of conditions

outsourced to the external servers, the

smaller will be the corresponding results

to be received in response.

In [9] the authors provide a uniform

modeling of the fragmentation problem,

encompassing the diff erent metrics above,

which can be simply represented by the

definition of a proper weight function input to

the minimization problem. The minimization

of the cost of involving the owner (either for

storage or computation) is NP-hard (it reduces

to the minimum hitting set in its simplest form

of minimizing the number of attributes). The

authors then provide a heuristic algorithm for

the computation of a solution that guarantees

minimality (i.e., moving any attribute from Fo

to Fs would violate at least one constraint).

Also, according to experiments, the returned

solution well approximates the optimum.

6.2 Query execution

Like for the fragmentation approach based on two non-

communicating servers, query execution may need to

access the information stored on the two fragments Fo and

Fs . A select-from-where query Q defined over the original

relational schema R is then translated into queries

operating on the two fragments. This translation process

can follow two basic strategies: client-first and server-

first .

With the client-first strategy a query Qo is first executed

at the client side. Query Qo is obtained from the original

query Q as follows. The select clause of query Qo contains

attribute ID since it is needed to perform a join operation

between the result of Qo and Fs ; other attributes therefore

cannot appear in the select clause because they cannot be

International Journal of Advanced and Innovative Research (2278-7844) / # 54 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 54

select Name,Illness from
Patients
where DoB<1970/01/01 and Treatment like ‘actifed’

(a) Original query Q

Figure 9 illustrates an example of query execution operating on the

fragments illustrated in Figure 8 according to both the client-first
(left-hand side) and server-first (right-hand side) strategies. Note that
in the client-first strategy, the last query Qos (Figure 9(f)) has only a
join condition

Client-first

select ID
from Fo
where Treatment like ‘actifed’

(b) Query Qo

select ID ,Name
from ResQo ,Fs
where ResQo .ID =Fs .ID and

DoB<1970/01/01

(d) Query Qs

select Name,Illness
from Fo ,ResQs
where Fo .ID =ResQs .ID

(f) Query Qos

 Server-first

select ID ,Name
from Fs
where DoB<1970/01/01

(c) Query Qs

select Name,Illness
from Fo ,ResQs
where Fo .ID =ResQs .ID and

Treatment like ‘actifed’

(e) Query Qo

in the where clause since the original query Q does not have any
condition that involves both attributes in Fo and attributes in Fs .

7. CONCLUSIONS

Effective adoption of data outsourcing solutions as well as

effective information sharing and dissemination can take place

only if data owners can be assured that, while releasing or storing

information externally, disclosure of sensitive information is not a

risk. Data protection and privacy in emerging storing and sharing

scenarios is far from been a trivial problem and requires the

investigation of new issues and the design of technological

solutions to address them. This paper has discussed problems to

be addressed and il-lustrated some emerging directions

introducing novel data protection approaches in outsourcing

scenarios.

Figure 9: An example of query translation in the owner
involvement scenario

communicated to the server. The where clause of Qo contains all

conditions of Q that involve attributes stored in Fo only since their
evaluation can be performed only by the data owner. The client
executes Qo and sends to the server a query Qs operating on the join

between Fs and the result of Qo . The select clause of Qs contains all

attributes of Fs appearing in the select clause of the original query Q

and all attributes in Fs appearing in conditions that are involved in a

comparison with attributes in Fo . The conditions in the where clause

of Qs are those appearing in the original query Q and involving

attributes stored in Fs only and that therefore can be evaluated by the

server. The re-sult of query Qs is then sent back to the client, which

further refines the result possibly executing another query Qos on the

join between Fo and the result of query Qs . Query Qos applies the

conditions in Q that involve at the same time at-tributes stored in Fo

and Fs . Note that if the server knows the original query Q, the client-
first strategy cannot be used since the server infer the tuples that
satisfy the conditions in the where clause of Q and that involve

attributes stored in Fo only.
With the server-first strategy a query Qs is first executed at the

server side. The result of Qs is then further refined at the client side.

Query Qs is obtained from the original query Q as follows. The select

clause of Qs contains attribute ID needed for performing the join

between the result of Qs and Fo , and all attributes in Fs appearing in

the select clause of Q or that appears together with attributes in Fo in
conditions in the where clause of Q (these conditions can therefore be
evaluated by the data owner only). The where clause of Qs contains
all conditions appearing in the where clause of Q that involve
attributes stored in Fs only. The server executes Qs and returns the

corresponding result to the client that performs the join with Fo and
removes the tuples that do not satisfy the conditions in the where
clause of Q and that involve attributes in Fo only or attributes in both

Fo and Fs .

8. REFERENCES

[1] G. Aggarwal, M. Bawa, P. Ganesan,
H. Garcia-Molina, K. Kenthapadi, R. Motwani,
U. Srivastava, D. Thomas, and Y. Xu. Two can keep a
secret: a distributed architecture for secure database services.
In Proc. of the Second Biennial Conference on Innovative
Data Systems Research (CIDR 2005), Asilomar, CA,
USA, January 2005.

[2] R. Agrawal, J. Kierman, R. Srikant, and Y. Xu. Order preserving
encryption for numeric data. In Proc. of ACM SIGMOD 2004,

Paris, France, June 2004.

[3] S. Akl and P. Taylor. Cryptographic solution to a
problem of access control in a hierarchy. ACM
Transactions on Computer System, 1(3):239–248,
August 1983.

[4] M. Atallah, K. Frikken, and M. Blanton. Dynamic and efficient key management for

access hierarchies. In

Proc. of the 12th ACM Conference on Computer and
Communications Security (CCS 2005), Alexandria, USA,
November 2005.

[5] D. Boneh and B. Waters. Conjunctive, subset, and range queries

on encrypted data. In Proc. of the 4th Theory of Cryptography
Conference (TCC 2007), Amsterdam, The Netherlands,
February 2007.

[6] C. Boyens and O. Gunter¨. Using online services in

untrusted environments - a privacy-preserving architecture.
In Proc. of the 11th European Conference on
Information Systems (ECIS 2003), Naples, Italy, June
2003.

[7] A. Ceselli, E. Damiani, S. De Capitani di Vimercati,
S. Jajodia, S. Paraboschi, and P. Samarati. Modeling

International Journal of Advanced and Innovative Research (2278-7844) / # 55 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 55

and assessing inference exposure in encrypted
databases. ACM Transactions on Information and
System Security (TISSEC), 8(1):119–152, February
2005.

[8] V. Ciriani, S. De Capitani di Vimercati, S. Foresti,
S. Jajodia, S. Paraboschi, and P. Samarati. Fragmentation
design for efficient query execution over sensitive
distributed databases. In Proc. of the
29th International Conference on Distributed Computing

Systems (ICDCS 2009), Montreal, Quebec, Canada, June 2009.

[9] V. Ciriani, S. De Capitani di Vimercati, S. Foresti,
S. Jajodia, S. Paraboschi, and P. Samarati. Keep a few:
Outsourcing data while maintaining confidentiality. In
Proc. of the 14th European
Symposium On Research In Computer Security

(ESORICS 2009), Saint Malo, France, September 2009.

[10] V. Ciriani, S. De Capitani di Vimercati, S. Foresti,

S. Jajodia, S. Paraboschi, and P. Samarati. Combining
fragmentation and encryption to protect privacy in data storage.
ACM Transactions on Information and System Security
(TISSEC), 2010. (to appear).

[11] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-

Anonymity. In T. Yu and

S. Jajodia, editors, Secure Data Management in Decentralized
Systems. Springer-Verlag, 2007.

[12] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang.

Anonymizing bipartite graph data using safe groupings. In
Proc. of the 34th International Conference on Very
Large Data Bases (VLDB 2008), Auckland, New
Zealand, August 2008.

[13] E. Damiani, S. De Capitani di Vimercati, S. Jajodia,
S. Paraboschi, and P. Samarati. Balancing confidentiality
and efficiency in untrusted relational DBMSs. In Proc. of
the 10th ACM Conference on Computer and
Communications Security (CCS 2003), Washington, DC,
USA, October 2003.

[14] T. K. Dang. Oblivious search and updates for outsourced tree-structured data on

untrusted servers.

International Journal of Computer Science &
Applications, 2(2):67–84, 2005.

[15] S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati. Over-encryption:
Management of access control evolution on outsourced
data. In Proc. of the 33rd International Conference on
Very Large Data Bases (VLDB 2007), Vienna, Austria,
September 2007.
Academic Press, Orlando, FL, USA, 1978.

Authors:

Reshma sultana m.tech student

in pydah engg and tech.

interested areas are data mining,

data bases, networks and web

technologies

cheekatla swapna priya

Asst professor in pydah

college of Engg. and Tech

7 1/2 experience in both

postgraduate and under

graduate courses.
Interested in data mining
and networks.

International Journal of Advanced and Innovative Research (2278-7844) / # 56 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 56

