
            
 

 

 

 

 

ABSTRACT 
 

Data outsourcing is an emerging paradigm that 

allows users and companies to give their 

(potentially sensitive) data to external servers 

that then become responsible for their storage, 

management, and dissemination. Although 

data outsourcing provides many benefits, 

especially for parties with limited resources for 

managing an ever more increasing amount of 

data, it introduces new privacy and security 

concerns. In this paper we discuss the main 

privacy issues to be addressed in data 

outsourcing, ranging from data confidentiality 

to data utility. We then illustrate the main re-

search directions being investigated for 

providing effective data protection to data 

externally stored and for enabling their 

querying. 
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1. INTRODUCTION  
 

In the last years, the rapid evolution of 

storage, processing, and communication 

technologies has changed the traditional ways 

in which data are managed, stored, and 

disseminated. Users are more and more 

interested in sharing and disseminating their 

personal information using the services 

provided by external parties (e.g., Web sites 

such as Face-book or MySpace have millions of users 

using their services). Companies are also interested in 

exploiting external services for managing their (potentially 

sensitive) data since the design, realization, and 

management of a secure system able to grant the  

 

 

 

 

 

 

confidentiality of sensitive information might be very 

expensive. Due to the growing costs of in-house storage 

and management of large collections of sensitive data, 

since it demands for both storage capacity and skilled 

administrative personnel, data outsourcing and 

dissemination services have then recently seen widespread 

diffusion. Data out-sourcing presents important advantages: 

management costs are reduced and higher availability and 

more effective disaster protection than in-house operations 

are provided. On the other hand, data outsourcing opens 

the door to possible violations to the data and introduces 

therefore new issues to be addressed. Being stored 

externally, data are not under the control of their owners anymore, 

their confidentiality and integrity can therefore be at risk. That 

explicitly requires specific categories of sensitive information to 

be either encrypted or kept separate from other personally 

identifiable information to ensure data confidentiality. In many 

cases, the server it-self might not be allowed to read the actual 

content of the data outsourced to it for storage and management. 

In this case, the honest-but-curious server should provide 

effective service while operating on data that should result not 

intelligible to it. Honest-but-curious servers are then relied upon 

for ensuring availability of data and for enforcing the basic 

security control on the data they store. While trustworthy with 

respect to their services in making outsourced information 

available, these external servers are however trusted neither to 

access the content nor to fully enforce access control policy and 

privacy protection requirements. It is there-fore of primary 
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importance to provide means of protecting the 

confidentiality of the information remotely stored, 

with-out necessarily requiring trust in the subject 

managing the information, while guaranteeing its 

availability to legitimate users. A solution to these 

data protection issues would then allow users and 

companies to use a dissemination service offering 

strong guarantees about the protection of user 

privacy against both adversaries breaking into the 

system and the server itself. Query execution, 

access control enforcement, information utility and 

exposure to privacy breaches are all issues that 

require careful investigation and development of 

novel techniques for allowing the effective and 

widespread use of outsourcing services in a 

secure and private way. 
 

In particular, we illustrate approaches based 

on: complete encryption of the data (Section 

3), combination of encryption and splitting of 

data over two non-communicating servers 

(Section 4), combination of encryption and 

splitting of data among unlink able fragments 

(Section 5), and proposals based on the 

involvement of the owner of the data as a 

trusted party storing a limited amount of 

information (Section 6). 

 
2. PROTECTION ISSUES  IN DATA 

OUT-   
SOURCING SCENARIOS 

 

i) users require access to the outsourced 

data by querying one or more external servers 

via a client front-end; ii) a client transforms 

the queries posed by users into equivalent 

queries operating on the data stored on the 

servers; iii) a server manages the outsourced 

data and make them available for distribution 

to the authorized users. A server operates on 

behalf of one or more data owners that outsource their 

data (or a portion of them) to it. Also, for simplicity, in the 

discussion and examples we assume outsourced data are 

stored within a relational database management system 

(DBMS), where data are organized in tables. We note, 

however, that many of the issues discussed as well as of 

the proposals illustrated apply to generic resources and 

data models. 

We now describe the main issues that need to be 

addressed for guaranteeing proper protection and access to 

outsourced data. 

 

• Data protection. Outsourced data are stored at 

external servers and outside the control of their 

owners. Since data might be sensitive, their content 

should be properly protected. Sensitive data might 

need to be protected from the server itself, that, while 

providing data storage and management should not be 

authorized to know the actual data content. The 

problem of protecting data when outsourcing them to 

external servers has emerged to the attention of 

researchers quite recently, with the introduction of the 

so called Database As a Service (DAS) paradigm [24, 

25]. Different approaches have been proposed, 

typically relying on encrypting the information 

outsourced to the server (e.g., [7, 24, 25]) or on 

splitting information (fragments of the original data) 

across several servers or tables (e.g., [1, 9, 10]). 

These solutions use fragmentation, possibly 

combined with encryption, to break sensitive 

associations among outsourced data.  

 

• Query execution. Since outsourced data must be 

protected also by the server itself, the server does not 

have complete visibility of the data necessary to execute 

possible queries independently. As a matter of fact, when 

data are encrypted, the DBMS running at the server is 

not trusted to decrypt them for the purpose of query 

execution; when data are split among different fragments, 
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the server cannot join them for responding 

to queries. The application of a data 

protection technique on the outsourced data 

must therefore be ac-companied by 

corresponding techniques enabling the 

execution of queries on encrypted or 

fragmented data. Techniques that have been 

investigated associate with encrypted data 

indexing information) on which queries 

can be executed. The challenges for 

indexing methods is the trade-off between 

precision and privacy: more precise indexes 

provide more efficient query execution but a 

greater exposure to possible privacy violations. 

Data protection measures must also be 

accompanied by proper query transformation 

techniques defining how queries on the original 

table are to be translated into queries on the 

encrypted or fragmented data [1, 9, 10]. 
 

• Private access. Data protection mentioned 

above re-lates to guaranteeing the privacy of 

the data stored at an external server. Another 

important issue that arises when accessing 

data stored at a third party is preserving the 

confidentiality of the query itself. The need 

for protecting query confidentiality can arise 

regardless of whether outsourced data are 

encrypted or not. In the first case, 

maintaining query confidentiality might be 

needed since queries themselves might be 

exploited by the server or by external 

observers for inferring information on the 

data content. In the second case, the reason 

for protecting queries arises since it is the 

query itself that is confidential. Consider, for 

ex-ample, scenarios allowing users to query 

external med-ical databases. The fact that a 

user queries the data in search for treatments 

for a given illness discloses the fact that the user is 

interested in the specific illness (and therefore the user, 

or a person close to her, might be suffering from it). 

Effective protection of query confidentiality requires not 

only protecting confidentiality of individual queries, but 

also protecting confidentiality of access patterns. In other 

words, it should not be possible for an observer, or for 

the server storing data, to infer that two queries aim at 

accessing the same or different data. Private access and 

private access pattern have recently raise attention of 

researchers and some directions are being investigated 

the definition of B-tree indexes . 

  

 

• Data integrity and correctness. Database As a Service 

scenarios and proposals addressing the protection of data 

stored at an external server, typically assume the server 

to be curious (i.e., the server is not allowed to see the 

data content) but trustworthy, that is, relied upon for 

properly enforcing data storage and management. The 

server is then assumed reliable for properly responding 

to queries (provided correctness of the query translation 

process mentioned above). In scenarios where such a 

trust on the server is not applicable, there is the need to 

provide the data owner (or the users accessing the data) 

with techniques to assess the integrity and the 

correctness of the returned data.  

Guaranteeing integrity and correctness implies 

guaranteeing that the server does not improperly modify 

data as well as the fact that the server provides a correct 

response to queries (i.e., the server does not delete or 

modify data improperly either in storage or in query 

computation). Few proposals have investigated the 

problem of guaranteeing correctness of the data stored or 

returned by external outsourcing servers. Typically they 

are based on the use of signatures attached to tuples in 

the database (e.g., [31, 39]) or on chain structures (e.g., 

skip lists [19]) that allow the client to assess the integrity 

of the returned tuples. 
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• Access control enforcement. In many 

scenarios access to data is selective, with 

different users enjoying different views over 

the data. When data are outsourced there is 

therefore the problem of enforcing possible 

access control restrictions on it. On one 

hand, having the owner enforcing the access 

control restrictions would require the owner 

to mediate every query and response to filter 

out accesses that should not be authorized to 

the requesting users, causing a possible 

bottleneck in the system and impacting 

performances. On the other hand, simply 

outsourcing the authorization policy and its 

enforcement at the external server is not 

possible. First, the access control policy 

itself, like the data, might be sensitive and 

therefore cannot be completely disclosed. 

Second, access control restrictions might 

depend on the data content, which the server 

is not permitted to see. Third, completely 

outsourcing the management of the access 

control policy to the external server requires 

complete trust in the external server in its 

enforcement. There is therefore the need for 

developing techniques for enforcing access 

control in a reliable way without requesting 

the run time involvement of the owner. 

Some directions have started to be 

investigated relying on the combination of 

encryption and access control policies, 

towards a selective encryption enforcing 

itself access control. Intuitively, the key with 

which data are encrypted is regulated by the 

access authorizations holding on the data.  

 

• Support for selective write privileges. 

Data outsourcing proposals have 

concentrated on the management and execution of read 

accesses. The assumption of limiting the large com-

munity of users to a read access while reserving the write 

privileges to the owner is applicable in the out-sourcing 

scenarios as well as in social network-like set-tings, 

where outsourcing is meant for data publication by 

owners. There are however other contexts where the 

consideration of read privileges only is limiting. For 

instance, within a multi-owner scenario selective write 

privileges may need to be enforced. It would then be 

interesting to extend current approaches for enforcing 

selective access to the consideration of write operations.  

 

 

 

• Data publication and utility. In data outsourcing, the 

main goal is to give the data to an external server to 

avoid the burden of managing and storing them. 

Techniques developed for protecting data in outsourcing 

scenarios could also be extended and applied to data 

publication scenarios, where the goal is to make certain 

information publicly or semi-publicly available while 

ensuring proper protection of sensitive data. While in 

data outsourcing scenarios, the plaintext availability of 

certain data or associations among them might impact 

query efficiency, in data publication scenarios it im-pacts 

data visibility and therefore becomes of outmost 

importance. In data publication it is in fact crucial to 

guarantee a proper balance between data protection on 

one hand and data utility on the other hand.  

 

• Private collaborative computation. Previous 

approaches in data outsourcing have been focused on the 

data exchange between an external server and a client. 

However, advances in communication technologies 

make it easy to share information among multiple servers 

that often need to interact to accomplish a common goal 

or to provide a service. This collaboration among 
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different servers to reach a common goal 

resembles the secure multi-party 

computation problem, where different parties 

need to collaborate to perform a 

computation on their data without however 

revealing the data used in the computation 

[21]. However, while multi-party 

computation approaches aim at not 

disclosing any of the data source content, in 

many scenarios selective disclosure (i.e., 

release of portions of data) can be 

applicable. In this case, the problem is to 

deter-mine an effective and safe execution 

plan for a query computation in which the 

servers collaborate releasing each other only 

information that can be disclosed for the aim 

of computing the query result. This problem 

requires the definition of approaches for the 

specification of the different views servers 

and users can have over the different data 

sources. Authorized views could also span 

data across different servers, then requiring a 

collaborative approach in the definition of 

the authorizations.  
 

3. DATA ENCRYPTION  
 

A first solution used for preventing a server 

from accessing data stored on its own 

machines consists in encrypting the data 

before outsourcing them. We now describe 

how data can be encrypted and accessed to 

minimize the workload at the client side [18]. 

We then discuss how to support different 

access privileges [15, 17]. 
 
3.1 Data model 
 

In principle, data encryption can be 

performed by using either symmetric or 

asymmetric encryption schemas. Since 

however symmetric encryption is cheaper than 

asymmetric encryption, many proposals are based on 

symmetric encryption [28]. Encryption can also be applied 

at different granularity levels, depending on the data that 

need to be accessed. When data are organized as tables, 

encryption can be applied at the finer grain of table, 

attribute, tuple, and element [28]. Both table level and 

attribute level encryption imply the communication to the 

requesting client of the whole table involved in a query, as 

it is not possible to extract any subset of the tuples in the 

encrypted representation of the table. On the other hand, 

encrypting at the element level would require an excessive 

workload for data owners and clients in 

encrypting/decrypting data. For balancing client workload 

and query execution efficiency, most proposals assume that 

the database is encrypted at tuple level. To directly query 

the encrypted data (remember that confidentiality demands 

that data decryption must be possible only at the client 

side), additional indexing information is stored together 

with the encrypted database [24, 25]. Such indexes can be 

used by the DBMS to select the data to be returned in 

response to a query (see Section 3.2) and are computed 

starting from the plaintext values of the attributes with 

which they are associated. Before outsourcing a plain-text 

database D, each relation r over schema R(A1, . . . , An ) in 

D is therefore mapped onto an encrypted relation r
e
 over 

schema R
e
 (ID, Etuple , I1, . . . , In ) in D

e
 , where ID is the 

pri-mary key, Etuple is the attribute containing the 

encrypted tuple, and Ii , i = 1, . . . , n, is the index 

associated with the i-th attribute in R (without loss of 

generality and for sim-plicity we assume that the encrypted 

relation has always an index for each attribute of the 

corresponding plaintext relation). For each tuple t ∈  r, 

there is a tuple t
e
 ∈  r

e
 where t

e
 [Etuple ] = Ek (t), with k the 

symmetric encryption key, and t
e
 [Ii ] = f (t[Ai ]), i = 1, . . . , 

n, with f an indexing function computing the index value t
e
 

[Ii ] according to the specific indexing method adopted. 

Figure 1(a) illustrates an example of plaintext relation 

reporting information about the patients of a hospital and 

Figure 1(b) illustrates the corresponding encrypted relation. 
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The encrypted relation has Patients 

 

 

 
SSN Name DoB Zip Treatment Illness 

      

123-45-6789 Alice 1969/01/01 90012 actifed flu 
652-98-3471 Bob 1965/07/23 90022 altace heart disease 
842-74-9249 Carol 1971/10/27 90010 actifed cold  

843-42-8251 Dave 1950/11/22 90005 alendronate osteoporosis  

(a)  
Patients

e  
ID Etuple IS IN ID IZ IT II 

        

id1 hsh7wmdn ρ θ ε δ ν β 
id2 kjsjhc82 ι ϕ ε ǫ ϑ α 
id3 ks6b98hc χ µ ζ ζ ϑ α 
id4 j0jmkdd3 π µ υ δ ω γ 

(b) 
 
 
Figure 1: An example of plaintext relation (a) and 
corresponding encrypted relation (b) exactly the 
same number of tuples as the original relation. 
 
3.2 Query execution 
 

The introduction of indexes makes it 

possible to partially evaluate any query Q at 

the server side, provided it is previously 

translated into an equivalent query operating 

on the encrypted data. In general, a user 

submits a query Q that refers to the schema of 

the plaintext relations in D. This query is 

passed to the client that maps it into a query Qs 

working on the encrypted relations in D
e
 at the 

server side and a query Qc working on the 

result of query Qs at the client side. In 

particular, the server executes query Qs and 

returns a set of encrypted tuples to the client 

that decrypts them and eventually discards 

spurious tuples (i.e., tuples that do not satisfy 

the query submitted by the user). These 

spurious tuples are removed by executing 

query Qc. The final plaintext result is then 

returned to the user. 

 

The process of transforming Q in Qs and Qc 

depends both on the indexing method adopted 

and on the kind of query Q. There are 

operations that need to be executed by the client, since the 

indexing method does not support them (e.g., range queries 

are not supported by all types of indexes) and the server 

cannot decrypt data. Also, there are operations that the 

server could execute over the index, but that require a pre-

computation that only the client can per-form and therefore 

must be postponed in Qc. 

 

In the literature, different indexing methods have been 

proposed (e.g., [2, 7, 24, 27, 37]). In [24] the authors first 

introduce an indexing method that consists in partitioning 

the domain of an attribute Ai of plaintext relational schema 

R in a number of non-overlapping subsets of values 

containing contiguous values. Each partition is then 

associated with a unique value and the set of these values is 

the domain for index Ii associated with Ai . Given a 

plaintext tuple t in r over relational schema R, the 

corresponding index value is then the unique value 

associated with the partition to which the plaintext value 

t[Ai ] belongs. The domain of index Ii may or may not 

follow the same order as the one of the plain-text attribute 

Ai and the partitions may be chosen so that they have all 

the same length or contain the same number of tuples. The 

partition-based indexing method allows the server side 

evaluation of equality queries (i.e., queries with equality 

conditions in the where clause). Also, equality conditions 

involving attributes defined on the same domain can be 

evaluated by the server, provided that attributes are 

indexed using the same partition. Such methods do not 

easily support range queries. Since the index domain does 

not necessarily preserve the plaintext domain ordering, a 

range condition of the form Ai ≥ v, where v is a constant 

value, must be mapped into a series of equality conditions 

operating on index Ii of the form Ii = v1
′
 ∨  . . . ∨  Ii = vl

′
 , 

where v1
′
 . . . vl

′
 are the values associated with partitions 

that correspond to plaintext values greater than or equal to 

v. Note also that since the same index value is associated 

with more than one plaintext value, partition-based 

indexing usually produces spurious tuples that need to be 
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filtered out by the client front-end. It is easy to 

see that the number of spurious tuples is 

inversely proportional to the number of 

partitions since a large number of partitions 

increase query precision while however 

compromising privacy. On the other hand, a 

small number of partitions increases privacy 

but affects performance. The problem of 

computing an optimal partition that maximizes 

efficiency has been studied in [27]. 

 

 

Another indexing method supporting 

equality queries has been presented in [13]. 

The proposed index is based on a one-way 

secure hash function that takes in input the 

plain-text values of an attribute and returns the 

corresponding index values. A secure hash 

function satisfies important properties that turn 

out to be fundamental for the definition of an 

index. First, like the partition-based indexes, a 

secure hash function is deterministic, meaning 

that the application of a secure hash function 

to a given attribute value produces always the 

same index value, thus making easy the 

translation of a query Q into an equivalent 

query Qs on the encrypted data. Second, a 

secure hash function produces collisions, 

meaning that different plaintext values are 

mapped onto the same index value. This 

property guarantees that even if an adversary 

knows the distribution of plaintext values in 

the original database, from the index values it 

is not possible to infer the corresponding 

plaintext values (i.e., frequency-based attacks 

are not applicable). Third, a secure hash 

function does not preserve the domain order of 

the attribute on which it is applied. 

 

In addition to these two simple indexing methods, other 

solutions have been proposed (e.g., [2, 7, 26]). In [7] the 

authors present a B+-tree indexing method supporting both 

equality and range conditions appearing in the where 

clause of a query. The idea consists in using a B+-tree data 

structure for physically indexing data. An encrypted 

version of the B+-tree is then stored at the server side and 

is iteratively used to retrieve the desired data. The B+-tree 

indexing method, being order preserving, also allows the 

evaluation of order by and group by clauses, and of most of 

the aggregate operators, directly on the encrypted data. In 

[26] the authors present an indexing method based on 

privacy homomorphism [32]. In [2] an order preserving 

encryption schema (OPES) is presented to support equality 

and range queries as well as max, min, and count queries 

over encrypted data. The basic idea is that given a target 

distribution, the plaintext values are transformed by using 

an order-preserving transformation in such a way that the 

transformed values follow the target distribution. OPES is 

applicable to numeric data and is secure against cipher 

text-only attacks. In [36] the authors present an order 

preserving encryption with splitting and scaling (OPESS) 

schema. Splitting and scaling techniques are used to create 

index values so that the distribution of plaintext values is 

different from that of index values. Orders of plaintext 

values are preserved so that range queries can be easily 

sup-ported. Other works (e.g., [6, 20]) illustrate techniques 

for performing arithmetic operations (+, −, ×, ‚) on data 

encrypted using a privacy homomorphic encryption 

function. Recently a fully homomorphic encryption schema 

has been proposed [22] that allows the computation of an 

arbitrary functions over encrypted data without the 

decryption key. 

 

On a different but related line of work, other proposals 

have been presented for searching keywords in encrypted 

data (e.g., [5, 35]). 

 

Note also that when defining the indexing method for an 
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attribute, it is important to consider two 

conflicting requirements: on one hand, the 

indexing information should be related to the 

data well enough to provide for an effective 

query execution mechanism; on the other 

hand, the relation-ship between indexes and 

data should not open the door to inference and 

linking attacks that can compromise the 

protection granted by encryption. Different 

indexing methods can provide a different trade-

off between query execution efficiency and 

data protection from inference. A deep 

analysis of the level of protection provided by 

an indexing method against inference and 

linking attacks is then an important aspect that 

has been however considered only for few 

proposals (e.g., [7, 27]). In [7] the authors 

consider the problem of quantitatively 

measuring the level of exposure due to the 

publication of indexes computed either with 

direct encryption or with a secure hash 

function. They show that even a 

straightforward direct encryption can provide 

an adequate level of protection against 

inference attacks, as long as a limited number 

of index attributes are used. 

 

3.3 Selective access 

 

A recent proposal for enforcing selective 

access to out-sourced data puts forward the 

idea of using selective encryption [15, 17]. 

The proposed approach consists in encrypting 

different portions of the data with different keys 

that are then distributed to users according to 

their access privileges. This idea is not new 

per se since it has been applied in other 

contexts, for example, for selectively sharing 

XML documents [30]. However, the problems 

related to the definition, management, and evolution of the 

authorization policy, and therefore of the corresponding 

encryption have been never addressed before and are 

instead the focus of the proposals in [15, 17]. These 

proposals integrate access control and encryption, meaning 

that the data to be out-sourced are encrypted with different 

keys depending on the authorizations to be enforced on the 

data. The authorization policy defined by the data owner is 

expressed through an access matrix. Such a policy is then 

translated into an equivalent encryption policy regulating 

which data are encrypted with which key and regulating 

key release to users. This translation process is performed 

by having in mind two important desiderata: i) at most one 

key is released to each user, and ii) each resource is 

encrypted at most once. To achieve these desiderata, the 

authors exploit a hierarchical organization of keys allowing 

the derivation of keys from other keys and public tokens 

[3, 4]. Basically, users with the same access privileges are 

grouped and each resource is encrypted with the key 

associated with the set of users that can access it (i.e., the 

set of users forming its access control list). In this way, a 

single key can be possibly used to encrypt more than one 

resource. The key derivation hierarchy used in [15, 17] 

exploits the hierarchy among sets of users induced by 

 

 

 

 
                           t1     t2   t3   t4          

                    E   1     0    1   1           

                    F   1     1    0   0           

                    G   0     1    1   1           

                    H   1     0    1   1           

                    (a) Authorization policy       

                                                      

 
Figure 2: An example of authorization policy (a), key derivation 

hierarchy (b), and minimized key derivation hierarchy (c) for the 

relation in Figure 1(a) 
 

the partial order relationship based on set containment (⊆). Each 

vertex v in the hierarchy is associated with a key k and a public 

label l, and each edge connecting two vertices, say vi and vj , is 

associated with a public token ti,j computed as kj ⊕h(ki ,lj ), with 

International Journal of Advanced and Innovative Research (2278-7844) /   # 45 / Volume 2 Issue 9

             © 2013 IJAIR. ALL RIGHTS RESERVED                                                                45



⊕ the xor operator and h a deterministic 

cryptographic function [4]. Each resource is then 

encrypted by using the key of the vertex 

representing its access control list, and each user is 

given the key of the vertex representing herself in 

the hierarchy. From such a key and the public 

tokens, each user can derive the keys of the vertices 

representing groups of users containing herself. 

This implies that each user can decrypt all and only 

the resources she can access. Intuitively, the key 

derivation hierarchy so generated defines an 

encryption policy (i.e., a set of keys, a set of tokens, 

an association user-key, and an association 

resource-key) that is equivalent to the authorization 

policy specified by the data owner. In [17] the 

authors illustrate a heuristic algorithm for 

computing a minimal encryption policy, that is, an 

encryption policy where the number of tokens used 

(i.e., the number of edges in the key derivation 

hierarchy) is minimal. The rationale is to reduce the 

user’s overhead in deriving keys maintaining only 

the information strictly needed to correctly 

enforcing an authorization policy. As an example, 

consider relation Patients in Figure 1(a) and 

 

Server’s view User’s view   
SEL SEL SEL SEL SEL 

BEL BEL BEL BEL BEL 
r r r r r 

 open locked sel locked bel locked 
(a) (b) (c) (d) (e) 

 
Figure 3: Possible views on resource r [15] 

 

 

suppose that the tuples of this relation should be 

protected according to the authorization policy 

represented through the access matrix A in Figure 

2(a). The access matrix has four columns, one for 

each tuple in the relation, and four rows, one for 

each authorized users, that is, Ellen (E), Frank (F ), 

George (G), and Hilary (H ). An entry A[u, t] in the 

matrix is set to 1 when user u can access tuple t; it is set to 0 

otherwise. Figure 2(b) shows the key derivation hierarchy 

induced by the partial order relationship based on the set 

containment relationship defined over {E,F ,G,H }. In the figure, 

each vertex reports between square brackets the set of users that it 

represents, and the dotted edges represent the associations user-

key and resource-key. It is easy to see that this key derivation 

hierarchy represents an encryption policy equivalent to the 

authorization policy in Figure 2(a). User Ellen, for example, can 

derive from her key (i.e., the key associated with vertex v1 ) the 

keys associated with all vertices representing sets of users that 

contain E, including the keys of vertices v12 and v13 that have 

been used to encrypt tuples t1, t3, and t4 that are all and only the 

tuples that Ellen can access. The key derivation hierarchy in 

Figure 2(b) however requires the publication of more keys and 

tokens than actually needed. For instance, the key associated with 

vertex v11 is not needed for enforcing the authorization policy 

since it is not used for encrypting any resource. Based on this 

observation, in [17] the authors present a heuristic algorithm that 

generates a key derivation hierarchy with the goal of minimizing 

the number of tokens to be maintained by the server to improve 

the efficiency of the key derivation process at the client side. The 

algorithm creates a minimized version of the key derivation 

hierarchy equivalent to the given authorization policy. Figure 2(c) 

illustrates a minimized key derivation hierarchy equivalent to the 

authorization policy in Figure 2(a).  
 

Figure 3(a) illustrates the view of the server, which knows only 

the keys at the SEL and does not know the key at the BEL. Figure 

3(b) illustrates the view (open) of authorized users who know 

both the keys at the SEL and BEL. Figures 3(c)-(e) illustrate the 

views of non-authorized users who do not know the keys at SEL 

and BEL (locked), the key at SEL (sel locked), or the key at BEL 

(bel locked), respectively. In [15] the authors presents an 

algorithm that through the combination of an encryption policy at 

the BEL and of an encryption policy at the SEL allows the 

outsourcing of the the management of the authorization policy 

defined by the data owner. 
 

4. DATA FRAGMENTATION AND EN-

CRYPTION: NON-COMMUNICATING   
SERVERS 

 

Encrypting data for storing them at the external server 

bears a considerable cost. More than the cost of encrypting 
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and decrypting data, the problem relates to the 

efficiency of query execution. As a matter of 

fact, since the server itself is not trusted for 

decrypting data for querying them, query 

execution needs to operate on indexes. As 

noted there is a trade-off between precision of 

the index (and therefore effectiveness of the 

queries) and privacy protection: most precise 

indexes allow for more efficient execution but 

can leak information about the indexed data, 

therefore opening the door to possible privacy 

breaches. Alternative solutions have therefore 

been devised trying to depart from the use of 

encryption to protect data since encryption 

might be an overdue for two main reasons. 

First, not all data items are sensitive and 

therefore should be encrypted. Non sensitive 

values could then be left in the clear, thus 

enabling the precise enforcement of selection 

conditions on them at the server side. Second, 

in many situations data themselves are not 

sensitive; rather their associations are 

sensitive. For instance, with respect to the 

relation in Figure 1(a), the list of patients’ 

names and the list of illness could be made 

publicly available, while the association of 

specific illnesses with individual patients is 

sensitive and must be protected. Therefore, 

there is no need to encrypt both patients’ 

names and illnesses if there are alternative 

ways of protecting their association. 
 
4.1 Data model 
 

The first proposal putting forward the idea 

of breaking associations among attributes 

rather than encrypting them in an outsourcing 

scenario is the work in [1]. In this work the 

authors start from the identification of the 

privacy requirements of the data to be 

outsourced. Privacy requirements are characterized as sets 

of attributes: singleton sets identify attributes that are 

sensitive per se, non singleton sets identify attributes 

whose association is sensitive. For instance, Figure 4 

illustrates a set of privacy requirements related to relation 

Patients in Figure 1(a): p0 states that Social Security 

Numbers individually taken are sensitive; p1 and p2 state 

that the associations between the values of attribute Name 

and of attributes Treatment and Illness, respectively, are 

sensitive; p3 states that the association between the values 

of attributes Treatment and Illness is sensitive; p4 and p5 

state that the association of the values of attributes DoB 

and Zip with the values of attributes Treatment and 

Illness are considered sensitive. These last two protection 

require 

p0 = {SSN} 
p1 =   {Name,Treatment} 
p2 =   {Name,Illness} 
p3 =   {Treatment,Illness} 
p4 =   {DoB,Zip,Treatment} 
p5 = {DoB,Zip,Illness} 

 
 
Figure 4: Examples of protection requirements associated with the 
relation in Figure 1(a) 
 
 

ments derive from the observation that DoB and Zip together can 

be exploited to infer the identity of patients (i.e., they can work as 

a quasi-identifier [33]), consequently their associations with other 

pieces of information are considered sensitive.  
It is easy to see that, while simple, such a characterization of 

privacy requirements captures most requirements of real 

scenarios. To outsource data in such a way that the protection 

requirements identified are preserved, the approach in [1] stores 

the data to two independent non-communicating servers. Data 

stored at a server can be either encoded or stored in the clear. The 

authors propose different encoding techniques that consist in 

storing an attribute A as two separate attributes A1 and A2 in the 

two servers. For in-stance, the encrypted value of A can be stored 

at one server (i.e., A1 =Ek (A)) and the encryption key at the other 

server (i.e., A2=k). For simplicity, in the following we assume 

that encryption is used as an encoding technique. Basically, 

sensitive attributes (singleton constraints) need to be encrypted, 

while sensitive associations can be protected by splitting 
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(fragmenting) the involved attributes among the two 

servers. In addition to sensitive attributes, other at-

tributes might need to be encrypted if storing them 

at any of the two servers in the clear would break at 

least one sensitive association. A relational schema 

R is then split into two fragments, each stored at a 

diff erent server. The fragments are obtained by a 

vertical fragmentation of the relational schema R, 

with some of the attributes possibly encrypted. A 

fragmentation of R is then a triple hF1,F2 ,Ei, where 

fragments F1 and F2 contain a set of attributes in the 

clear (including a tuple identifier to ensure lossless 

decomposition) and a set E of attributes encrypted 

(i.e., E ⊆ F1 and E ⊆ F2 ). The encrypted attributes, 

as well as the tuple identifier, are reported in both 

fragments. To guarantee protection, the set of 

attributes in the clear in each fragment must not be a 

superset of any privacy requirements, that is, for 

each protection requirement pi over relational 

schema R, pi 6⊆(F1 − E) and pi 6⊆(F2 − E). For 

instance, consider relation Patients in Figure 1(a) 

and the protection requirements in Figure 4. 

Attribute SSN is a sensitive at-tribute (p0) that can 

be protected only through encryption. Protection 

requirement p1 can be satisfied by storing at-tribute 

Name in fragment F1 and attribute Treatment in 

fragment F2 . Protection requirement p2 can instead 

be satisfied only by encrypting attribute Illness 

since it can be stored in the clear neither in F1 nor 

F2 as p2 or p3, respectively, would be violated. The 

encryption of attribute Illness guarantees then also 

the satisfaction of protection requirements p3 and p5 

. Protection requirement p4 can be satisfied by 

storing attributes DoB and Zip in fragment F1 . The 

final decomposition is: hF1 (ID,Name,DoB,Zip), 

F2 (ID,Treatment),{SSN,Illness}i. Given an 

original relational schema R and a set P of privacy 

requirements, a solution decomposing the relation 

in two fragments as pre-scribed above always exist 

(in the worst case each attribute is encrypted). In 

general, there might exist more than one solution. A 

key question is therefore what is the best de-

composition to use. In [1] the authors assume that 

the best solution is a solution that minimizes the 

cost of the workload being executed against the 

database. The characterization of the diff erent costs 

of decompositions is based on the use of an affinity matrix M 

typically used in databases, which is adapted as follows: entry M 

[i, j] represents the ‘cost’ of splitting attributes i and j (i.e., 

placing them in the clear in diff erent fragments); entry M [i, i] 

represents the cost of encrypting attribute i. The best solution is 

therefore a solution that minimizes the overall cost, that is, the 

sum of the costs of the encryption and splitting involved. The 

authors model the problem of finding such a solution as a hyper 

graph coloring problem. The hyper graph is obtained by 

considering a node for each attribute, where node i is associated 

with weight M [i, i] and each edge hi, ji is associated with weight 

M [i, j]. Also, each privacy requirement is represented as an 

hyper-edge connecting the involved attributes. Encrypting an 

attribute corresponds to deleting the corresponding node. Storing 

an attribute in the clear on a server corresponds to coloring the 

node with the color of the server. The problem is therefore to 

determine a 2-coloring of the graph in such a way that the sum of 

the weights of deleted nodes and of bichromatic edges is 

minimized. Clearly the problem is NP-hard. The authors then 

propose diff erent heuristics for its solution, which make use of 

approximate min-cuts and of approximate weighted set cover as 

basic techniques. 
 
4.2 Query execution 
 

Since the original relation is split among the two external 

servers, query execution may need to access information at both 

servers and properly combining it. Reformulating a query over the 

two fragments is rather straightforward, as it reduces to 

substituting the join among the two fragments (F1 ⊲⊳ F2) in 

place of the original relational schema R in the query plan. The 

query plan can then undergo traditional query optimization, with 

minor modifications to account for attribute fragmentation. For 

instance, projections may be pushed down to both fragments, 

taking care not to project out tuple identifiers necessary for the 

join; selection conditions involving an individual attribute may be 

pushed down to the corresponding fragment (if the at-tribute 

appears in the clear); selection conditions involving more 

attributes may be pushed down to the fragment containing them in 

the clear (if any). Once the query plan is optimized, the physical 

plan determines how the query execution is partitioned across the 

two servers and the client. The basic partition of the plan is 

straightforward: all operations above the top-most join have to be 

executed at the client side; all operations under the join and above 

Fi are executed by the server storing Fi . In some cases, it may be 

possible to push all operators to either F1 or F2 , thus eliminating 
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the need for a join. Otherwise, the join must be 

executed. There are essentially three options for 

executing the sub-queries and the join. The first 

option is to execute the sub-queries on F1 and F2 in 

parallel and join the results at the client side. The 

second option and third option are to execute a sub-

query at one of the server first, and to per-form a 

semi join of the returned tuple identifiers with the 
 

select Name,Illness  

from Patients  
where DoB<1970/01/01 and Treatment like ‘actifed’ 

 (a) Original query Q 

   

Q1  Q2 
select ID ,Name,Illness select ID ,Illness as k 
from F1 from   F2 
where DoB<1970/01/01 where Treatment like ‘actifed’ 

 

(b) Sub-queries at the servers 

 

select Name, Decrypt(ResQ1 
.Illness, k) as Illness from ResQ1 , 
ResQ2 
where ResQ1 .ID = ResQ2 .ID 
 

(c) Query at the client 
 
 
Figure 5: An example of query translation in the 
non-communicating servers scenario 
 

 

fragment on the other server in addition to 

executing the sub-query on it. The first option 

is more expensive, since it requires more data 

to be transmitted from the servers to the client 

and the execution of the join at the client side. 

The second and third options potentially enjoy 

a lower cost (de-pending on the selectivity of 

the sub-query executed first) but imply a 

sequential computation and a possible risk of 

privacy breaches. In fact, it implies disclosing 

to one of the servers the tuple identifiers that 

satisfy the condition on the other server. Even 

assuming the query is not known (as otherwise 

privacy would be compromised), the fact that 

some tuple identifiers enjoy some common 

characteristics may be exploited for 

withdrawing inferences on possible values in the tuples. 

 

As an example of query execution, suppose that a user 

submits query Q in Figure 5(a) that returns the name and 

illness of all patients born before 1970 and whose 

treatment is Actifed. Suppose also that the encrypted 

values of at-tribute Illness are stored at the first server and 

the encryption key at the second server. Query Q is 

translated into two sub-queries Q1 and Q2 (see Figure 5(b)) 

that are executed over fragments F1 and F2 , respectively. 

Query Q1 retrieves from the first server the tuple identifier 

(ID ), the encrypted attribute Illness, and the Name of 

patients born before 1970. Query Q2 applies the selection 

on attribute Treatment and returns the tuple identifier 

(attribute ID) and attribute Illness (renamed as k) 

corresponding to the key used for encrypting the values of 

attribute Illness in Patients. Finally, the client executes a 

query that performs a join between the results of queries Q1 

and Q2, denoted ResQ1 and ResQ2 , respectively, and 

decrypts attribute ResQ1 .Illness using the key retrieved 

from Q2 (see Figure 5(c)). 

 

5. DATA FRAGMENTATION AND EN-

CRYPTION: UNLINKABLE FRAG-   
MENTS 

 

While presenting an interesting direction, the approach 

in [1] suffers from two major limitations. First, privacy 

relies on the absence of communication between the two 

servers,which have to be completely unaware of each 

other. This assumption is clearly too strong and difficult to 

enforce in real environments. A collusion among the 

servers (or the users accessing them) easily breaches 

privacy. Second, the assumption of two servers limits the 

number of associations that can be solved by fragmenting 

data, often forcing the use of encryption. In [10] the 

authors address these limitations while exploiting the 

combined use of fragmentation and encryption proposed in 

[1]. We now describe this proposal more in details. 

 
5.1 Data model 
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The starting point of the problem, that is, a 

relational schema R and a set of privacy 

requirements (called confidentiality constraints 

in [10]) are the same as in [1]. Differently 

from [1], in [10] the authors assume that 

multiple fragments can be created and stored 

at diff erent servers or even at the same server. 

Rather than relying on the storing servers not 

knowing each other, the approach in [10] relies 

on the fact that fragments are guaranteed to be 

not linkable (i.e., it is not possible for parties 

diff erent from the client to reconstruct the 

original relation and determine the sensitive 

values and associations). Encryption is applied 

at the at-tribute level, that is, it involves an 

attribute in its entirety. Encrypting an attribute 

means encrypting (tuple by tuple) all its 

values. To protect encrypted values from 

frequency attacks [34], a salt is applied to each 

encryption. Fragmentation, like encryption, 

applies at the attribute level, that is, it involves 

an attribute in its entirety. Fragmenting means 

splitting sets of attributes so that they are not 

visible together, that is, the associations among 

their values are not available without access to 

the encryption key. While singleton constraints 

can be solved only by encryption, every 

association constraint could be solved by 

either: i) encrypt-ing any (one success) of the 

attributes involved in the constraint, so to 

prevent joint visibility, or ii) fragmenting the 

attributes involved in the constraint so that 

they are not visible together. For instance, with 

respect to relation Patients in Figure 1(a) and 

the protection requirements in Figure 4, a 

possible fragmentation, denoted F, is 

{{Name,DoB,Zip}, {Illness}, {Treatment}}. 

At the physical level the original relation is 

represented as a set of physical fragments each 

containing: a salt (also exploited as tuple 

identifier), a set of attributes of R in the clear, 

and an encrypted attribute corresponding to the 

encrypted subtuple of all the attributes that are 

not represented in the clear. Privacy is 

guaranteed by requesting that: i) no fragment contains in 

the clear all the attributes appearing together in a confidentiality 

constraint and ii) fragments do not have attributes in common 

(i.e., they cannot be linked). Note that the use of a salt guarantees 

that the encrypted values cannot be used for linking. Figure 6 

illustrates the physical fragments corresponding to fragmentation 

F ={Name,DoB,Zip}, {Illness}, {Treatment}} of relation 

Patients in Figure 1(a).  
Since the availability of attributes in the clear in a 

fragment permits an efficient execution of queries, 

fragmentation is considered to be preferred over encryption 

whenever possible. In other words, association constraints 

are solved via fragmentation, and encryption is limited to 

those attributes that are sensitive by themselves (i.e., 

singleton constraints). Similarly to what noted in [1], 

diff erent fragmentations can exist, all limiting encryption 

to sensitive attributes but differing in how the attributes are 

distributed in the fragments 
 
 

  F1        F2 
Salt Enc Name  DoB  Zip   Salt Enc Illness 

            

s1 α Alice 1980/01/01 90012   s5 ǫ flu 
s2 β Bob 1965/07/23 90022   s6 ε heart disease 
s3 γ Carol 1971/10/27 90010   s7 δ cold 
s4 δ Dave 1950/11/22 90005   s8 ε osteoporosis 

      F3    
    Salt Enc Treatment     
           

    s9 ζ  actifed     

    s10 ϑ  altace     

    s11 η  actifed     

    s12 θ  alendronate     

Figure 6: Physical fragments for the relation in Fig-ure 1(a) and 
enforcing the requirements in Figure 4 
 
 

and/or in the number of fragments. Again, the goal is to 

determine a solution that provides minimality. In [10] the 

authors assume minimality to be characterized by the num-ber 

of fragments in a fragmentation and investigate therefore the 

problem of determining a fragmentation with a mini-mum 

number of fragments. Since the problem is NP-hard, the authors 

introduce an alternative definition of minimality and assume that 

a solution is minimal if merging any two fragments would break 

at least a confidentiality constraint. They then propose a 

heuristic approach to its solution. The minimization of the 

number of fragments exploits the basic principle according to 

which the presence of a high number of attributes in the clear 

permits an efficient execution of queries. While this principle 

may be considered acceptable in many situations, diff erent 

combinations of attributes can be accessed all together a 
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diff erent number of times, depend-ing on the 

queries executed on the data. In [10] the authors 

then acknowledge the need for keeping together 

some specific attributes according to the queries 

that are frequently executed on the data. Given a 

query Q and a fragmentation F, the execution cost 

of Q varies according to the specific fragment used 

for computing the query. This implies that, with 

respect to a specific query workload, diff erent 

fragmentations may be more convenient than 

others in terms of query performance. 

 

To take into consideration the query workload 

in the fragmentation process, the authors exploit 

the concept of at-tribute affinity, where attribute 

affinity is also a measure of how strong the need 

of keeping the attributes in the same fragment is 

(i.e., what is the cost of splitting the attributes in 

diff erent fragments). Attribute affinity is then 

naturally extended to fragments and 

fragmentations. Intuitively, the affinity of a 

fragment is the sum of the affinity of the different 

pairs of attributes in the clear in the fragment; the 

affinity of a fragmentation is the sum of the 

affinity of its fragments. Fragmentations that 

maintain together attributes with high affinity are 

to be preferred. Again, the problem is NP-hard, 

and the authors present a heuristic approach to its 

solution. 

 

In [8] the authors go a step further in aiming at 

characterizing what fragmentation can provide 

best with respect to a given workload and, instead 

of characterizing the workload with the affinity 

matrix, they assume that a query workload is given 

as a set of queries together with their frequency of 

execution. The authors then present a query cost 

model that is used to evaluate the cost of a query, 

and therefore of a query workload, against a 

fragmentation and introduce the problem of 

determining a fragmentation that minimizes 

 

 

 

select Name,Illness from 
Patients 
where DoB<1970/01/01 and Treatment like ‘actifed’ 
 

(a) Original query Q 

 
 

 

select Salt,Enc,Name 
from F1 
where DoB<1970/01/01 
 

(b) Query operating on fragment F1 

 
select Name,Illness 
from Decrypt(ResQF1 , k) where 

Treatment like ‘actifed’ 
 

(c) Query operating at the client 
 
 
Figure 7: An example of query translation in the unlinkable 
fragments scenario 
 

the cost of executing the given query workload. Their 

formulation of the problem is based on the definition of the 

space of the different fragmentation and on its organization 

as a lattice (with bottom and top elements the extreme 

fragmentations represented by putting all attributes in the 

same fragments or each attribute in a diff erent fragment, 

respectively). Noting the monotonicity of the 

fragmentation cost over the lattice, the authors propose a 

heuristic algorithm that partially visits the lattice, following 

a top-down strategy to compute a locally minimal 

fragmentation that, as proved by experimental results has a 

cost near to the optimum. 
 
5.2 Query execution 
 

Since each fragment contains all the original attributes, in 

either the clear or encrypted form, it is sufficient to access a 

fragment (any fragment) for executing a query, although diff erent 

fragments may differ with respect to the efficiency (i.e., the cost) 

of running the query. In [10] the authors ad-dress the translation 

and execution of select-from-where queries. Query execution is 

rather simple. The only observation is that a selection conditions 

can be pushed down to a fragment only if all involved attributes 

appear in the fragment in the clear, otherwise it needs to be 

executed at the client (returning all the attributes needed for 

evaluation). Hence, the execution of a query on a given fragment 

re-quires translating the query into two diff erent queries. First, a 

query, executed at the external server on the stored fragment that 

evaluates all selection conditions that operate on attributes that 

are in the clear in the fragment and returns the requested attributes 

as well as the salt (attribute Salt) and the encrypted field (attribute 
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Enc), if the query needs to evaluate attributes that 

are encrypted in the fragment. Then, a query is 

executed at the client: the returned data are 

decrypted, the remaining conditions are evaluated, 

and the attributes requested as result are returned. 

As noted, any query could be executed on any 

fragment although different fragments may 

diff erent with respect to the query cost. In 

particular, it is better to execute the query on a 

fragment that allows the most selective conditions 

to be pushed down to the fragment. As an example, 

consider again the query returning the name and 

illness of patients born before 1970 and whose 

treatment is actifed (see Figure 7(a)). Sincefragment 

F1 contains attribute DoB in the clear, which we 

assume to be more selective than attribute 

Treatment, F1 is chosen for query evaluation. The 

server storing fragment F1 then executes a query 

that selects the tuples that satisfy the condition on 

DoB and returns attributes Salt, Enc, and Name 

(see Figure 7(b)). Finally, the client decrypts the 

con-tent of attribute Enc of the tuples returned by 

the server and on the decrypted tuples executes a 

query that retrieves those satisfying the condition on 

attribute Treatment. Figure 7(c) illustrates the 

query executed at the client side, where k is the 

decrypting key and ResQF1 denotes the result of the 

query in Figure 7(b). 

 

6. DATA FRAGMENTATION 

WITH OWNER 

INVOLVEMENT 
 

Proceeding along the directions of minimizing 

the use of encryption, in [9] the authors put forward 

the idea of completely departing from encryption 

and adopt fragmentation as the only means of 

protecting privacy when outsourcing data. The 

rational for the assumption that data should not be 

encrypted is that encryption is sometimes 

considered a too rigid tool, delicate in its 

configuration, and requiring careful management to 

fulfill its potential. Systems protecting sensitive 

information based on an extensive use of encryption 

suffer from significant consequences due to both the 

compromise and loss of keys. In the real world, key management, 

particularly the operations at the human side, is a difficult and 

delicate process. Also, as already noted, while the computational 

cost of symmetric encryption for modern computer architectures 

is usually negligible, the presence of encryption often causes an 

increase in the computational load, affecting the performance of 

query execution. 
 
6.1 Data model 
 

In [9] the authors depart from encryption by involving the data 

owner in storing, and managing, a small portion of the data, while 

delegating the management of all other data to the external server. 

The management of a small portion of data is considered an 

advantage with respect to the otherwise required encryption. The 

need for the data owner to maintain control on part of the data is 

to avoid exposing sensitive attributes or associations externally. 

Sensitive attributes are maintained at the owner side. Sensitive 

associations are protected by ensuring that not all the attributes in 

an association are stored externally. In other words, for each 

sensitive association, the owner should locally store at least one 

attribute. The original relational schema R is split in two 

fragments: Fo , stored at the data owner, and Fs , stored at the 

external server. To correctly reconstruct the content of a relation r 

over schema R, at the physical level, Fo and Fs have a common 

tuple identifier that corresponds to the primary key of R, if it is 

not sensitive, or can be an attribute that does not belong to the 

schema of R and that is added to Fo and Fs after the fragmentation 

process. A fragmentation hFo, Fs i is considered correct if it 

satisfies the following conditions: 1) all attributes in R should 

appear in at least one fragment, to avoid loss of information; 2) 

the external fragment should not violate any confidentiality 

constraint. Note that this condition applies only to Fs since Fo is 

under the data owner control and therefore is accessible only to 

authorized users. Also, a fragmentation should be non redundant, 

that is, the two fragments should have 
Fo 

ID  SSN Treatment  Illness 
        

id1 123-45-6789 actified flu 
id2 652-98-3471 altace heart disease 
id3 842-74-9249 actified cold 
id4 843-42-8251 alendronate osteoporosis 

     Fs    
  ID Name DoB  Zip  
       

  id1 Alice  1980/01/01 90012  
  id2 Bob  1965/07/23 90022  
  id3 Carol  1971/10/27 90010  
  id4 Dave  1950/11/22 90005  

 
Figure 8: An example of physical fragments with owner 
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involvement 
 

no attribute in common. While not needed for 

preserving privacy, non redundancy avoids 

unnecessary storage at the data owner side 

(there is no need to maintain information that 

is outsourced); it also avoids usual replica 

management problems. Figure 8 illustrates a 

possible fragmentation of relation Patients in Figure 

1(a) that satisfies the protection requirements in 

Figure 4.  
Similarly to previous approaches, given a 

relation and a set of protection requirements 

(confidentiality constraints) on it, the problem 

is to determine a fragmentation that pro-vides 

best, where ‘best’ is to be defined with respect 

to a cost for the owner of executing queries 

against the fragmented data. The starting 

observation is that storage and computational 

resources offered by the external server are 

considered, for a given level of availability and 

accessibility, less expensive than the resources 

within the trust boundary of the owner. The 

owner has then a natural incentive to rely as 

much as possible, for storage and computation, 

on the external server. In the absence of 

confidentiality constraints, all data would then 

be remotely stored and all queries would be 

computed by the external server. In the case of 

confidentiality constraints, the owner 

internally stores some attributes, and 

consequently is involved in some computation. 

 

In [9] the authors discuss several metrics 

(and corresponding weight functions to be 

minimized) that could be used to characterize 

the quality of a fragmentation, and therefore to 

determine which attributes are stored at the 

owner side and which attributes are outsourced 

at the external server. The diff erent metrics 

may be applicable to different scenarios, 

depending on the owner’s preferences and/or 

on the specific knowledge (on the data or on 

the query workload) available at design time. 

The authors consider four possible scenarios, 

in increasing level of required knowledge. The 

first two scenarios support measuring storage, 

while the latter two scenarios support measuring 

computation. 

 

• Min-Attr . Only the relation schema (set of 

attributes) and the confidentiality constraints are 

known. The only applicable metric aims at 

minimizing the storage  

 

required at the owner side by minimizing the 

number of attributes in Fo .  

 

• Min-Size. Besides the mandatory knowledge of the 

relation schema and confidentiality constraints on it, 

the size of each attribute is known. In this case, it is 

possible to produce a more precise estimate of the 

storage required at the owner side, aiming at 

minimizing the  

 

physical size of Fo , that is, the actual storage 

required by its attributes. 

 

• Min-Query . In addition to the relation schema and 

the confidentiality constraints, a representative profile 

of the expected query workload is known. The profile 

defines, for each query, the frequency of execution 

and the set of attributes evaluated by its conditions. 

Here, the goal is to minimize the number of query 

executions that require processing at the owner 

side, producing immediate benefits in terms of the 

reduced level of use of the more expensive and less 

powerful computational services available at the 

owner.  

 

• Min-Cond . In addition to the relation schema and 

the confidentiality constraints, a complete profile of 

the expected query workload is known. The complete 

pro-file assumes that the specific conditions (not only 

the attributes on which they are evaluated) appearing 

in each query are known. The precise characterization 
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of the workload allows the definition of a 

metric to minimize the number of 

conditions that require processing at 

the owner side. Note that the 

minimization of the conditions executed 

at the owner side has a direct relationship 

with the minimization of the traffic 

needed for receiving results of the 

portion of queries outsourced to the 

external server. As a matter of fact, 

minimizing the conditions executed by 

the owner is equivalent to maximizing 

the conditions outsourced to the external 

server, and therefore delegating to it as 

much computation as possible. In fact, 

since the result of evaluating a condition 

on a relation is a smaller relation, the 

greater the number of conditions 

outsourced to the external servers, the 

smaller will be the corresponding results 

to be received in response.  

 

In [9] the authors provide a uniform 

modeling of the fragmentation problem, 

encompassing the diff erent metrics above, 

which can be simply represented by the 

definition of a proper weight function input to 

the minimization problem. The minimization 

of the cost of involving the owner (either for 

storage or computation) is NP-hard (it reduces 

to the minimum hitting set in its simplest form 

of minimizing the number of attributes). The 

authors then provide a heuristic algorithm for 

the computation of a solution that guarantees 

minimality (i.e., moving any attribute from Fo 

to Fs would violate at least one constraint). 

Also, according to experiments, the returned 

solution well approximates the optimum. 

 

6.2 Query execution 
 

Like for the fragmentation approach based on two non-

communicating servers, query execution may need to 

access the information stored on the two fragments Fo and 

Fs . A select-from-where query Q defined over the original 

relational schema R is then translated into queries 

operating on the two fragments. This translation process 

can follow two basic strategies: client-first and server-

first . 

With the client-first strategy a query Qo is first executed 

at the client side. Query Qo is obtained from the original 

query Q as follows. The select clause of query Qo contains 

attribute ID since it is needed to perform a join operation 

between the result of Qo and Fs ; other attributes therefore 

cannot appear in the select clause because they cannot be 
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select Name,Illness from 
Patients 
where DoB<1970/01/01 and Treatment like ‘actifed’ 
 

(a) Original query Q 

 
Figure 9 illustrates an example of query execution operating on the 

fragments illustrated in Figure 8 according to both the client-first 
(left-hand side) and server-first (right-hand side) strategies. Note that 
in the client-first strategy, the last query Qos (Figure 9(f)) has only a 
join condition 

 
Client-first 
 
select ID 
from Fo 
where Treatment like ‘actifed’ 
 

(b) Query Qo 
 
select ID ,Name 
from ResQo ,Fs 
where ResQo .ID =Fs .ID and 

DoB<1970/01/01 
 

(d) Query Qs 
 
select Name,Illness 
from Fo ,ResQs 
where Fo .ID =ResQs .ID  

(f) Query Qos 

    
  Server-first 
 
select ID ,Name 
from Fs 
where DoB<1970/01/01 
 

(c) Query Qs 
 
select Name,Illness 
from Fo ,ResQs 
where Fo .ID =ResQs .ID and 

Treatment like ‘actifed’ 
 

(e) Query Qo 

 
in the where clause since the original query Q does not have any 
condition that involves both attributes in Fo and attributes in Fs . 
 
7. CONCLUSIONS 
 

Effective adoption of data outsourcing solutions as well as 

effective information sharing and dissemination can take place 

only if data owners can be assured that, while releasing or storing 

information externally, disclosure of sensitive information is not a 

risk. Data protection and privacy in emerging storing and sharing 

scenarios is far from been a trivial problem and requires the 

investigation of new issues and the design of technological 

solutions to address them. This paper has discussed problems to 

be addressed and il-lustrated some emerging directions 

introducing novel data protection approaches in outsourcing 

scenarios. 

 
Figure 9: An example of query translation in the owner 
involvement scenario 
 
 
communicated to the server. The where clause of Qo contains all 

conditions of Q that involve attributes stored in Fo only since their 
evaluation can be performed only by the data owner. The client 
executes Qo and sends to the server a query Qs operating on the join 

between Fs and the result of Qo . The select clause of Qs contains all 

attributes of Fs appearing in the select clause of the original query Q 

and all attributes in Fs appearing in conditions that are involved in a 

comparison with attributes in Fo . The conditions in the where clause 

of Qs are those appearing in the original query Q and involving 

attributes stored in Fs only and that therefore can be evaluated by the 

server. The re-sult of query Qs is then sent back to the client, which 

further refines the result possibly executing another query Qos on the 

join between Fo and the result of query Qs . Query Qos applies the 

conditions in Q that involve at the same time at-tributes stored in Fo 

and Fs . Note that if the server knows the original query Q, the client-
first strategy cannot be used since the server infer the tuples that 
satisfy the conditions in the where clause of Q and that involve 

attributes stored in Fo only.  
With the server-first strategy a query Qs is first executed at the 

server side. The result of Qs is then further refined at the client side. 

Query Qs is obtained from the original query Q as follows. The select 

clause of Qs contains attribute ID needed for performing the join 

between the result of Qs and Fo , and all attributes in Fs appearing in 

the select clause of Q or that appears together with attributes in Fo in 
conditions in the where clause of Q (these conditions can therefore be 
evaluated by the data owner only). The where clause of Qs contains 
all conditions appearing in the where clause of Q that involve 
attributes stored in Fs only. The server executes Qs and returns the 

corresponding result to the client that performs the join with Fo and 
removes the tuples that do not satisfy the conditions in the where 
clause of Q and that involve attributes in Fo only or attributes in both 

Fo and Fs . 
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