
Implementation of multi-serials to Ethernet

Gateway based on Field Programmable Gate

Array

D.YESUBABU, B.SRIHARI

1
PG-Student, Dept.of ECE, CRV INSTITUTE OF TECHNOLOGY&SCIENCE , SHAMEERPET RANGAREDDY DISTRIC

2
Associate Professor, Dept. Of ECE, CRVITS, SHAMEERPET, RANGAREDDY DISTRIC, HYDERABAD, India

1devarakondayesubabu
@gmail.com

2srihari.royal
@gmail.com

Abstract—The Unmanned Aerial Vehicle (UAV) data

link is composed of ground control station and airborne

data terminal, all of which communicate in UART

mode. In order to achieve multi-serials communication

between UAV and ground control station, a method of

multi-serials to Ethernet Gateway based on field

programmable gate array (FPGA) +network interface

chip is given. In this paper the structure and working

principle of system is introduced first. Then the design

of system’s hardware and software programming were

described. The modules of transfer and receiver were

completed by state machine. Finally, the timing

simulation of two serial ports was shown. It has been

proved in the real test that the design can communicate

with computer and work well, and achieve the

prospective purpose. It is of much great practical

significance and operational benefits.

Keywords-Ethernet; FPGA; multi-serials; Gateway;

UAV; UART

I. INTRODUCTION

The Unmanned Aerial Vehicle (UAV) data link [1] is

composed of ground control station and airborne data

terminal. The computers on the ground need control and

check more than ten assemblies, containing main and sub

remote control transmitters, telemetry receivers, image

decompression board, ground positioning receiver and

radio location tracking servo system etc. The

communication between them is standard asynchronous

serial form and at the current, the serial ports are expanded

by MOXA card, whose weaknesses are: complicated cable

wiring, frequently interruption of CPU, which greatly

reduces the CPU’s efficiency and impacts the system’s

real-time Processing. To resolve these problems, a method

of multi serials to Ethernet Gateway based on the field

programmable gate array (FPGA) +network interface chip

is presented. The Gateway will send data as Ethernet frame

format after receiving serial data, indirectly achieves multi-

serials communication, simplifies cabinet wiring and

improves CPU’s efficiency.

II. SYSTEM STRUCTURE AND WORKING

PRINCIPLE

The Gateway mainly consists of FPGA, Ethernet module

and level converter. Using a flexible FPGA programming

Feature, a UART [2] can be designed in it. If several

UARTs are in it, the system has the capacity of

communication with multiple serial ports. The Ethernet

module implements Ethernet communication and is

configured at the time of initialization as we can see in Fig.

1, the Gateway’s main function is to achieve

communication between the serial devices and Ethernet.

When it receives data from devices, Gateway will choose

useful data from serial data frame following the

communication protocol, and send data after packaged.

When it receives data from Ethernet, it firstly unpacks the

frame and determines the port number to transfer data to its

buffer and adds the synchronous heads.

III. HARDWARE DESIN

The FPGA [3] [4], ep2c70, belongs to Alter a Cyclone II

family, ups to 1.1Mbits of embedded memory, satisfies

high-speed and large-capacity communication completely.

Asynchronous serial communication level is different from

FPGA level, so it must shift level. SP208E is selected,

which integrates a 4-channel RS232 transceiver and is fully

compatible with CMOS/TTL levels. The Network

controller is RTL8019AS, which supports PNP automatic

detection, embeds 16KB SRAM, includes a full-duplex

communication interfaces. It is designed for the ISA bus

and used to implement the network physical layer protocol.

The overall structure of the hardware is shown in Fig.2.

Figure 1. Basic Structure of the System

International Journal of Advanced and Innovative Research (2278-7844) / # 21 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 21

Figure 2. Basic Structure of the Hardware

A. Serial ports module

The code file of serial ports is programmed in VHDL

language with the Quartus II7.2 platform.

A single serial port module consists of three parts: control

module, data receiver module and data transfer module.

Working diagram is shown in Fig. 3.

Figure 3. Sketch map of serial port

1) Control module: This module is mainly to complete the

registers configuration, the data format setting, the baud

rate and the size of the receive the block setting, as well as

the controlling of sending or receiving data and the

judgement of data status. Registers need to be configured

are shown in Table I. In this design, a 40.6MHz crystal

oscillator is used. For the purpose of improving the

accuracy of sampling, we use FPGA’s phase-locked loop

(PLL) function [3]. Firstly, converting this frequency to

19.2MHz, then introducing it to each port module and

dividing it into different baud rates as you need. For

example, we need a rate of 19200b/s. What we should do is

writing 1000 to baud rate register. Counter will jump when

it notes to 500 and jump again when it notes to 1000. And

then clears zero to start over. In this way, we can get a 50%

duty cycle clock.

2) Receiver module: This module is mainly responsible for

data reception and the conversion of data. It mainly

contains data registers and receivers. When the valid stop

bit is detected, data are sent into the register. When the size

equals to the setting value, data in the register are

transferred into the I/O buffer. Receive controller mainly

includes a counter and a 8 bits shift-register. It is controlled

by the state machines [4], as shown in Fig. 4.

3) Transfer module: This module is used to send bus data

received from Ethernet. It consists of transmitter and data

registers. When the command is executed, transfer will

send data in serial form until the send counter is 0, which

means over. At last, the flag bit is set. The transmitter is a

8-bit shift register. As long as data register is not empty,

shift register would constantly read data, add start and stop

bits and send them in asynchronous frame format. It is also

controlled by state machines, as shown in Fig. 5. When the

send clock is high, if the data register is full, the data will

sent in order. The coordinated communication of multiple

serial ports: in order to allow ports communicate

effectively, there is a need to administer them. As we

know, the FPGA processing speed is far greater than

peripheral transmit data rate, so once I/O buffer receives

data from any serial port, the data can be read

by Ethernet interface chip directly. So long as the serial

data start address and end address doesn’t conflict.

Figure 4. The state of receiving register is not full

Figure 5. The state of sending

B. Ethernet interface chip drive

The chip is used to write data into I/O buffers in right

format and start sending commands. The 8019 will

Automatically convert data packets into appropriate form

and transmit them in physical channel. On the contrary, the

8019 will restore physical signals into data, store them in

I/O buffers. In short, it implements conversion between

data packets and electrical signals. Ethernet protocol will

be done automatically by the chip. Drive program includes

the initialization of the 8019, receiving program and

sending program. Reg00, named command register (CR) is

a byte whose address offset is 0x00, as listed in Table II.

bit 7 6 5 4 3 2 1 0 name PS1 PS0 RD2 RD1 RD0 TXP

STA STP In Table 2, PS0 and PS1 bits are used to select

register pages. When PS1:PS0=0x00, page 0 is selected.

International Journal of Advanced and Innovative Research (2278-7844) / # 22 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 22

When PS1:PS0=0x01, page 1 is selected. 0x10, page 2,

0x11, page 3. The parameter is page-number used to

specify the number of page. The registers configuration is

as follows:

• reg00=0x21; //page 0, stop running, wait for initialization.

• reg01=0x4c; //address of receiver buffer start page

(PSTART).

• reg02=0x80; //address of receiver buffer stop page

(PSTOP).

• reg03=0x4c; //read pointer, point to the last page has been

read (BNRY).

• reg04=0x45; //transmitter page start register (TPSR).

• reg0c=0xcc; //receiver construction register (RCR).

• reg0d=0xe0; //transmitter configuration register (TCR)

• reg0e=0xc8; //data configuration register (DCR).

• reg0f=0x00; //disable all interrupt.

• reg07=0x4d; //write pointer, point to the current stop page

of receiving (CURR).

• reg00=0x22; //select page 0 register, start to execute the

command. As depicted in front, serial port data need to

package and Ethernet data need to unpack. All data need a

unified frame format. Ethernet format [5] is in Table 3.

When 8019 receives a valid packet, the pointer will return

the received data, otherwise it returns NULL. There are

two registers (CURR, BNRY) to control the receiver

buffers at the start of initialization, BNRY=CURR-1,

denotes that there is no packet. Before calling the receiver

function, run the check function firstly to judge whether a

new packet comes. Flow chart is shown in Fig. 6.

Figure6.Flow chart of receiving data

When 8019 sends data, it will choose send buffer accordant

with the value of txd_buffer_select bit variable. Through

Remote direct memory access (DMA), data are written to

TXD buffer, and then local DMA starts to work. Flow chart

is shown in Fig. 7.

Figure7.Flow chart of sending data

C. Analysis of the whole data flow

In order to save CPU’s resources, serial ports don’t send

data if only receive a frame but wait for the time 10 correct

frames reception. At the same time, considering the real

time of system, data from serial ports would be packaged

every 100ms, and sent to Ethernet data buffers. In this way,

CPU can process more data at the same time, reduce the

possibility of wait in vain, advance the performance of real

time. After the system receiving data from Ethernet, it will

send them to corresponding port according to the port

number; of course, adding the synchronous heads before

start.

V. SIMULATION AND RESULTS

In this simulation, two ports are used to test the accuracy of

receiving and transmitting, by using upper machine data

Analysis tools programmed in C++. The UARTs have

worked correctly for a long time. The timing simulation is

shown in Fig.

 Receiving Data Results

International Journal of Advanced and Innovative Research (2278-7844) / # 23 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 23

Transmitting Data Results

Port0 – Port4 Results

Port5 – Port10 Results

Port11 – Port15 Results

Design Summary

8. The “rxdr01” is receive signals from port 1, the “rbuf01”

means read buffer. When it receives data from serial port, it

will add synchronous heads “FF”, “EE”, and then hold

those data or send them to Ethernet. The “txdbuf01” is

transmitter buffer. Its contents are data from Ethernet. The

“txd01” is send signals sent to port 1.

VI. CONCLUSION

The results of test denote that the method adopted in this

paper can achieve the original purpose. Using this method,

we simplify the communication between monitor computer

and port devices, improve the efficiency of CPU, and

International Journal of Advanced and Innovative Research (2278-7844) / # 24 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 24

ensure the processing of system in real time. FPGA’s

flexible programming features also allow further upgrade

for system. This design could be used in the domain of net

control and information management system. It has a

certain value for application.

ACKNOWLEDGMENT

I am extremely thankful to CRVITS Electronics

Communication Engineering Department for providing

excellent lab facilities which were helpful in successful

completion of my project.

REFERENCES

 A.Ding Wang, Jiadong Xu, Rugui Yao, Ruifeng Miao, “Simulation

System of telemetering and telecontrol for unmanned aerial vehicle,”

Aerospace and Electronic Systems Magazine, IEEE, Sept, 2006, pp.
3-5 [1]

 Shouqian Yu . Lili Yi, Weihai Chen, Zhaojin Wen, “Implementation
of a Multi-channel UART Controller Based on FIFO Technique and.

FPGA,” industrial Electronics and Applications, Harbin, China, May
2007, pp. 2633-2638 [2]

 DUAN Peng, HE Mingyi, XUE Minbiao, “Design and Simulation of

OFDM Synchronization System Based on FPGA,” Meansurment
and Control Technology, vol. 28, n. 11, 2009, pp. 63-67 [3]

 Yu Zhang, Yugui Hu, Kuixi Yin, Jilian Li, “Implementation of

Multiserials Expand Based on FPGA,” Electronic Instrument, vol.
32, n. 1 2009, pp. 233-236 [4]

 Yonghong Hu, Lu Ding, “Design and Realization of Multi-

functional Gateway Based on SingleChip,” 2009 2nd International
Congress on Image and Signal Processing, Tianjin, China, October

2009, pp. 3709- 3712 [5]

International Journal of Advanced and Innovative Research (2278-7844) / # 25 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 25

