
An FPGA Implementation of Faster Compression of 
the Partial Product Array in Two’s Complement 

Multiplier 
#1P.Bala kishore, #2 Mrs. P. Pushpa latha 

#1 PG Student, Department of  ECE,  University College of Engineering, Kakinada, A.P, India 
#2 Assistant Professor, Department of ECE, University College of Engineering, Kakinada, A.P, India 

pushpalatha86@gmail.com,  
pblakishore@yahoo.com 

 
Abstract - All multipliers are important for a wide range of 
applications. This technique is particular interest in all multiplier 
designs, but especially in short bit-width two’s complement 
multipliers for high-performance embedded cores. With the 
extra hardware of a (short) 3-bit Addition, and the simpler 
generation of the first partial product row, we have been able to 
achieve a delay for the proposed scheme within the bound of the 
delay of a standard partial product row generation. This present 
a technique to reduce by one row the maximum  height of the 
partial product  array generated by a radix-4 Modified Booth 
Encoded multiplier, without any increase in the delay  of the 
partial product generation stage. This reduction may allow for a 
faster compression of the partial product array and regular 
layouts. This method is used for higher radices encoding for any 
size of mxn multiplications. We evaluated the proposed approach 
by comparison with some other possible solutions; modest 
improvements in area (about 15%) and power (about 25%) over 
more conventional algorithms have been shown using this 
algorithm. 
 
Keywords --- Multiplication, Radix-4, Modified Booth Encoding, 
partial product array. 
 

1 INTRODUCTION 
 

In signal processing applications performance strongly 
depends on the effectiveness of the hardware used for 
computing multiplications. The high interest in this field is 
witnessed by the large amount of algorithm and 
implementations of the multiplication operations. In this short 
bit width (8-16bits) two’s complement multipliers with single-
cycle throughput and latency have emerged to be important 
building blocks for high performance embedded processors 
and DSP execution cores. Applications for short bit-width 
multipliers are the design of SIMD units supporting different 
data formats. The basic algorithm for multiplication is based 
three main phases:1) partial product (PP) generation, 2) PP 
reduction, and 3) final (carry-propagated) addition. During PP 
generation, a set of rows is generated where each one is the 
result of the product of one bit of the multiplier by the 
multiplicand. 
 

Modified Booth Encoding (MBE) is a technique that has 
been introduced to reduce the number of PP rows, still 
keeping the generation process of 2 each row both simple and 

enough. One of the most commonly used schemes is radix-4 
MBE, for a number of reasons, the most important being that 
it allows for the reduction of the size of the partial product 
array by almost half, and it is very simple to generate the 
multiples of the multiplicand.  

The PP reduction is the process of adding all PP rows 
by using a compression tree Since the kn o wl e d g e  o f  
intermediate addition values i s  not important, the 
outcome of this phase is a result represented in redundant 
carry save form i.e., as two rows, which allows for much 
faster implementations. The final addition has the task to 
sum these two rows and to present the final result in non 
redundant form i.e., as a single row. 
 
2 MODIFIED BOOTH ENCODING (RADIX-4) 
 

Y2I+1 Y2I Y2I-1 Generated Partial Product 

 
0 
0 
0 
0 
1 
1 
1 
1 
 

 
0 
0 
1 
1 
0 
0 
1 
1 
 

 
0 
1 
0 
1 
0 
1 
0 
1 
 

 
0 X X 
1 X X 
1 X X 
2 X X 

(-2) X X 
(-1) X X 
(-1) X X 

0 X X 
 

 
Table. 1 Modified Booth Encoding (RA D I X -4)   

 
The method is to compute the product of a multiplicand 

X and a multiplier Y, is to produce the partial product array 
by generating one row for each bit of the multiplier Y. This 
methodology produces n rows, where n is the size of the 
multiplier. In general, a radix-B =2b MBE leads to a 
reduction of the number of rows to about [n/b] while, on the 
other hand, it introduces the need to generate all the 
multiples of the multiplicand X, at least from - B/2 x X to  
B/2 x X. R adix-4 is easy to create the multiples of the 
multiplicand 0; ±X; ±2X.  ±2X can be simply obtained by 
single left shifting of the corresponding terms ±X. 

International Journal of Advanced and Innovative Research (2278-7844) /   # 217 / Volume 2 Issue 9

             © 2013 IJAIR. ALL RIGHTS RESERVED                                                                217



 
(a)  MBE signals generation 

 

 
(b) Partial product generation 

 
Fig.1. Gate level diagram for partial product generation using MBE (adapted 

from [8]). 
 
Radix-4 MBE scheme consists of scanning the multiplier 
operand with a three-bit window and a stride of two bits. For 
each group of three bits (y2i+1, y2i, y2i-1), only one partial 
product row is generated according to the encoding in Table 1. 
For each partial product row, Fig. 1a produces the one, two, 
and negative signals. These signals are then exploited by the 
logic in Fig. 1b, along with the appropriate bits of the 
multiplicand, in order to generate the whole partial product 
array. The use of radix-4 MBE allows for the (theoretical) 
reduction of the PP rows to [n/2], with the possibility for each 
row to host a multiple of Yi x X, with Yi İ {0; ±1; ±2} 
To generate the positive terms 0, X, and 2X at least through a 
left shift of X, some attention is required to generate the terms 
-X and -2X which, as observed in Table 1, can arise from three 
configurations of the y2i+1 , y2i , an y bits. To avoid computing 
negative encodings, i.e., -X and - 2X, the two’s complement of 
the multiplicand is generally used. The use of two’s 
complement requires extension of the sign to the leftmost part 
of each partial product row, with the consequence of an extra 
area overhead. Thus, a number of strategies for preventing 
sign extension have been developed. For 2’s complement it 
requires a negative signal to be added in the LSB position of 
each partial product row. For nxn multiplier, only [n/2] partial 
products are generated, the maximum height of the partial 
product array is [n/2] +1. 
 

When 4-to-2 compressors are used the reduction of the 
extra row may require an additional delay of two XOR2 gates. 

By properly connecting partial product rows and using a 
Wallace reduction tree, the extra delay can be further 
reduced to one XOR2. However, the reduction still requires 
additional hardware, roughly a row of n half adders. This 
issue is of special interest when n is a power of 2, which is 
by far a very common case, and the multiplier’s critical path 
has to fit  within the clock period of a high performance 
processor. For instance, in the design presented in [2], for 
n=16 the maximum column height of the partial product 
array. 
 

3 RELATED WORKS 
                                    

This approach is based on computing the two’s 
complement of the last partial product, thus eliminating the 
need for the last negative signal, in a logarithmic time 
complexity. A special tree structure is used in order to 
produce the two’s complement by decoding the MBE signals 
through a 3-5 decoder (Fig. 2a). Finally, a row of 4-1 
multiplexers with implicit zero output1 is used (Fig. 2b) to 
produce the last partial product row directly in two’s 
complement, without the need for the negative signal. The 
goal is to produce the two’s complement in parallel with the 
computation of the partial products of the other rows with 
maximum overlap. In such a case, it is expected to have no or 
a small time penalization in the critical path. An example of 
the partial product array produced using the above method is 
depicted in Fig. 2  

 
a) 3-5 decoder 

 

 
b) 4-1 multiplexer 

 
Fig.2. Gate level diagram for the generation of two’s complement partial 

product rows. 

International Journal of Advanced and Innovative Research (2278-7844) /   # 218 / Volume 2 Issue 9

             © 2013 IJAIR. ALL RIGHTS RESERVED                                                                218



 
4 BASIC ID EA  

 
4.1    Square Multipliers 

 
1. Generation of most significant three bit weights 

of the first row, plus addition of the last negative 
bit. Possible implementations can use a 
replication of three times the circuit of (each for 
the three most significant bits of the first row), 
cascaded by the circuit of to add the negative 
signal; 

2. Parallel generation of the other bits of the first 
row: possible implementations can use instances 
of the circuitry depicted in below Fig, for each 
bit of the first row, except for the three most 
significant. 

3. Parallel generation of the bits of the other row 
possible implementations can use the circuitry of 
Fig. 1, replicated for each bit of the other rows. 

 
 All items 1 to 3 are independent, and therefore can be 

executed in parallel. Clearly if, as assumed and expected, item 
1 is not the bottleneck (i.e., the critical path), then the 
implementation of the proposed idea has reached the goal of 
not introducing time penalties. 
 

 
(a) MBE signals generation. 

 

 
(b) Partial product Generation. 

 
 

Fig.3. Gate-level diagram for first row partial product generation. 
 

 
Fig.4. Combined MBE signals and partial product generation for the 

first row (improved for speed). 
 

  
Fig. 5 Partial product array by applying the two’s complement 

computation method in to the last row. 
 

 
(a) Basic idea 

 
 

 
 

(b) Resulting array 
 

Although we have explicitly focused our attention to 
radix-4 MBE, the proposed method can be easily extended 
to any radix-B MBE. It is easily observed, by redrawing the 
equivalent of Fig. 6(a) for another radix-B MBE, that the 
negative signal of the last row can be included in the first 
row by using a simple 3-bit adder for a n × n multiplier and 
by using a (m0 + 3)-bit adder for the more general case of a 
(n + m0) × n adder. The use of a combined multiplier with 
accumulation is also common. In this case, the proposed 
approach can also be used and does not lose the benefit to 
reduce by one the number of rows to be added. Although 
this reduction does not necessarily lead to a reduction in the 
computation time for some values of n, it still remains 
interesting and useful since it is very reasonable to expect 

International Journal of Advanced and Innovative Research (2278-7844) /   # 219 / Volume 2 Issue 9

             © 2013 IJAIR. ALL RIGHTS RESERVED                                                                219



some savings and more regularity in the compression tree. We 
have not evaluated such potential reductions, because their 
impact could be strongly dependent on the value of n and on 
the strategy which has been identified to design the 
compression tree. 

 
 

5 MODIFIED BOOTH FIXED MULTIPLIER  
 

Modified Booth encoding is popular for reducing the 
number of partial products. The 2L-bit product P can be 
expressed in two’s complement representation as follows: 
P=X × Y 
Booth encoding, where L is an even number Taking 8 × 8 
Booth multiplier as an example, due to the two’s 
complement computation, ni is equal to 1 when is yi 
negative; otherwise, ni is equal to 0. The fixed-width Booth 
multiplier design [2], some of products is truncated by using 
a rounding operator to hold the data length fixed in L-bit. 
Therefore, an extra one binary bit 1 added into the most 
significant column of truncation part (TP) in Fig. 2, which 
indicates the rounding off operation of the P-T Booth 
multipliers. 

 

 
 
Fig. 6 fast compression of partial product in Two’s complement multiplier 

 
6 EXPERIMENTAL RESULTS 

The proposed booth multiplier to perform multi operand 
multiplication has been simulated and the synthesis report 
can be obtained by using Xilinx ISE 10.1i.  The various 
parameters which have been noted are shown in the table. 
 

 
 

Table 2: Output for Power consumption and delay 

 
 

Fig7: simulation output for after reduction of the pp row 
 

6.4
6.6
6.8

7
7.2
7.4

Delay(ns)

before pp 
reduction 
after pp 
reduction 
fixed width

 

Chart 1: Result for delay 

0

100

200

300

Power(mW)

before pp 
reduction 

after pp 
reduction 

fixed width

 

Chart 2: Result for Power 

Multiplier Types Power 
(mW) 

Delay 
(ns) 

Area 
(Gate 
count) 

Before PP Reduction 
(Conventional Multiplier) 200 7.199 1613 

After PP Reduction 
(Short bit-width) 132 7.000 1277 

Fixed-width MBE 109 6.700 1033 

 

 

Multiplier 

Partial Product Generation, Reduction 

Radix-4 
MBE 
 

Two’s complement multiplication 

 

 

Multiplicand 

Final product (16bit) 

 
CSA tree 

 
SC generation 

Fixed width modified booth multiplier 

Multiplier output 

International Journal of Advanced and Innovative Research (2278-7844) /   # 220 / Volume 2 Issue 9

             © 2013 IJAIR. ALL RIGHTS RESERVED                                                                220



 
CONCLUSIONS 

 
Two’s complement n × n bit multipliers using n 

radix-4 Modified Booth Encoding produce [n/2] partial 
products but due the sign handling, the partial product array 
has a maximum height of [n/2] +1.We presented a scheme that 
produces a partial product array with a maximum height of 
[n/2], without introducing extra delay in the partial product 
generation stage for m × n bit multipliers. With the extra 
hardware of a (short) 3-bit addition, and the simpler 
generation of the first partial product, we have been allowed to 
achieve a delay for the proposed scheme within the bound of 
the delay of a standard partial product generation. 

The outcome of the above is that the reduction of the 
maximum height of the partial product array by one unit, may 
simplify the partial product reduction tree, in terms of delay 
and regularity of the layout. This is of special interest for all 
multipliers but especially for short bit-width multipliers for 
high performance embedded cores, where short but fast bit-
width multiplications could be common operations. 
 

REFERENCES 
 
[1] M. D. Ercegovac and T. Lang, “Digital Arithmetic”. Los 
Altos, CA, USA: Morgan Kaufmann Publishers, 2003. 
[2] S. K. Hsu, S. K. Mathew, M. A. Anders, B. R. Zeydel, V. 
G. Ok- lobdzija, R. K. Krishnamurthy, and S. Y. Borkar, “A 
110gops/w 16-bit multiplier and reconfigurable pla loop in 90-
nm cmos,” IEEE Journal of Solid State Circuits, vol. 41, pp. 
256–264, Jan. 2006. 
[3] M. S. Schmookler, M. Putrino, A. Mather, J. Tyler, H. V. 
Nguyen, C. Roth, M. Sharma, M. N Pham, and J. Lent, “A 
low-power, high-speed implementation of a power pc(tm) 
microprocessor vector extension,” Proceedings of the 14th 
IEEE Symposium on Computer Arithmetic, p. 12, 1999. 
[4] A. D. Booth, “A signed multiplication technique,” 
Quarterly J. Mech. Appl. Math., vol. 4, 1951. 
[5] L. Dadda, “Some schemes for parallel msssultipliers,” Alta 
Fre- quenza, vol. 34, May 1965. 
[6] O. L. MacSorley, “High speed arithmetic in binary 
computers,” Proceedings IRE, vol. 49, pp. 67–91, Jan. 1961. 
[7] J.-Y. Kang and J.-L. Gaudiot, “A simple high-speed 
multiplier design,” IEEE Transactions on Computers, vol. 55, 
no. 10, pp. 1253–1258, Oct. 2006. 
[8] “A fast and well-structured multiplier,” Proceedings of 
Euromicro Symposium on Digital System Design, pp. 508– 
515, Sept.2004. 

International Journal of Advanced and Innovative Research (2278-7844) /   # 221 / Volume 2 Issue 9

             © 2013 IJAIR. ALL RIGHTS RESERVED                                                                221


