
A Novel Application for Secure Transmission of Data on

Sensor Networks

S. Bala Subrahmanyam
1
, Y. Ramesh Kumar

2

1
M.Tech from JNTU Kakinada, Avanthi Institute of Engineering & Tech., Cherukupally, A.P. India.

2
Assoc.Professor, Department of CSE, Avanthi Institute of Engineering & Tech., Cherukupally, A.P. India.

Email:
1
bss.mahanti@gmail.com,

2
javaramesh143@gmail.com

Abstract- The many sensor networks like mobile sensor

networks or networks that are deployed to monitor

difficult areas are deployed in an unplanned fashion.

So, any sensor in such a network can end up being

adjacent to any other sensor in the network. To secure

the communications between every pair of adjacent

sensors in such a network, each sensor x in the network

needs to store n -1 symmetric keys that sensor x shares

with all the other sensors, where n is the number of

sensors in the network. This storage requirement of the

keying protocol is rather severe, especially when n is

large and the available storage in each sensor is modest.

Earlier efforts to redesign this keying protocol and

reduce the number of keys to be stored in each sensor.

In this mechanism, the security issues are takes place. It

provides weak security. In this paper, we present a fully

secure keying protocol where each sensor needs to store

(n+1)/2 keys, which is much less than the n-1 keys that

need to be stored in each sensor in the original keying

protocol. We also show that in any fully secure keying

protocol, each sensor needs to store at least (n -1)/2

keys. We can use encryption techniques at time of key

transmission and data transmission.

INTRODUCTION

Many wireless sensor networks are deployed

in arbitrary and unplanned fashion. Examples of such

networks are networks of mobile sensors and

networks that are deployed in a hurry to monitor

evolving crisis situations or continuously changing

battle fields. In any such network, any deployed

sensor can end up being adjacent to any other

deployed sensor. Thus, each pair of sensors, say

sensors x and y, in the network need to share a

symmetric key, denoted Kx,y, that can be used to

secure the communication between sensors x and y if

these two sensors happen to be deployed adjacent to

one another. In particular, if sensors x and y become

adjacent to one another, then these two sensors can

use their shared symmetric key Kx,y to authenticate

one another (i.e. defend against impersonation) and to

encrypt and decrypt their exchanged data messages

(i.e. defend against eavesdropping).

 It follows from this discussion that each

sensor x in such a network is required to store n - 1

symmetric keys, where n is the total number of

sensors in the network and each stored key is shared

between sensor x and a different sensor in the

network. This requirement that each sensor in the

network stores n-1 symmetric keys, where n is the

number of sensors in the network, is rather severe

especially when n is large and the available storage to

store keys in every sensor is modest.

There are two main keying protocols that

were proposed in the past to reduce the number of

stored keys in each sensor in the network. We refer to

these two protocols as the probabilistic keying

protocol and the grid keying protocol. In the

probabilistic keying protocol, each sensor in the

network stores a small number of keys that are

selected at random from a large set of keys. When

two adjacent sensors need to exchange data

messages, the two sensors identify which keys they

have in common then use a combination of their

common keys as a symmetric key to encrypt and

decrypt their exchanged data messages. Clearly, this

protocol can probabilistically defend against

eavesdropping.

Unfortunately, the probabilistic keying

protocol suffers from the following problem. The

stored keys in any sensor x are independent of the

identity of sensor x and so these keys cannot be used

to authenticate sensor x to any other sensor in the

network. In other word, the probabilistic protocol

cannot defend against impersonation.

In the grid keying protocol, each sensor is

assigned an identifier which is the coordinates of a

distinct node in a two-dimensional grid. Also each

symmetric key is assigned an identifier which is the

coordinates of a distinct node in two-dimensional

grid. Then a sensor x stores a symmetric key K iff

the identifiers of x and K satisfy certain given

relation. When two adjacent sensors need to

exchange data messages, the two sensors identify

which keys they have in common then use a

combination of their common keys as a symmetric

key to encrypt and decrypt their exchanged data

messages.

International Journal of Advanced and Innovative Research (2278-7844) / # 213 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 213

 The grid keying protocol has two advantages

(over the probabilistic protocol). First, this protocol

can defend against impersonation (unlike the

probabilistic protocol) and can defend against

eavesdropping (like the probabilistic protocol).

Second, each sensor in this protocol needs to store

only O(log n) symmetric keys, where n is the number

of sensors in the network. Unfortunately, it turns out

that the grid keying protocol is vulnerable to

collusion. Specifically, a small gang of adversarial

sensors in the network can pool their stored keys

together and use the pooled keys to decrypt all the

exchanged data messages in the sensor network. This

situation raises the following important questions:

Is it possible to design a keying protocol,

where each sensor stores less than n-1 symmetric

keys and yet the protocol is deterministically secure

against impersonation, eavesdropping, and collusion?

 In this paper, we investigate a sensor

network whose topology is not planned in advance,

prior to the deployment of the network. Thus, when

the network is deployed, any sensor can end up being

adjacent to any other sensor in the network. (There

are many occasions when a sensor network needs to

be deployed before its topology can be planned in

great detail. For example, when a wildfire breaks out

unexpectedly, a sensor network that monitors the fire

may need to be deployed in a hurry, before the

network topology can be planned accurately. A

second example, when a sensor network is deployed

in a battlefield whose perimeter is continuously

changing, the topology of the network cannot be

determined fully until the time when the network is to

be deployed.

 As a third example, if the deployed sensor

network is mobile, then a detailed plan of the initial

topology may be of little value.) In this network,

when a sensor x is deployed, it first attempts to

identify the identity of each sensor adjacent to x, then

starts to exchange data with each of those adjacent

sensors.

 Any sensor z in this network can be an

“adversary”, and can attempt to disrupt the

communication between any two legitimate sensors,

say sensors x and y, by launching the following two

attacks:

1) Impersonation Attack: Sensor z notices that it is

adjacent to sensor x while sensor y is not. Thus,

sensor z attempts to convince sensor x that it (z) is in

fact sensor y. If sensor z succeeds, then sensor x may

start to exchange data messages with sensor z,

thinking that it is communicating with sensor y.

2) Eavesdropping Attack: Sensor z notices that it is

adjacent to both sensors x and y, and that sensors x

and y are adjacent to one another. Thus, when sensors

x and y start to exchange data messages, sensor z can

copy each exchanged data message between x and y.

If the network has n sensors, then each

sensor in the network needs to store (n-1) symmetric

keys before the network is deployed. If n is large,

then the storage requirement, just to store the

required shared keys, is relatively large, especially

since the size of storage in each sensor is typically

small.

To solve this problem, we present the following two

results in this paper:

1) Efficiency: There is a keying protocol, where each

sensor shares a distinct symmetric key with every

other sensor in the network, and yet each sensor

needs to store exactly (n+1)/2 symmetric keys, before

the network is deployed.

2) Optimality: In every keying protocol, where each

sensor shares a distinct symmetric key with every

other sensor in the network, each sensor needs to

store at least (n-1)/2 symmetric keys, before the

network is deployed.

METHODOLOGY

A MUTUAL AUTHENTICATION PROTOCOL:

 Before the sensors are deployed in a network,

each sensor x is supplied with the following items:

1) One distinct identifier ix in the range 0…n-1

2) One universal key ux

3) (n-1)/2 symmetric keys Kx,y = H(ix|uy) each of

which is shared between sensor x and another sensor

y, where ix is below iy After every sensor is supplied

with these items, the sensors are deployed in random

locations in the network.

Now if two sensors x and y happen to

become adjacent to one another, then these two

sensors need to execute a mutual authentication

protocol so that sensor x proves to sensor y that it is

indeed sensor x and sensor y proves to sensor x that it

is indeed sensor y.

The mutual authentication protocol consists

of the following six steps.

International Journal of Advanced and Innovative Research (2278-7844) / # 214 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 214

Step 1: Sensor x selects a random nonce nx and

sends a hello message that is received by sensor y.

x → y : hello(ix, nx)

Step 2: Sensor y selects a random nonce ny and

sends a hello message that is received by sensor x.

x ← y : hello(iy, ny)

Step 3: Sensor x determines whether ix is below iy.

Then it either fetches Kx;y from its memory or

computes it. Finally, sensor x sends a verify message

to sensor y.

x → y : verify(ix, iy, H(ix|iy|ny|Kx,y))

Step 4: Sensor y determines whether iy is below ix.

Then it either fetches Kx,y from its memory or

computes it. Finally, sensor y sends a verify message

to sensor x.

x ← y : verify(iy, ix, H(iy|ix|nx|Kx,y))

Step 5: Sensor x computes H(iy|ix|nx|Kx,y) and

compares it with the received H(iy|ix|nx|Kx,y). If

they are equal, then x concludes that the sensor

claiming to be sensor y is indeed sensor y. Otherwise,

no conclusion can be reached.

Step 6: Sensor y computes H(ix|iy|ny|Kx,y) and

compares it with the received H(ix|iy|ny|Kx,y). If

they are equal, then y concludes that the sensor

claiming to be sensor x is indeed sensor x. Otherwise,

no conclusion can be reached.

A DATA EXCHANGE PROTOCOL

 After two adjacent sensors x and y have

authenticated one another using the mutual

authentication protocol described in the previous

section, sensors x and y can now start exchanging

data messages according to the following data

exchange protocol. (Recall that nx and ny are the two

things that were selected at random by sensors x and

y, respectively, in the mutual authentication

protocol.)

Step 1: Sensor x concatenates the nonce ny with the

text of the data message to be sent, encrypts the

concatenation using the symmetric key Kx,y, and

sends the result in a data message to sensor y.

x → y : data(ix, iy, Kx,y (ny|text))

Step 2: Sensor y concatenates the nonce nx with the

text of the data message to be sent, encrypts the

concatenation using the symmetric key Kx,y, and

sends the result in a data message to sensor x.

x ← y : data(iy, ix, Kx,y (nx|text))

Sensors x and y can repeat Steps 1 and 2 any

number of times to exchange data between

themselves.

The above two algorithms are implemented for the

following data as shown below:

Initially sender:

Receiver:

Transmission process as follows:

Receiver info:

International Journal of Advanced and Innovative Research (2278-7844) / # 215 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 215

After communication establishment the sender having

CONCLUSION

 Typically, each sensor in a sensor network with

n sensors needs to store n - 1 shared symmetric keys to

communicate securely with each other. Thus, the number

of shared symmetric keys stored in the sensor network is

n(n-1). However, the optimal number of shared

symmetric keys for secure communication, theoretically,

is () = n(n - 1)/2.

 Although there have been many approaches that

attempt to reduce the number of shared symmetric keys,

they lead to a loss of security: they are all vulnerable to

collusion.

 In this paper, we show the best keying protocol

for sensor networks, that needs to store only (n + 1)/2

shared symmetric keys to each sensor. The number of

shared symmetric keys stored in a sensor network with n

sensors is n(n + 1)/2, which is close to the optimal

number of shared symmetric keys for any key

distribution scheme that is not vulnerable to collusion.

 It may be noted that in addition to the low

number of keys stored, and the ability to resist collusion

between sensors, our keying protocol has two further

advantages.

 Firstly, it is uniform: we store the same number

of keys in each sensor. Secondly, it is computationally

cheap, and thus suitable for a low-power computer such

as a sensor: when two sensors are adjacent to each other,

the computation of a shared symmetric key requires only

hashing, which is a cheap computation and can be done

fast. As our protocol has many desirable properties, such

as efficiency, uniformity and security, we call this

protocol the best keying protocol for sensor networks.

REFERENCE

[1] The Best Keying Protocol for Sensor Networks by

Taehwan Choi,H. B. Acharya,Mohamed G. Gouda

[2] A. Howard, M. J. Mataric, and G. S. Sukhatme,

“Mobile sensor network deployment using potential

fields: A distributed, scalable solution to the area

coverage problem,” in Proceedings of the International

Symposium on Distributed Autonomous Robotic

Systems (DARS), 2002, pp. 299–308.

[3] S. Sana and M. Matsumoto, “Proceedings of a

wireless sensor network protocol for disaster

management,” in Information, Decision and Control

(IDC), 2007, pp. 209 –213.

[4] S. Hynes and N. C. Rowe, “A multi-agent simulation

for assessing massive sensor deployment,” Journal of

Battlefield Technology, vol. 7, pp. 23–36, 2004.

[5] L. Eschenauer and V. D. Gligor, “A key-management

scheme for distributed sensor networks,” in Proceedings

of the 9th ACM conference on Computer and

communications security (CCS), 2002, pp. 41–47.

[6] L. Gong and D. J. Wheeler, “A matrix key-

distribution scheme,” Journal of Cryptology, vol. 2, pp.

51–59, January 1990.

[7] S. S. Kulkarni, M. G. Gouda, and A. Arora, “Secret

instantiation in ad-hoc networks,” Special Issue of

Elsevier Journal of Computer Communications on

Dependable Wireless Sensor Networks, vol. 29, pp. 200–

215, 2005.

[8] A. Aiyer, L. Alvisi, and M. Gouda, “Key grids: A

protocol family for assigning symmetric keys,” in

Proceedings of IEEE International Conference on

Network Protocols (ICNP), 2006, pp. 178–186.

[9] E. S. Elmallah, M. G. Gouda, and S. S. Kulkarni,

“Logarithmic keying,” ACM Transactions on Autonomic

Systems, vol. 3, pp. 18:1–18:18, December 2008.

AUTHORS BIOGRAPHY

S. Bala Subrahmanyam, Studying M.Tech in Computer

Science Engineering. Avanthi Institute of Engineering &

Tech., Cherukupalli, Vizianagaram, A.P. India.

Y. Ramesh Kumar is working as Assoc. Professor, in

CSE Department, Avanthi Institute of Engineering &

Tech., Cherukupalli, Vizianagaram, A.P. India. He has

received his M.Tech from Andhra University,

Visakhapatnam.

International Journal of Advanced and Innovative Research (2278-7844) / # 216 / Volume 2 Issue 9

 © 2013 IJAIR. ALL RIGHTS RESERVED 216

