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Abstract— In graph theory, the shortest path problem is the 

problem of finding a path between two vertices (or nodes) in a 

graph such that the sum of the weights of its constituent edges is 

minimized. An algorithm on the network shortest path problem 

by gradually eliminating loops on a network is put forward. 

Using the wagon routing arrowhead line, we start from the origin, 

plot the routing arrowhead lines in the current loop and the 

adjacent loops, and decide which edge the arrowhead pointed to 

should be moved; then according to the structure of the candidate 

edges to be removed and certain regulations, remove one edge to 

enlarge the current loop; select the loop nearest to the origin and 

repeat the above process, until obtain the shortest routing tree 

taking the origin as its root. The natural linear 

programming(LP) formulation for the shortest path 

problem carried out shows that the algorithm is simple, 

practical, knowable, and suitable for manual searching the 

shortest route on a simple non-directional network. 

 

Keywords— Include at least 5 keywords or phrases 

I. INTRODUCTION 

In graph theory, the shortest path problem is the problem of 

finding a path between two vertices (or nodes) in a graph such 

that the sum of the weights of its constituent edges is 

minimized. This is analogous to the problem of finding the 

shortest path between two intersections on a road map: the 

graph's vertices correspond to intersections and the edges 

correspond to road segments, each weighted by the length of 

its road segment. 

 
(6, 4, 5, 1) and (6, 4, 3, 2, 1) are both paths between vertices 6 and 1 

 

 

. 

A.  Road networks 

A road network can be considered as a graph with positive 

weights. The nodes represent road junctions and each edge of 

the graph is associated with a road segment between two 

junctions. The weight of an edge may correspond to the length 

of the associated road segment, the time needed to traverse the 

segment or the cost of traversing the segment. Using directed 

edges it is also possible to model one-way streets. Such graphs 

are special in the sense that some edges are more important 

than others for long distance travel (e.g. highways). This 

property has been formalized using the notion of highway 

dimension. There are a great number of algorithms that exploit 

this property and are therefore able to compute the shortest 

path a lot quicker than would be possible on general graphs. 

All of these algorithms work in two phases. In the first 

phase, the graph is preprocessed without knowing the source 

or target node. This phase may take several days for realistic 

data and some techniques. The second phase is the query 

phase. In this phase, source and target node are known. The 

running time of the second phase is generally less than a 

second. The idea is that the road network is static, so the 

preprocessing phase can be done once and used for a large 

number of queries on the same road network. 

II. DEFINITION 

The shortest path problem can be defined 

for graphs whether undirected, directed, or mixed. It is defined 

here for undirected graphs; for directed graphs the definition of 

path requires that consecutive vertices be connected by an 

appropriate directed edge.  

Two vertices are adjacent when they are both incident to a 

common edge. A path in an undirected graph is a sequence of 

vertices  such that  is 

adjacent to  for . Such a path P is called a 

path of length  from  to . (The  are variables; their 

numbering here relates to their position in the sequence and 

needs not to relate to any canonical labelling of the vertices.) 

Let  be the edge incident to both  and . Given a real-

valued weight function , and an undirected (simple) 
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graph , the shortest path from  to  is the 

path  (where  and ) that 

over all possible  minimizes the sum  

 
 When each edge in the graph has unit weight 

or , this is equivalent to finding the path with 

fewest edges. 

The problem is also sometimes called the single-pair 

shortest path problem, to distinguish it from the following 

variations: 

1) The single-source shortest path problem, in which we 

have to find shortest paths from a source vertex v to all 

other vertices in the graph. 

2) The single-destination shortest path problem, in which we 

have to find shortest paths from all vertices in the directed 

graph to a single destination vertex v. This can be reduced 

to the single-source shortest path problem by reversing the 

arcs in the directed graph. 

3) The all-pairs shortest path problem, in which we have to 

find shortest paths between every pair of vertices v, v' in 

the graph. 

III. NOTATIONS AND DEFINITIONS 

Let Graph G = (V,E), where V is the set of Vertices V={v1, 

v2, ...,Vn }, E stands for the set of Edges, E = { e1,e2,…,e3},  

the non-negative real number b(e) = b(vi , vj) = bi,j denotes the 

weight of b(vi , vj), then Gis called a non-negative weighted 

graph, and the route with the shortest distance from node S to 

node t, s Є V, t  Є V is called the shortest route from s to t. 

A loop that has no other loops in it is called a simplest loop. 

Vertex and edge Shared by two simplest loops are called 

respectively common vertex and common edge. The loop 

currently studied is called the current loop, and the loops with 

currently edge are called the adjacent loop to each other. 

In the simplest loop, the arrowhead line starting from the 

node nearest to the origin and pointing to the place half loop 

length away from the vertex is called the routing line. The 

vertex from which the routing line is sent is called the starting 

point on the current loop is called the current starting point. If 

the routing line points to the adjacent loop the edge is located 

in the current loop is called the main adjacent loop; the other 

adjacent loops are called the subroutine loops; the edge to be 

pointed to by the routing line in the current loop is called main 

candidate edge to be eliminated; if the routing line of the 

subroutine loop points to the current loop, the shared edge is 

called subroutine edge of the current loop; if the routing line of 

a loop points to a vertex of it, the vertex is called the equal-

split point of  the loop, its adjacent edges are called candidate 

edges to be eliminated. If there is more than one of the routes 

that have the same length, they have the same length, they 

called the parallel routes. 

 

 
Fig. 1: Network Graph with weights 

      In figure 1, (v1, v5 ,v6 ,v7, v11 ,v12 ,v8, v4 ,v3,v2, v1) is a loop; 

(v3, v7 ,v8 ,v4 ,v3) is a simplest loop. (v7, v8) is a common edge 

of loop (v3, v7 ,v8 ,v4 ,v3) and loop (v7, v11 ,v12 v8, v7 ); vertex  

v7 and v8 are the common vertices of the two loops; (v3, 

v7 ,v8 ,v4 ,v3) and (v7, v11 ,v12 v8, v7 ) are the adjacent loops to 

each other. In loop (v3, v7 ,v8 ,v4 ,v3), the arrowhead line issued 

from v4 is the routing line of the loop, v4 is the start point. The 

routing line points to common edge (v7 ,v8), also means to 

point the adjacent loop (v7, v11 ,v12 v8, v7 ). If loop (v3, 

v7 ,v8 ,v4 ,v3) is the current loop, then edge (v7 ,v8) is its main 

edge, loop (v7, v11 ,v12 ,v8, v7 ) is the main adjacent loop, loop 

(v2 ,v6 ,v7,v3,v2) is its subordinate adjacent loop. In loop 

(v10 ,v14 ,v15, v11 ,v10), the routing line points to vertex v14, so is 

the equal-split point of the loop; edge (v10,v14) and (v14 ,v15) is 

the two candidate adjacent edge of v14 form being eliminated. 

IV. ALGORITHM 

In simplest loop, the routing line divides the loop into two 

equal-length half-loop. Therefore, the route from the starting 

point to any vertex of the loop should pass through the half-

loop that the vertex itself is located in. For example, in figure 1, 

the routing from v4 to v7 should pass through (v4 ,v7 ,v8).  

If the routing line points to any vertex in the main adjacent 

loop will not pass through the common edge. In figure 1, in 

loop(v3, v7 ,v8 ,v4 ,v3), because the routing line issuing from v4 

points to the main edge (v7 ,v8), the routing from v4 to v12 via 

(v4 , v8 ,v12) obviously is shorter than the one via (v4 ,v3 ,v7, 

v8 ,v12). 

In figure 2, v3 is the starting point; edge (v4 ,v7) is the main 

edge in loop (v2, v5 ,v4 ,v7, v8 ,v9 ,v6,v3,v2); (v4,v5) is the 

subroutine edge. If we only consider the routing in current 

loop (v2, v5 ,v4 ,v7, v8 ,v9 ,v6,v3,v2), the shortest route from v3 to 

v7 should be via v6, v9 ,v8 , but though careful observation we 

will find there are two routes from v2 to v4 and the routing line 

issuing v2 from points to edge (v4 ,v5) which means that the 

shortest route form v2 to v4 should pass through not edge (v4,v5) 

but v1.Therefore, the edge (v4, v5) should be removed. In the 

newly formed current loop (v1 ,v4 ,v7, v8 ,v9 ,v6,v3,v2,v1), the 

routing line issuing from v3 points to (v7, v8). So the route from 

v3 to v7 apparently should pass through vertices v2, v1 ,v4 

instead v6,v9,v8. 

International Journal of Advanced and Innovative Research (2278-7844) /   # 74 / Volume 2 Issue 9

             © 2013 IJAIR. ALL RIGHTS RESERVED                                                                74



 
Fig. 2: Effect to Shortest route by Subordinate Edge 

Steps of the algorithm: 

Step 1:     Let the origin vertex for the starting point and the 

loop that starting point is located in for the current 

loop; 

Step 2:     If there is no routing line issuing from the starting 

point, draw it; 

Step 3:     Check each of the subordinate adjacent loops to 

find out that if there is a routing line in it; if not 

draw a routing line from the vertex nearest to the 

origin; 

Step 4:      If in the current loop there exists a subroutine 

edge, eliminate the longest edge among the 

adjacent candidate edges to be eliminated; 

Step 5:      If all the loops have been broken, the result has 

been got which means the calculated process has 

come to its end; otherwise, continue to the next; 

Step 6:      If the edge to be removed is the common edge, 

combine the current loop to from the new current 

loop, and still take the current starting point, then 

go to Step 2; otherwise, if the removed edge is not 

common edge, find a vertex which is nearest to the 

origin and is the loop, take this vertex as the 

starting point and the loop that the starting point is 

located in as the current loop, turn to step 2. 

In case of parallel route, the candidate adjacent edge having 

been removed should be added to the shortest path network 

whose root is the origin.  

V. LINEAR PROGRAMMING FORMULATION 

here is a natural linear programming formulation for the 

shortest path problem, given below. It is very simple compared 

to most other uses of linear programs in discrete optimization, 

however it illustrates connections to other concepts. 

Given a directed graph (V, A) with source node s, target 

node t, and cost wij for each arc (i, j) in A, consider the 

program with variables xij minimize 

subject to  and for all i, 

 

This LP, which is common fodder for operations research 

courses, has the special property that it is integral; more 

specifically, every basic optimal solution (when one exists) has 

all variables equal to 0 or 1, and the set of edges whose 

variables equal 1 form an s-t dipath. See Ahuja et al.  for one 

proof, although the origin of this approach dates back to mid-

20th century. 

The dual for this linear program is maximize yt − ys subject 

to for all ij, yj − yi ≤ wij and feasible duals correspond to the 

concept of a consistent heuristic for the A* algorithm for 

shortest paths. For any feasible dual y the reduced costs 

are nonnegative and A* essentially runs 

Dijkstra's algorithm on these reduced costs. 

VI. APPLICATIONS 

Shortest path algorithms are applied to automatically find 

directions between physical locations, such as driving 

directions on web mapping websites like Mapquest or Google 

Maps. For this application fast specialized algorithms are 

available. 

If one represents a nondeterministic abstract machine as a 

graph where vertices describe states and edges describe 

possible transitions, shortest path algorithms can be used to 

find an optimal sequence of choices to reach a certain goal 

state, or to establish lower bounds on the time needed to reach 

a given state. For example, if vertices represents the states of a 

puzzle like a Rubik's Cube and each directed edge corresponds 

to a single move or turn, shortest path algorithms can be used 

to find a solution that uses the minimum possible number of 

moves. 

In a networking or telecommunications mindset, this 

shortest path problem is sometimes called the min-delay path 

problem and usually tied with a widest path problem. For 

example, the algorithm may seek the shortest (min-delay) 

widest path, or widest shortest (min-delay) path. 

A more lighthearted application is the games of "six 

degrees of separation" that try to find the shortest path in 

graphs like movie stars appearing in the same film. 

Other applications, often studied in operations research, 

include plant and facility layout, robotics, transportation, and 

VLSI design". 

VII. CONCLUSIONS 

An algorithm on the network shortest path problem by 

gradually eliminating loops on a network is put forward. 

Taking routing arrowhead line as a tool, we remove some of 

the edges in the giving non-directional network according to 

the certain regulations to eliminate the loops. At the beginning, 

the edges in the network are relatively dense. With the 

algorithm progresses, the number of edges on the network 

gradually reduced and eventually the number of edges is equal 

to the number of vertices min us 1, to from the shortest routing 

tree with the starting point as its root. Finally, the candidate 

adjacent edges to be eliminated that function as the parallel 

routes and have been removed should be added to the shortest 

routing tree. The natural linear programming(LP) formulation 

for the shortest path problem optimised results. gives The 
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algorithm mentioned above is simple, practical and easy to 

master, and the calculation process is intuitive, so it adapts to 

solve the shortest routing problem on non-directional network 

by hand, especially to driving routing, pipe network planning, 

and other network shortest path problem. 
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