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Abstract–This paper proposes a general procedure to 

construct the membership functions of the 

performance measures in fuzzy queuing systems with 

bulk service when the interarrival time and service 

time are fuzzy numbers. The basic idea is to reduce a 

fuzzy queue into a family of crisp queues[11] by 

applying the -cut approach. A Mathematical 

investigation has been made of a simple queueing 

process in which customers arrive at random, form a 

single queue in order of arrival, and are served in 

batches, the size of each batch having a fixed 

maximum. Triangular fuzzy numbers are used to 

demonstrate the validity of the proposal. Numerical 

examples are illustrated successfully. 
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I.  INTRODUCTION 

 The problem of fuzzy queues has been 

analysed by prade 
[9]

 and Li and lee 
[6]

 through the 

use of  extension principle
 10

. However, these 

approaches are fairly complicated and are generally 

unsuited for computational purposes. N.T.J. 

Bailey
[1]

 has introduced the concept of bulk queues. 

He has considered a situation where the service can 

be effected in a batch up to C-customers, that is, all 

waiting customers up to fixed capacity „C‟ are 

taken for service in a batch. It is a more general 

type queueing problem which can be specialized to 

yield the single service cases. D.G. Kendall
 4

 has 

discussed and developed the concept of imbedded 

Markov chain. This type of bulk service is called 

“general bulk service” and has been analyzed by 

Neuts
[8]

. The fuzzy queues namely M/F/1, 

F/M/1,F/F/1, and FM/FM/1 are exemplified in [2]. 

It has been further investigated by Gross and 

Harris
 3

 and others. 

 Only a triangular fuzzy number is used to 

represent the fuzziness. We feel that a triangular 

fuzzy number is an ideal compromise between 

complexity and over simplification. 

II. TRIANGULAR FUZZY NUMBER 

We define a fuzzy number M on R to be a 

triangular fuzzy number if its membership function 

]1,0[:)( RxM  is defined by 

 

       
lm

lx




  ,      for     mxl   

)(xM    
um

ux




 ,      for      uxm    

        0       ,          otherwise 

 

 

where uml  , l  and u  stand for the lower 

and upper value of the support of M respectively 

and m  for the modal value. The triangular fuzzy 

number can be denoted by ),,( uml . The support 

of M is the set of elements  uxlRx / , 

when uml  , it is a non-fuzzy number by 

convention. Here the vertical line shows the 

membership function. 

 

 

III. FUZZY SET THEORY [5] 

Definition.3.1. Let X be a classical set of objects, 

called the universe , whose generic elements are 

denoted by x. Membership is a classical subset A 

of X is often viewed as a characteristic function 

A
~ from X to [0,1] such that  

         1     when            Ax
~

  

)(~ x
A

  =    0           when           Ax
~

  

        

[0,1] is called a valuation set 
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Definition.3.2. The support of a fuzzy set A is the 

ordinary subset of X, such that   

SuppA =  0)(/ ~ xXx
A

  

Definition.3.3. The height of Ã is 

)(sup)
~

( ~ xAh
A

Xx




 , ie, the least upper bound of 

)(~ x
A

 . 

Definition.3.4. Ã is said to be normalized iff there 

exist x ∈ X, such that  A
~ (x) = 1; this definition 

implies that 1)
~

( Ah . Otherwise Ã is said to be 

subnormal. 

Level set.3.5. The set of elements that belong to 

the fuzzy set Ã  at least to the degree „‟ is called 

the  

 -level set 

 A = { x∈X/ A
~ (x) ≥  } and 

 A 
+
= { x∈X/ A

~ (x) >  } 

 is called “strong  - level set” or “strong  - 

cut” 

Definition.3.6. If a fuzzy set Ã is defined on X, for 

any ]1,0[ the  - cuts of the fuzzy set Ã is 

represented by A
~
= {x∈X/ A

~ (x) ≥ } = {ℓ A
~ (), 

u A
~ ()}, where ℓ A

~ () and u A
~ () represent the 

lower  bound and upper bound of  - cut of   Ã  

respectively. 

 

IV. PROBLEM FORMULATION 

 Formulation of parametric 

programming problem for bulk service 

queueing model. 

 Consider a single - server markovian 

queue with bulk service. The interarrival time A
~

 

and service time S
~

are approximately known and 

are represented by the following fuzzy sets.   

A
~

 = {(a, 
A
~ (a)) / a ∈ X}  …(4.1) 

S
~

=  {(S, S
~ (s)) / S ∈ Y} ….(4.2) 

where X and Y are crisp universal sets of the 

interarrival time and bulk service time and  A
~ (a), 

 S
~ (s) are the respective membership functions. 

The  - cut of Ã and S
~

are 

A() = {a ∈ X/ 
A
~ (a) ≥ }    ….(4.3) 

S () = {s ∈ Y/ 
S
~ (s) ≥ }    …(4.4) 

where 0<  ≤ 1. Both A() and S() are the crisp 

sets. Using  -cut, the interarrival times and bulk 

service times can be represented by different levels 

of confidence intervals. Hence a fuzzy queue can 

be reduced to a family of crisp queues with 

different  - level cuts {A () / o <  ≤ 1} and {S 

() / o <  ≤ 1}.These two sets represent sets of 

movable boundaries and they form nested structure 

for expressing the relationship between the crisp 

sets and fuzzy sets 
[5]

.  

   Let the confidence intervals of the fuzzy 

sets A
~

 and  

S
~

be ],[ )()(  AA ul and ],[ )()(  SS ul    

respectively. Since both the interarrival time A
~

and 

bulk service time S
~

are fuzzy numbers, using 

zadeh‟s extension principle 
[5,11]

, the membership 

function of the performance measure )
~

,
~

( SAP is 

defined 
[6]

 as 

 p( A
~ , S

~ ) (z) = Sup min { A
~ (a),  S

~ (s) / z = P(a,s)}   

……..(4.5) 

          a∈X, S∈Y 

        Construction of the membership 

function p( A
~ , S

~ )(Z) is equivalent to say that the 

derivation of  - cuts of p( A
~ , S

~ )(Z). From equation 

(4.5) the equation p( A
~ , S

~ )(Z) =  is true only when 

either 

 
A
~ (a) = , 

S
~ (S) ≥  (or) 

A
~  (a) ≥ , 

S
~ (S) = 

 is true. 

 The parametric programming problems 

have the following form 

ℓP(),= min P(a,s) such that  

ℓA() ≤ a ≤ uA()                    …(4.6) 

 ℓ S() ≤ s ≤ uS()  

and 

uP(),= max P(a,s)   such that   

ℓA() ≤ a ≤ uA()                         ….(4.7) 

ℓ S() ≤ s ≤ uS()  

 

If both ℓ
 P()

 and u
 P()

 are invertible with respect to 

, then the left shape function L(z) = ℓ
-1

 P()
 and the 

right shape function R(z) = u
-1

 p()
  can be obtained 

from which the membership function 
 p( A

~ , S
~ )

(z) is 

constructed as  

    L(z)   for   Z1 ≤ Z ≤ Z2 


 p( A

~ , S
~ )

 (z) =   R(z)    for   Z2 ≤ Z ≤ Z3    

    0          otherwise       ……….(4.8) 

 

where Z1 ≤ Z2 ≤ Z3 , L(Z1) = R(Z3) = 0, and L(Z2) = 

R(Z2) = 1. 

          By traditional queuing theory, to find the 

measures of effectiveness, the steady - state 

probability distribution for the system size allows 

to find the expected number of customers in the 

system and expected number of customers in the 

queues at steady- state, Let N be the random 

variable representing the “number of customers in 
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the system in steady-state and L be its expected 

value then 

L = E(N) = 


o=n

nPn  

= (1- ρ)  nn   …....(4.9)        

= (1- ρ)ρ






1

1

n

nn   

L = 




1
    , and since   /  

L = 





           ……(4.10) 

 

Let Nq be the random variable representing the 

number in the queue at steady- state, and Lq be its 

expected value, then we have 

Lq = 



=1

)1(
n

nPn = 


=1n

nPn - 


=1n

nP  

     = L – (1-Po) 

               = 





1
 )(




    

              = 




1

2

 

Lq   =  
)(

2






            ………(4.11) 

Using little‟s formula, L = 𝜆W, and Lq = 𝜆Wq  

Hence  W = 


L
=

)1( 




=    

 

1  …. (4.12)  and 

Wq= 


qL
=

)1( 




,   )(




   

Wq= 





= 

)( 




 ……(4.13) 

 This procedure has been applied to find 

the membership function of the performance 

measures for FM/FM
(y)

/1 (bulk service queuing) 

model. Little‟s formula is verified for considering 

the respective intervals in [ℓL(), uL()], [ℓLq(), 

uLq()], [ℓW(), uW()] and [ℓWq(), uWq()] using the 

operations  defined on the intervals.  

V.  NUMERICAL EXAMPLE 

 Consider an FM/FM
y
/1 queuing model, 

where both arrival rate and bulk service rate are 

triangular fuzzy numbers, represented by A
~

= 

[2,3,4] and S
~

= [16,17,18]. The  - cut of the 

membership functions 
A
~  and 

S
~ are 

respectively, [(2+), (4-)] and [(16+), (18-)]. 

To derive the membership function for L
~

the 

following parametric programming problem, (4.6) 

and (4.7) are considered. 

           ℓL()    =  min 








 xy

x
                            

              such that                                                                         

                        2 +  ≤ x  ≤ 4 -  

          16  +  ≤ y  ≤ 18 -  

……(5.1) 

and   

uL(α) =  max 








 xy

x
 

              such that                          

   2 +  ≤ x  ≤ 4 -  

   16  +  ≤ y ≤ 18 -  

                                          ……..(5.2) 

ℓL() is found when x  approaches its lower bound 

and y  approaches its upper bound. Consequently 

the optimal solution for (5.1) is 

ℓL() = 




216

2



 ………(5.3) 

also uL() is found when x approaches its upper 

bound and y reaches its lower bound. In this case, 

the optimal solution for (5.2) is 

uL() = 




212

4



  …………(5.4) 

The above functions in equations (5.3) and (5.4) 

are invertible. Applying the inverse transformation, 

the performance function )(~ z
L

  of L
~

is obtained 

.The membership function )(~ z
L

 is obtained as 

                
12

216





Z

Z     for   .125 ≤ Z ≤ .2143 

)(~ z
L

  =          
12

124





Z

Z     for  .2143 ≤ Z ≤ .3333..

                  0                  otherwise 

    ……….(5.5)   

which is the performance function for L
~

in 

FM/FM
y
/1 queuing model. 

The performance functions of (i) qL
~

-average 

queue length (ii) W
~

-average waiting time in the 

system and (iii) qW
~

-average waiting time in the 

queue, are derived from the respective parametric 

programs. They differ only in the objective 

functions and are listed below. 

(i) ℓ
)(qL
=    min 










 )(

2

xyy

x            ……..(5.6) 

                          and  

u
)(qL
=   max 










 )(

2

xyy

x            ……(5.7)  

(ii) ℓ )(W  =  min  









 xy

1           ………(5.8) 

                          and 

              u )(W =   max   









 xy

1                 ….(5.9) 
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(iii) ℓ
)(qW
 =  min  










 )( xyy

x   …….(5.10) 

                           and  

          u
)(qW
=  max 










 )( xyy

x     .   ……(5.11) 

The objective functions listed from equation (5.6) 

to (5.11) together with the constraints given by the 

equations (5.1) and (5.2) yield the following 

results. 

ℓ )(qL =
)252288(

44
2

2







        ….(5.12) 

u )(qL =
)244192(

816
2

2







     ……..(5.13)  

      
)12(2

1600400)452( 2





Z

ZZZ  

for  .01389 ≤ Z ≤ .037815 

)(~ z
qL

 =     
)12(2

1600400)844( 2





Z

ZZZ   

 for  .037815 ≤ Z ≤ .08333 

0                             otherwise 

 

……(5.14) 

ℓ )(W =
216

1


    …(5.15) 

u )(W =
212

1


     ……(5.16) 

        

 

 

 

 

     
Z

Z

2

116    for   .0625 ≤ Z ≤ .07143  

)(~ z
W

  =  
Z

Z

2

121  For   .07143 ≤ Z ≤ .08333 

      0           otherwise 

……(5.17) 

 

ℓ )(qW  =
2252288

2







                ………..(5.18) 

u )(qW = 
2244192

4







    ……..(5.19) 

     

                            

Z

ZZZ

4

1120400)152( 2   

        for   .006944 ≤ Z ≤ .0126 

)(~ z
qW

   =    
Z

ZZZ

4

1120400)144( 2 

          for   .0126 ≤ Z ≤ .02083 

                             0            otherwise 

….(5.20) 

 

Table.1. gives the  - cuts of arrival rate and bulk 

service rate for FM/FM
y
/1 queuing model for the 

above data, and Figures 1 to 4 gives the graphs for 

the corresponding membership function solutions. 

 

 

TABLE 1 

 -CUTS OF ARRIVAL RATE AND BULK SERVICE RATE USING TRIANGULAR FUZZY NUMBERS 

 ℓ
)(x
 U

)(x
 ℓ )(y  U )(y  ℓ )(L  U )(L  ℓ )(Lq  U )(Lq  ℓ )(W  U )(W  ℓ )(Wq  U )(Wq  

0 2 4 16 18 0.1250 0.3333 0.0139 0.0833 0.0625 0.0833 0.0069 0.0208 

0.1 2.1 3.9 16.1 17.9 0.1329 0.3197 0.0156 0.0774 0.0633 0.0820 0.0074 0.0199 

0.2 2.2 3.8 16.2 17.8 0.1410 0.3065 0.0174 0.0719 0.0641 0.0806 0.0079 0.0189 

0.3 2.3 3.7 16.3 17.7 0.1494 0.2937 0.0194 0.0667 0.0649 0.0794 0.0084 0.0180 

0.4 2.4 3.6 16.4 17.6 0.1579 0.2813 0.0215 0.0617 0.0658 0.0781 0.0090 0.0171 

0.5 2.5 3.5 16.5 17.5 0.1667 0.2692 0.0238 0.0571 0.0667 0.0769 0.0095 0.0163 

0.6 2.6 3.4 16.6 17.4 0.1757 0.2576 0.0263 0.0528 0.0676 0.0758 0.0101 0.0155 

0.7 2.7 3.3 16.7 17.3 0.1849 0.2463 0.0289 0.0487 0.0685 0.0746 0.0107 0.0147 

0.8 2.8 3.2 16.8 17.2 0.1944 0.2353 0.0317 0.0448 0.0694 0.0735 0.0113 0.0140 

0.9 2.9 3.1 16.9 17.1 0.2042 0.2246 0.0346 0.0412 0.0704 0.0725 0.0119 0.0133 

1.0 3.0 3.0 17.0 17.0 0.2143 0.2143 0.0378 0.0378 0.0714 0.0714 0.0126 0.0126 
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VI. EXPECTED NUMBER OF CUSTOMERS IN THE SYSTEM 

 

 
                                                                 

Fig. 1 Expected Number Of Cutomers  In The Queue 

 

 
 

Fig. 2 Average Waiting Time In The System 

 

 
 

Fig. 3 Average Waiting Time In The Queue 
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Fig. 4 

 

VII. CONCLUSION 

 Fuzzy set theory has been applied to some 

classical queueing systems to provide wider 

applications in some previous studies [5,6]. When 

the interarrival time and bulk service time are fuzzy 

variables, according to zadeh‟s extension 

principle[9], the performance measures such as the 

average system length, the average waiting time, 

etc. will be fuzzy as well. This paper applies the 

concept of -cut to reduce a fuzzy queue into a 

family of crisp queues which can be described by a 

pair of parametric programs to find the -cuts of 

the membership functions of the performance 

measures. Although this is not a very precise 

procedure, it does give a very useful quick practical 

guide to the number of patients who should be dealt 

with each week in any given speciality, if seriously 

lengthy periods of waiting are to be avoided. For a 

more searching analysis the detailed results of this 

paper can be applied. 
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