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Abstract: Wireless sensor networks will be widely 

deployed in the near future. While much research has 

focused on making these networks feasible and useful, 

security has received little attention. We present a 

suite of security protocols optimized for sensor 

networks: SPINS. SPINS has two secure building 

blocks: SNEP and µTESLA. SNEP includes: data 

confidentiality, two-party dataauthentication, and 

evidence of data freshness. µTESLA provides 

authenticated broadcast for severely resource-

constrained environments. We implemented the 

above protocols, and show that they are practical 

even on minimal hardware: the performance of the 

protocol suite easily matches the data rate of our 

network. Additionally, we demonstrate that the suite 

can be used for building higher level protocols. 

Keywords: secure communication protocols, sensor 

networks, mobile ad hoc networks, MANET, 

authentication of wireless communication, secrecy 

and confidentiality, cryptography. 

1. Introduction 

We envision a future where thousands to millions of 

small sensors form self-organizing wireless networks. 

How can we provide security for these sensor networks? 

Security is not easy; compared with conventional desktop 

computers, severe challenges exist – these sensors will 

have limited processing power, storage, bandwidth, and 

energy. We need to surmount these challenges, because 

security is so important. Sensor networks will expand to 

fill all aspects of our lives. Here are some typical 

applications: 

a) Emergency Response Information: sensor networks 

will collect information about the status of buildings, 

people, and transportation pathways. Sensor information 

must be collected and passed on in meaningful, secure 

ways to emergency response personnel. 

 b) Energy Management: in 2001 power blackouts 

plagued California. Energy distribution will be better 

managed when we begin to use remote sensors. For 

example, the power load that can be carried on an 

electrical line depends on ambient temperature and the 

immediate temperature on the wire. If these were 

monitored by remote sensors and the remote sensors 

received information about desired load and current load, 

it would be possible to distribute load better. This would 

avoid circumstances where Californians cannot receive 

electricity while surplus electricity exists in other parts of 

the country.  

c) Medical Monitoring: we envision a future where 

individuals with some types of medical conditions 

receive constant 

monitoringthroughsensorsthatmonitorhealth conditions. 

For some types of medical conditions, remote sensors 

may apply remedies (such as instant release of 

emergency medication to the bloodstream). 

i. Logistics and inventory management: commerce in 

America is based on moving goods, including 

commodities from locations where surpluses exist to 

locations where Needs exist. Using remote sensors 

can substantially improve these mechanisms. These 

mechanisms will vary in scale – ranging from 

worldwide distribution of goods through 

transportation and pipeline networks to inventory 

management within a single retail store. 

ii. Battlefield management: remote sensors can help 

eliminate some of the confusion associated with 

combat. They can allow accurate collection of 

information about current battlefield conditions as 

well as giving appropriate information to soldiers, 

weapons, andvehiclesin the battlefield.At UC 

Berkeley, we think these systems are important, and 

we are starting a major initiative to explore the use 

of wireless sensor networks. (More information on 

this new initiative, CITRIS, can be found at 

www.citris.berkeley.edu.) Serious security and 

privacy questions arise if third parties can read or 

tamper with sensor data. We envision wireless 

sensor networks being widely used – including for 

emergency and life-critical systems – and here the 

questions of security are foremost. This article 

presents a set of Security Protocols for Sensor 

Networks, SPINS. The chief contributions of this 

article are: 

iii. Exploring the challenges for security in sensor 

networks. 

iv. Designing and developing µTESLA (the “micro” 

version of TESLA), providing authenticated 

streaming broadcast. 

v. Designing and developing SNEP (Secure Network 

Encryption Protocol) providing data confidentiality, 

two- party data authentication, and data freshness, 

with low overhead.  
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vi. Designing and developing an authenticated routing 

protocol using our building blocks. 

1.1. Sensor Hardware: At UC Berkeley, we are building 

prototype networks of small sensor devices under the 

Smart Dust program, one of the components of CITRIS. 

We have deployed these in one of 

Characteristics of prototype Smart Dust nodes: 

CPU                                             8-bi 4 MHz  

Storage                                        8 Kbytes  

Instruction flash                           512 bytes  

RAM                                            512 bytes  

EEPROM Communication          916 MHz radio      

Bandwidth                                10 Kbps 

Operating system                          Tinos 

OS code space                              3500 bytes  

Available code space        4500 bytes 

The operating system is particularly interesting for these 

devices. We use Tangos. This small, event-driven 

operating system consumes almost half of 8 Kbytes of 

instruction flash memory, leaving just 4500 bytes for 

security and the application.  

It is hard to imagine how significantly more powerful de- 

vices could be used without consuming large amounts of 

power. The energy source on our devices is a small 

battery, so we are stuck with relatively limited 

computational devices. Wireless communication is the 

most energy-consuming function performedbythese 

devices,so we need to minimize communications 

overhead. The limited energy supplies create tensions for 

security: on the one hand, security needs to limit its 

consumption of processor power; on the other hand, 

limited power supply limits the lifetime of keys.  

2. System Assumptions 

Before we outline the security requirements and present 

our security infrastructure, we need to define the system 

architecture and the trust requirements. The goal of this 

work is to propose a general security infrastructure that is 

applicable to a variety of sensor networks. 

2.1 Communication Architecture: Generally, the sensor 

nodes communicate over a wireless net- work, so 

broadcast is the fundamental communication primitive. 

The baseline protocols account for this property: on one 

hand they affect the trust assumptions, and on the other 

they minimize energy usage. 

We do have an advantage with sensor networks, because 

most communication involves the base station and is not 

between two local nodes. The communication patterns 

within our network fall into three categories: 

• Node to base station communication, e.g., sensor 

readings. 

 • Base station to node communication, e.g., specific 

requests.  

• Base station to all nodes, e.g., routing beacons, queries 

or reprogramming of the entire network. 

Our security goal is to address these communication pat- 

terns, though we also show how to adapt our baseline 

protocols to other communication patterns, i.e. node to 

node or node broadcast. 

2.2 Design Guidelines: With the limited computation 

resources available on our plat- form, we cannot afford 

use asymmetric cryptography and so we use symmetric 

cryptographic primitives to construct the SPINS 

protocols. Due to the limited program store, we construct 

all cryptographic out of        a single block cipher for 

code reuse. To reduce communication overhead we 

exploit      common state between the communicating 

parties. Requirements for sensor network security. This 

section formalizes the security properties required by 

sensor networks, and shows how they are directly 

applicable in a typical sensor network. 

3. Requirements for Sensor Network Security 

This section formalizes the security properties required 

by sensor networks, and shows how they are directly 

applicable in a typical sensor network. 

3.1 Data Confidentiality: A sensor network should not 

leak sensor readings to neigh- boring networks. In many 

applications (e.g., key distribution) nodes communicate 

highly sensitive data. The standard approach for keeping 

sensitive data secret is to encrypt the data with a secret 

key that only intended receivers possess, hence achieving 

confidentiality. Given the observed communication 

patterns, we set up secure channels between nodes and 

base stations and later bootstrap other secure channels as 

necessary. 

3.2 Data Authentication: Message authentication is 

important for many applications in sensor networks 

(including administrative tasks such as net- work 

reprogramming or controlling sensor node duty cycle). 

Since an adversary can easily inject messages, the 

receiver needs to ensure that data used in any decision-

making process originates from a trusted source. 

Informally, data authentication allows a receiver to verify 

that the data really was sent by the claimed sender. 

Informally, data authentication allows a receiver to verify 

that the data really was sent by the claimed sender. 

3.3 Data Integrity: In communication, data integrity 

ensures the receiver that the received data is not altered 

in transit by an adversary. In SPINS, we achieve data 

integrity through data authentication, which is a stronger 

property. 

3.4 Data Freshness: Sensor networks send measurements 

over time, so it is not enough to guarantee confidentiality 

and authentication; we also must ensure each message is 

fresh. Informally, data freshness implies that the data is 

recent, and it ensures that no adversary replayed old 

messages. We identify two types of freshness: weak 

freshness, which provides partial message ordering, but 

carries no delay information, and strong freshness, which 
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provides a total order on a request–response pair, and 

allows for delay estimation. Weak freshness is useful for 

sensor measurements, while strong freshness is useful for 

time synchronization within the network. 

4. Notation 

We use the following notation to describe security 

protocols and cryptographic operations in this article: 

i. A, B are principals, such as communicating 

nodes.  

ii. NA is a nonce generated by A. 

iii. XAB denotes the master secret (symmetric) 

key which is shared between A and B. No 

direction information is stored in this key, so 

we have XAB = XBA.  

iv. KAB and KBA denote the secret encryption 

keys shared between A and B. A and B derive 

the encryption key from the master secret key 

XAB based on the direction of the 

communication: KAB = FXAB (1) and 

KBA=FXAB (3), where F is a Pseudo-Random 

Function (PRF) 

v. KAB and KBA denote the secret MAC keys 

shared between A and B. A and B derive the 

encryption key from the master secret key 

XAB based on the direction of the 

communication: KAB = FXAB (2) and KBA = 

FXAB (4), where F is a pseudo-random 

function.  

vi. {M}K AB is the encryption of message M with 

the encryption key KAB. 

vii. {M} K AB, denotes the encryption of message 

M, with key KAB, and the initialization vector 

IV which is used in encryption modes such as 

cipher-block chaining (CBC), output feedback 

mode (OFB), or counter mode (CTR) 

viii. MAC (KAB, M) denotes the computation of 

the message authentication code (MAC) of 

message M, with MAC key KAB. 

By a secure channel, we mean a channel that offers 

confidentiality, data authentication, integrity, and 

freshness. 

5. Spins Security Building Blocks 

To achieve the security requirements we established in 

we design two security building blocks: SNEP and 

µTESLA. SNEP provides data confidentiality, two-party 

data authentication, integrity, and freshness. µTESLA 

provides authentication for data broadcast. We bootstrap 

the security for both mechanisms with a shared secret 

key between each node and the base station. We 

demonstrate in section 8 how we can extend the trust to 

node-to-node inter- actions from the node-to-base-station 

trust. 

5.1 SNEP: Data confidentiality, Authentication, Integrity, 

and Freshness: SNEP provides a number of unique 

advantages. First, it has low communication overhead; it 

only adds 8 bytes per message. Second, like many 

cryptographic protocols it uses a counter, but we avoid 

transmitting the counter value by keeping state at both 

end points. Third, SNEP achieves semantic security; a 

strong security property which prevents eaves droppers 

from inferring the message content from the encrypted 

message.Finally, the same simple and efficient 

protocolalso givesus data authentication, replay 

protection, and weak message freshness. 

 Data confidentiality is one of the most basic security 

primitives and it is used in almost every security 

protocol. A simple form of confidentiality can be 

achieved through encryption, but pure encryption is not 

sufficient. Another important security property is 

semantic security, which ensures that an eavesdropper 

has no information about the plaintext, even if it sees 

multiple encryptions of the same plaintext For example, 

even if an attacker has an encryption of a 0 bit and an 

encryption of a 1 bit, it will not help it distinguish 

whether a new encryption is an encryption of 0 or 1. A 

basic technique to achieve this is randomization: Before 

encrypting the message with a chaining encryption 

functions the sender precedes the message with a random 

bit string. This prevents the attacker from inferring the 

plaintext of encrypted messages if it knows plaintext 

ciphertext pairs encrypted with the same key. 

 A good security design practice is not to reuse the same 

cryptographic key for different cryptographic primitives; 

this prevents any potential interaction between the 

primitives that might introduce a weakness. Therefore we 

derive independent keys for our encryption and MAC 

operations. The two communicating parties A and B 

share a master secret key XAB, and they derive 

independent keys using the pseudo- random function F: 

encryption keys KAB = FX (1) and KBA = FX(3) for 

each direction of communication, and Mac keysKAB = 

FX(2) and KBA = FX(4) for each direction of 

communication. Section 6 gives more details on key 

derivation. 

The combinations of these mechanisms form our Sensor 

Network Encryption Protocol SNEP. The encrypted data 

has the following format: E = {D} K, C., whereDis the 

data, the encryption key is K, and the counter is 

C.TheMACis M=MAC (K, C||E). The complete message 

that A sends to B is 

A → B:   {D} KAB, CA, MACK’ABCA || {D} KAB, 

CA. 

5.2 Counter Exchange Protocol: To achieve small SNEP 

messages, we assume that the communicating parties A 

and B know each other’s counter values CA and CB and 

so the counter does not need to be added to each 

encrypted message. In practice, however, messages 

might get lost and the shared counter state can become 

inconsistent. We now present protocols to synchronize 

the counter state. To bootstrap the counter values 

initially, we use the following protocol: 

A → B: CA, 

 B → A: CB, MACK’BACA || CB, 

 A → B: MACK’AB, CA|| CB. 

. 

 If party A realizes that the counter CB of party B is not 

synchronized any more, A can request the current 
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counter of B using a nonce NA to ensure strong freshness 

of the reply: 

A → B: NA, 

 B → A: CB, MAC (K’BA, NA|| CB). 

5.3 µTESLA: Authenticated broadcast: Previous 

proposals for authenticated broadcast are impractical for 

sensor networks. First, most proposals rely on 

asymmetric digital signatures for authentication, which 

are impractical for multiple reasons. 

TESLA authenticates the initial packet with a digital sig- 

nature. Clearly, digital signatures are too expensive to 

compute on our sensor nodes, since even fitting the code 

into the memory is a major challenge. For the same 

reason as we mention above, one-time signatures are a 

challenge to use on our nodes. Standard TESLA has an 

overhead of approximately 24 bytes per packet. For 

networks connecting workstations this is usually not 

significant. Sensor nodes, however, send very small 

messages that are around 30 bytes long. It is simply 

impractical to disclose the TESLA key for the previous 

intervals with every packet: with 64 bit keys and MACs, 

the TESLA-related part of the packet would constitute 

over 50% of the packet. Finally, the one-way key chain 

doesn’tit into the memory ofour sensor node. So, 

pureTESLAis notpracticalfora node to broadcast 

authenticated data. We design µTESLA to solve the 

following inadequacies of TESLA in sensor networks: 

• TESLA authenticates the initial packet with a digital 

sig- nature, which is too expensive for our sensor nodes. 

µTESLA uses only symmetric mechanisms.  

• Disclosing a key in each packet requires too much 

energy for sending and receiving. µTESLA discloses the 

key once per epoch.  

• It is expensive to store a one-way key chain in a sensor 

node. µTESLA restricts the number of authenticated 

senders 

5.4 µTESLA Overview: We give a brief overview of 

µTESLA, followed by a detailed description. 

 Authenticated broadcast requires an asymmetric 

mechanism; otherwise any compromised receiver could 

forge messages from the sender. Unfortunately, 

asymmetric cryptographic mechanisms have high 

computation, communication, and storage overhead, 

making their usage on resource- constrained devices 

impractical. µTESLA overcomes this problem by 

introducing asymmetry through a delayed disclosure of 

symmetric keys, which results in an efficientbroadcast 

authentication scheme. 

 

Example:µTESLA one-way key chain derivation, the 

time intervals, and some sample packets that the sender 

broadcasts. Each key of the key chain corresponds to a 

time interval and all packets sent within one time interval 

are authenticated with the same key. In this example, the 

sender discloses keys two time intervals after it uses 

them to compute MACs. We assume that the receiver 

node is loosely time synchronized and knows K0 (a 

commitment to the key chain). Packets P1 and P2 sent in 

interval 1 contain a MAC with key K1.  

5.5 µTESLA detailed description:µTESLA has multiple 

phases: sender setup, sending authenticated packets, 

bootstrapping new receivers, and authenticating packets. 

We first explain how µTESLA allows the base station to 

broadcast authenticated information to the nodes and we 

then explain how TESLA allows nodes to broadcast 

authenticated messages. 

M → S: NM 

 S → M: TS | Ki | Ti | Tint | δ  

  MAC (KMS, NM |TS | Ki |Ti |Tint | δ). 

• The node broadcasts the data through the base station. It 

uses SNEP to send the data in an authenticated way to 

the base station, which subsequently broadcasts it. 

• The node broadcasts the data. However, the base station 

keeps the one-way key chain and sends keys to the 

broad- casting node as needed. To conserve energy for 

the broad- casting node, the base station can also 

broadcast the disclosed keys, and/or perform the initial 

bootstrapping procedure for new receivers. 

 

6. Implementation 

 Because of stringent resource constraints on the sensor 

nodes, implementation of the cryptographic primitives is 

a major challenge. We can sacrifice some security to 

achieve feasibility and efficiency, but we still need a core 

level of strong cryptography. Below we discuss how we 

provide strong cryptography despite restricted resources. 

Memory size is a constraint: our sensor nodes have 8 

Kbytes of read-only program memory, and 512 bytes of 

RAM. The program memory is used for TinyOS, our 

security infrastructure, and the actual sensor net 

application. To save program memory we implement all 

cryptographic primitives from one single block cipher 

Block cipher: We evaluated several algorithms for use as 

a block cipher. An initial choice was the AES algorithm 

Rijn- deal; however, after further inspection, we sought 

alter- natives with smaller code size and higher speed. 

The base- line version of Rijndael uses over 800 bytes of 

lookup tables which is too large for our memory-

deprived nodes. An op- timized version of that algorithm 

(about a 100 times faster) uses over 10 Kbytes of lookup 

tables. Similarly, we rejected the DES block cipher 

which requires a 512-entry Box table and a 256-entry 

table for various permutations. A small encryption 

algorithm such as TEA is a possibility, but is has not yet 

been subject to cryptanalytic securutiy.We use RC5 

because of its small code size and high efficiency. RC5 

does notrely on multiplication and does not require large 

tables. However, RC5 does use 32-bit data-dependent 

rotates, which are expensive on our Atmel processor (it 

only supports an 8-bit single bit rotate operation). Even 

though the RC5 algorithm can be expressed succinctly, 

the common RC5 libraries are too large to fit on our 
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platform. With a judicious selection of functionality, we 

use a subset of RC5 from Open SSL, and after further 

tuning of the code we achieve an additional 40% 

reduction in code size. 

Encryption function: To save code space, we use the 

same function for both encryption and decryption. The 

counter (CTR) mode of block ciphers (figure 1) has this 

property. CTR mode is a stream cipher. Therefore, the 

size of the cipher text is exactly the size of the plaintext 

and not a multiple of the block size. This property is 

particularly desirable in our environment. Message 

sending and receiving consume a lot of energy.  

Also, longer messages have a higher probability of data 

corruption. Therefore, block cipher message expansion is 

undesirable. CTR mode requires a counter for proper 

operation.: the same plaintext sent at different times is 

encrypted into different cipher text since the encryption 

pads are generated from different counters. To an 

adversary who does not know the key, these messages 

will appear as two unrelated random strings. Since the 

sender and the receiver share the counter, we do not need 

to include it in the message. If the two nodes lose the 

synchronization of the counter, they can simply transmit 

the counter explicitly to resynchronize using SNEP with 

strong freshness. 

 

 

Fig 1:Counter mode encryption and decryption. The 

encryption function is applied to a monotonically 

increasing counter to generate a one time pad. This pad is 

then XORed with the plaintext. The decryption operation 

is identical. 

Key setup: Recall that our key setup depends on a secret 

master key, initially shared by the base station and the 

node. We call that shared key XAS for node A and base 

station S. All other keys are bootstrapped from the initial 

master secret key. 

 

 

 

Fig 2 : CBC MAC. The output of the last stage serves as 

the authentication code 

 

Fig 3: Deriving internal keys from the master secret key 

Memory size is a constraint: our sensor nodes have 8 

Kbytes of read-only program memory, and 512 bytes of 

RAM. The program memory is used for TinyOS, our 

security infrastructure, and the actual sensor net 

application. Pseudo-random function (PRF) F to derive 

the keys, which we implement as FK(x) = MAC (K, x). 

Again, this allows for more code reuse. Because of 

cryptographic properties of the MAC, it must also be a 

good pseudo-random function. All keys derived in this 

manner are computationally independent. Even if the 

attacker could break one of the keys, the knowledge of 

that key would not help it find the master secret or any 

other key. Additionally, if we detect that a key has been 

compromised, both parties can derive a new key without 

transmitting any confidentiality information. 

7. Evaluation 

We evaluate the implementation of our protocols by code 

size, RAM size, and processor and communication 

overhead. 

7.1 Code Size: Table 1 shows the code size of three 

implementations of crypto routines in TinyOS. The 

smallest version of the crypto routines occupies about 

20% of the available code space. The difference between 

the fastest and the smallest implementation stems from 

two different implementations of the variable rotate 

function. The µTESLA protocol uses another 574 bytes. 

Together, the crypto library and the protocol 

implementation consume about 2 Kbytes of program 

memory, which is acceptable in most applications. 

International Journal of Advanced and Innovative Research (2278-7844) / #266 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED                                                                                                266



 

 

 

Table 1: Code size breakdown (in bytes) for the security 

modules. 

 

 

Table 2:  Performance of security primitives in Tiny OS. 

7.2 Performances: The performance of the cryptographic 

primitives is adequate for the bandwidth supported by the 

current generation of network sensors. Key setup is 

relatively expensive (4 ms). In contrast, the fast version 

of the code uses less than 2.5 ms to encrypt a 16 byte 

message and to compute the MAC (the smaller but 

slower version takes less than 3.5ms). Let us compare 

these time figures against the speed of our network. Our 

radio operates at 10 kbps at the physical layer. If we 

assume that we communicate at this rate, we can perform 

a key setup, an encryption, and a MAC for every 

message we send out. 

In our implementation, µTESLA discloses the key after 

two intervals (δ = 2). The stringent buffering 

requirements also dictate that we cannot drop more than 

one key disclosure beacon. We require a maximum of 

two key setup operations and two CTR encryptions to 

check the validity of a disclosed TESLA key. 

Additionally, we perform up to two key setup operations, 

two CTR encryptions, and up to four MAC operation to 

check the integrity of a TESLA message.7 that gives an 

upper bound of 17.8 ms for checking the buffered 

messages. This amount of work is easily performed on 

our processor. In fact, the limiting factor on the 

bandwidth of authenticated broadcast traffic is the 

amount of buffering we can dedicate on individual sensor 

nodes. Table 4 shows the memory size required by the 

security modules. We configure the µTESLA protocol 

with four messages: the disclosure interval dictates a 

buffer space of three messages just for key disclosure, 

and we need an additional buffer to use this primitive in a 

more flexible way 

7.3 Energy Costs: We examine the energy costs of 

security mechanisms. Most energy costs will come from 

extra trans- missions required by the protocols. 

 

Table 3: RAM requirements of the security modules. 

 

Table 5: Energy costs of adding security protocols to the 

sensor network. Most of the overhead arises from the 

transmission of extra data rather than from any 

computational costs. 

 

8. Applications 

In this section we demonstrate how we can build secure 

proto- cols out of the SPINS secure building blocks. 

First, we build an authenticated routing application, and 

second, a two party key agreement protocol. 

8.1 Authenticated Routing: IN this section we 

demonstrate how we can build secure proto- cols out of 

the SPINS secure building blocks. First, we build an 

authenticated routing application, and second, a two 

party key agreement protocol. 

Using the µTESLA protocol, we developed a 

lightweight, authenticated ad hoc routing protocol that 

builds an authenticated routing topology. Ad hoc routing 

has been an active area of research [11, 20, 25, 26, 38, 

40, 41]. Marti et al. discuss a mechanism to protect an ad 

hoc network against misbehaving nodes that fail to 

forward packets correctly. They describe two 

mechanisms: a watchdog to detect misbehaving 

neighbouring nodes, and a path ratter to keep state about 

the goodness of other nodes. They propose running these 

mechanisms on each node. However, we are not aware of 

a routing protocol that uses authenticated routing 

messages. It is possible for a malicious user to take over 

the network by injecting erroneous, replaying old, or 

advertise incorrect routing information. The 

authenticated routing scheme we developed mitigates 

these problems.  
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The routing scheme within our prototype network 

assumes bidirectional communication channels, i.e. if 

node A hears node B, then node B hears node A. The 

route discovery de-pends on periodic broadcast of 

beacons. Every node, upon reception of a beacon packet, 

checks whether it has already received a beacon (which 

is a normal packet with a globally unique sender ID and 

current time at base station, protected by a MAC to 

ensure integrity and that the data is authentic) in the 

current epoch.8 If a node hears the beacon within the 

epoch, it does not take any further action. Otherwise, the 

node accepts the sender of the beacon as its parent to 

route towards the base station. Additionally, the node 

would repeat the become with the sender ID changed to 

itself. This route discovery resembles a distributed, 

breadth first search algorithm, and produces a routing 

topology. 

 8.2 Node-To-Node Key Agreement: A convenient 

technology for bootstrapping secure connections is to use 

public key cryptography protocols for symmetric key 

setup. Unfortunately, our resource constrained sensor 

nodes prevent us from using computationally expensive 

public key cryptography. We need to construct our proto- 

cols solely from symmetric key algorithms. We design a 

sym- metric protocol that uses the base station as a 

trusted agent for key setup. 

Assume that the node A wants to establish a shared secret 

session key SKAB with nodeB. Since Aand B do not 

share any secrets, they need to use a trusted third party S, 

which is thebase station in our case. In our trust setup, 

both A and B share a master secret key with the base 

station, XAS and XBS, respectively. The following 

protocol achieves secure key agreement as well as strong 

key freshness: 

                                                      A → B: NA, A,  

B →S: NA, NB, A, B, 

MACK’BS, NA|NB|A|B,  

S→A: {SKAB} KSA, 

MACK’SA, NA|B| {SKAB} KSA, 

    S → B: {SKAB} KSB, 

MACK’SB,NA|B|{SKAB}KSB. 

The protocol uses our SNEP protocol with strong 

freshness. The nonce’s NA and NB ensure strong key 

freshness to both A and B. The SNEP protocol ensures 

confidentiality (throughencryptionwith the keys KAS and 

KBS)of the established session key SKAB, as well as 

message authentication (through the MAC using keys 

KAS and KBS), so we are sure that the key was really 

generated by the base station. Note that the MAC in the 

second protocol message helps defend the base station 

from denial-of-service attacks, and the base station only 

sends two messages to A and B if it received a legitimate 

request from one of the nodes. 

 

9. Related work 

Tatebayashi et al. consider key distribution for resource- 

starved devices in a mobile environment. Park et al. point 

out weaknesses and improvements. Beller and Yacobi 

further develop key agreement and authentication 

protocols. Boyd and Mathuria survey the previous work 

on key distribution and authentication for resource-

starved devices in mobile environments .The majority of 

these approaches rely on asymmetric cryptography. 

Bergstrom et al. consider the problem of secure remote 

control of resource-starved de- vices in a home .  

Fox and Gribble present a security protocol providing se- 

cure access to application level proxy services. Their 

protocol is designed to interact with a proxy to Kerberos 

and to facilitate porting services relying on Kerberos to 

wireless devices. 

Zhou and Haas propose to secure ad hoc networks using 

asymmetric cryptography. Recently, Basagni et al. 

proposed to use a network-wide symmetric key to secure 

an ad hoc routing protocol. While this approach is 

efficient, it does not resist compromise of a single node. 

Carman et al. analyze a wide variety of approaches for 

key agreement and key distribution in sensor networks. 

They analyze the overhead of these protocols on a variety 

of hardware platforms. Marti et al. discuss a mechanism 

to protect an ad hoc net- work against misbehaving nodes 

that fail to forward packets correctly.  

 

10. Conclusion 

We designed and built a security subsystem for an 

extremely limited sensor network platform. We have 

identified and implemented useful security protocols for 

sensor networks: authenticated and confidentiality 

communication, and authenticated broadcast. We have 

implemented applications including an authenticated 

routing scheme and a secure node-to-node key agreement 

protocol. 

  Most of our design is universal and applicable 

to other net- works of low-end devices. Our primitives 

only depend on fast symmetric cryptography, and apply 

to a wide variety of device configurations. On our limited 

platform energy spent for security is negligible compared 

with to energy spent on sending or receiving messages. It 

is possible to encrypt and authenticate all sensor 

readings. 

  The communication costs are also small. Data 

authentication, freshness, and confidentiality properties 

use up a net 6 bytes out of 30 byte packets. So, it is 

feasible to guarantee these properties on a per packet 

basis. It is difficult to improve on this scheme, as 

transmitting a MAC is fundamental to guaranteeing data 

authentication. 

 Certain elements of the design were influenced 

by the available experimental platform. If we had a more 

powerful platform, we could have used block ciphers 

other than RC5. The emphasis on code reuse is another 

property forced by our platform. A more powerful device 

would allow more modes of authentication. In particular, 

memory restrictions on buffering limit the effective 

bandwidth of authenticated broadcast. 

Despite the shortcomings of our target 

platform, we built a system that is secure and works. 
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With our techniques, we believe security systems can 

become an integral part of practical sensor networks. 

References 

1) Atmel, Secure Microcontrollers for Smartcards, 

http://www. 

atmel.com/atmel/acrobat/1065s.pdf  

2) S. Basagni, K. Herrin, E. Rosti and D. Bruschi, 

Secure Pebblenets, in: ACM International 

Symposium on Mobile Ad Hoc Networking 

and Computing (MobiHoc 2001) (2001) pp. 

156–163. 

3) M. Bellare, A. Desai, E. Jokipii and P. 

Rogaway, A concrete security treatment of 

symmetric encryption: Analysis of the DES 

modes of operation, in: Symposium on 

Foundations of Computer Science (FOCS) 

(1997).  

4) M. Beller and Y. Yacobi, Fully fledged two-

way public key authentication and key 

agreement for low-cost terminals, Electronics 

Letters 29(11) (1993) 999–1001.  

5) S. Bellovin and M. Merrit, Augmented 

encrypted key exchange: a password-based 

protocol secure against dictionary attacks and 

password file compromise, in: ACM 

Conference on Computer and Communications 

Security CCS-1 (1993) pp. 244–250. 

International Journal of Advanced and Innovative Research (2278-7844) / #269 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED                                                                                                269


