
Security Protocols for Sensor Networks Using Protocol Architecture

 NAGA GOPI KARANKI#1
,

Dr.A SrinivasaaRao#2
.

 COMPUTER NETWORKS & SECURITY [M.TECH]

K L University, VADDESWARAM, GUNTUR

 Email:karanki.nagagopi88@gmail.com

 Prof of K L University

 Email:dsrinivas@kluniversity.in

Abstract: Wireless sensor networks will be widely

deployed in the near future. While much research has

focused on making these networks feasible and useful,

security has received little attention. We present a

suite of security protocols optimized for sensor

networks: SPINS. SPINS has two secure building

blocks: SNEP and µTESLA. SNEP includes: data

confidentiality, two-party dataauthentication, and

evidence of data freshness. µTESLA provides

authenticated broadcast for severely resource-

constrained environments. We implemented the

above protocols, and show that they are practical

even on minimal hardware: the performance of the

protocol suite easily matches the data rate of our

network. Additionally, we demonstrate that the suite

can be used for building higher level protocols.

Keywords: secure communication protocols, sensor

networks, mobile ad hoc networks, MANET,

authentication of wireless communication, secrecy

and confidentiality, cryptography.

1. Introduction

We envision a future where thousands to millions of

small sensors form self-organizing wireless networks.

How can we provide security for these sensor networks?

Security is not easy; compared with conventional desktop

computers, severe challenges exist – these sensors will

have limited processing power, storage, bandwidth, and

energy. We need to surmount these challenges, because

security is so important. Sensor networks will expand to

fill all aspects of our lives. Here are some typical

applications:

a) Emergency Response Information: sensor networks

will collect information about the status of buildings,

people, and transportation pathways. Sensor information

must be collected and passed on in meaningful, secure

ways to emergency response personnel.

 b) Energy Management: in 2001 power blackouts

plagued California. Energy distribution will be better

managed when we begin to use remote sensors. For

example, the power load that can be carried on an

electrical line depends on ambient temperature and the

immediate temperature on the wire. If these were

monitored by remote sensors and the remote sensors

received information about desired load and current load,

it would be possible to distribute load better. This would

avoid circumstances where Californians cannot receive

electricity while surplus electricity exists in other parts of

the country.

c) Medical Monitoring: we envision a future where

individuals with some types of medical conditions

receive constant

monitoringthroughsensorsthatmonitorhealth conditions.

For some types of medical conditions, remote sensors

may apply remedies (such as instant release of

emergency medication to the bloodstream).

i. Logistics and inventory management: commerce in

America is based on moving goods, including

commodities from locations where surpluses exist to

locations where Needs exist. Using remote sensors

can substantially improve these mechanisms. These

mechanisms will vary in scale – ranging from

worldwide distribution of goods through

transportation and pipeline networks to inventory

management within a single retail store.

ii. Battlefield management: remote sensors can help

eliminate some of the confusion associated with

combat. They can allow accurate collection of

information about current battlefield conditions as

well as giving appropriate information to soldiers,

weapons, andvehiclesin the battlefield.At UC

Berkeley, we think these systems are important, and

we are starting a major initiative to explore the use

of wireless sensor networks. (More information on

this new initiative, CITRIS, can be found at

www.citris.berkeley.edu.) Serious security and

privacy questions arise if third parties can read or

tamper with sensor data. We envision wireless

sensor networks being widely used – including for

emergency and life-critical systems – and here the

questions of security are foremost. This article

presents a set of Security Protocols for Sensor

Networks, SPINS. The chief contributions of this

article are:

iii. Exploring the challenges for security in sensor

networks.

iv. Designing and developing µTESLA (the “micro”

version of TESLA), providing authenticated

streaming broadcast.

v. Designing and developing SNEP (Secure Network

Encryption Protocol) providing data confidentiality,

two- party data authentication, and data freshness,

with low overhead.

International Journal of Advanced and Innovative Research (2278-7844) / #262 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 262

vi. Designing and developing an authenticated routing

protocol using our building blocks.

1.1. Sensor Hardware: At UC Berkeley, we are building

prototype networks of small sensor devices under the

Smart Dust program, one of the components of CITRIS.

We have deployed these in one of

Characteristics of prototype Smart Dust nodes:

CPU 8-bi 4 MHz

Storage 8 Kbytes

Instruction flash 512 bytes

RAM 512 bytes

EEPROM Communication 916 MHz radio

Bandwidth 10 Kbps

Operating system Tinos

OS code space 3500 bytes

Available code space 4500 bytes

The operating system is particularly interesting for these

devices. We use Tangos. This small, event-driven

operating system consumes almost half of 8 Kbytes of

instruction flash memory, leaving just 4500 bytes for

security and the application.

It is hard to imagine how significantly more powerful de-

vices could be used without consuming large amounts of

power. The energy source on our devices is a small

battery, so we are stuck with relatively limited

computational devices. Wireless communication is the

most energy-consuming function performedbythese

devices,so we need to minimize communications

overhead. The limited energy supplies create tensions for

security: on the one hand, security needs to limit its

consumption of processor power; on the other hand,

limited power supply limits the lifetime of keys.

2. System Assumptions

Before we outline the security requirements and present

our security infrastructure, we need to define the system

architecture and the trust requirements. The goal of this

work is to propose a general security infrastructure that is

applicable to a variety of sensor networks.

2.1 Communication Architecture: Generally, the sensor

nodes communicate over a wireless net- work, so

broadcast is the fundamental communication primitive.

The baseline protocols account for this property: on one

hand they affect the trust assumptions, and on the other

they minimize energy usage.

We do have an advantage with sensor networks, because

most communication involves the base station and is not

between two local nodes. The communication patterns

within our network fall into three categories:

• Node to base station communication, e.g., sensor

readings.

 • Base station to node communication, e.g., specific

requests.

• Base station to all nodes, e.g., routing beacons, queries

or reprogramming of the entire network.

Our security goal is to address these communication pat-

terns, though we also show how to adapt our baseline

protocols to other communication patterns, i.e. node to

node or node broadcast.

2.2 Design Guidelines: With the limited computation

resources available on our plat- form, we cannot afford

use asymmetric cryptography and so we use symmetric

cryptographic primitives to construct the SPINS

protocols. Due to the limited program store, we construct

all cryptographic out of a single block cipher for

code reuse. To reduce communication overhead we

exploit common state between the communicating

parties. Requirements for sensor network security. This

section formalizes the security properties required by

sensor networks, and shows how they are directly

applicable in a typical sensor network.

3. Requirements for Sensor Network Security

This section formalizes the security properties required

by sensor networks, and shows how they are directly

applicable in a typical sensor network.

3.1 Data Confidentiality: A sensor network should not

leak sensor readings to neigh- boring networks. In many

applications (e.g., key distribution) nodes communicate

highly sensitive data. The standard approach for keeping

sensitive data secret is to encrypt the data with a secret

key that only intended receivers possess, hence achieving

confidentiality. Given the observed communication

patterns, we set up secure channels between nodes and

base stations and later bootstrap other secure channels as

necessary.

3.2 Data Authentication: Message authentication is

important for many applications in sensor networks

(including administrative tasks such as net- work

reprogramming or controlling sensor node duty cycle).

Since an adversary can easily inject messages, the

receiver needs to ensure that data used in any decision-

making process originates from a trusted source.

Informally, data authentication allows a receiver to verify

that the data really was sent by the claimed sender.

Informally, data authentication allows a receiver to verify

that the data really was sent by the claimed sender.

3.3 Data Integrity: In communication, data integrity

ensures the receiver that the received data is not altered

in transit by an adversary. In SPINS, we achieve data

integrity through data authentication, which is a stronger

property.

3.4 Data Freshness: Sensor networks send measurements

over time, so it is not enough to guarantee confidentiality

and authentication; we also must ensure each message is

fresh. Informally, data freshness implies that the data is

recent, and it ensures that no adversary replayed old

messages. We identify two types of freshness: weak

freshness, which provides partial message ordering, but

carries no delay information, and strong freshness, which

International Journal of Advanced and Innovative Research (2278-7844) / #263 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 263

provides a total order on a request–response pair, and

allows for delay estimation. Weak freshness is useful for

sensor measurements, while strong freshness is useful for

time synchronization within the network.

4. Notation

We use the following notation to describe security

protocols and cryptographic operations in this article:

i. A, B are principals, such as communicating

nodes.

ii. NA is a nonce generated by A.

iii. XAB denotes the master secret (symmetric)

key which is shared between A and B. No

direction information is stored in this key, so

we have XAB = XBA.

iv. KAB and KBA denote the secret encryption

keys shared between A and B. A and B derive

the encryption key from the master secret key

XAB based on the direction of the

communication: KAB = FXAB (1) and

KBA=FXAB (3), where F is a Pseudo-Random

Function (PRF)

v. KAB and KBA denote the secret MAC keys

shared between A and B. A and B derive the

encryption key from the master secret key

XAB based on the direction of the

communication: KAB = FXAB (2) and KBA =

FXAB (4), where F is a pseudo-random

function.

vi. {M}K AB is the encryption of message M with

the encryption key KAB.

vii. {M} K AB, denotes the encryption of message

M, with key KAB, and the initialization vector

IV which is used in encryption modes such as

cipher-block chaining (CBC), output feedback

mode (OFB), or counter mode (CTR)

viii. MAC (KAB, M) denotes the computation of

the message authentication code (MAC) of

message M, with MAC key KAB.

By a secure channel, we mean a channel that offers

confidentiality, data authentication, integrity, and

freshness.

5. Spins Security Building Blocks

To achieve the security requirements we established in

we design two security building blocks: SNEP and

µTESLA. SNEP provides data confidentiality, two-party

data authentication, integrity, and freshness. µTESLA

provides authentication for data broadcast. We bootstrap

the security for both mechanisms with a shared secret

key between each node and the base station. We

demonstrate in section 8 how we can extend the trust to

node-to-node inter- actions from the node-to-base-station

trust.

5.1 SNEP: Data confidentiality, Authentication, Integrity,

and Freshness: SNEP provides a number of unique

advantages. First, it has low communication overhead; it

only adds 8 bytes per message. Second, like many

cryptographic protocols it uses a counter, but we avoid

transmitting the counter value by keeping state at both

end points. Third, SNEP achieves semantic security; a

strong security property which prevents eaves droppers

from inferring the message content from the encrypted

message.Finally, the same simple and efficient

protocolalso givesus data authentication, replay

protection, and weak message freshness.

 Data confidentiality is one of the most basic security

primitives and it is used in almost every security

protocol. A simple form of confidentiality can be

achieved through encryption, but pure encryption is not

sufficient. Another important security property is

semantic security, which ensures that an eavesdropper

has no information about the plaintext, even if it sees

multiple encryptions of the same plaintext For example,

even if an attacker has an encryption of a 0 bit and an

encryption of a 1 bit, it will not help it distinguish

whether a new encryption is an encryption of 0 or 1. A

basic technique to achieve this is randomization: Before

encrypting the message with a chaining encryption

functions the sender precedes the message with a random

bit string. This prevents the attacker from inferring the

plaintext of encrypted messages if it knows plaintext

ciphertext pairs encrypted with the same key.

 A good security design practice is not to reuse the same

cryptographic key for different cryptographic primitives;

this prevents any potential interaction between the

primitives that might introduce a weakness. Therefore we

derive independent keys for our encryption and MAC

operations. The two communicating parties A and B

share a master secret key XAB, and they derive

independent keys using the pseudo- random function F:

encryption keys KAB = FX (1) and KBA = FX(3) for

each direction of communication, and Mac keysKAB =

FX(2) and KBA = FX(4) for each direction of

communication. Section 6 gives more details on key

derivation.

The combinations of these mechanisms form our Sensor

Network Encryption Protocol SNEP. The encrypted data

has the following format: E = {D} K, C., whereDis the

data, the encryption key is K, and the counter is

C.TheMACis M=MAC (K, C||E). The complete message

that A sends to B is

A → B: {D} KAB, CA, MACK’ABCA || {D} KAB,

CA.

5.2 Counter Exchange Protocol: To achieve small SNEP

messages, we assume that the communicating parties A

and B know each other’s counter values CA and CB and

so the counter does not need to be added to each

encrypted message. In practice, however, messages

might get lost and the shared counter state can become

inconsistent. We now present protocols to synchronize

the counter state. To bootstrap the counter values

initially, we use the following protocol:

A → B: CA,

 B → A: CB, MACK’BACA || CB,

 A → B: MACK’AB, CA|| CB.

.

 If party A realizes that the counter CB of party B is not

synchronized any more, A can request the current

International Journal of Advanced and Innovative Research (2278-7844) / #264 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 264

counter of B using a nonce NA to ensure strong freshness

of the reply:

A → B: NA,

 B → A: CB, MAC (K’BA, NA|| CB).

5.3 µTESLA: Authenticated broadcast: Previous

proposals for authenticated broadcast are impractical for

sensor networks. First, most proposals rely on

asymmetric digital signatures for authentication, which

are impractical for multiple reasons.

TESLA authenticates the initial packet with a digital sig-

nature. Clearly, digital signatures are too expensive to

compute on our sensor nodes, since even fitting the code

into the memory is a major challenge. For the same

reason as we mention above, one-time signatures are a

challenge to use on our nodes. Standard TESLA has an

overhead of approximately 24 bytes per packet. For

networks connecting workstations this is usually not

significant. Sensor nodes, however, send very small

messages that are around 30 bytes long. It is simply

impractical to disclose the TESLA key for the previous

intervals with every packet: with 64 bit keys and MACs,

the TESLA-related part of the packet would constitute

over 50% of the packet. Finally, the one-way key chain

doesn’tit into the memory ofour sensor node. So,

pureTESLAis notpracticalfora node to broadcast

authenticated data. We design µTESLA to solve the

following inadequacies of TESLA in sensor networks:

• TESLA authenticates the initial packet with a digital

sig- nature, which is too expensive for our sensor nodes.

µTESLA uses only symmetric mechanisms.

• Disclosing a key in each packet requires too much

energy for sending and receiving. µTESLA discloses the

key once per epoch.

• It is expensive to store a one-way key chain in a sensor

node. µTESLA restricts the number of authenticated

senders

5.4 µTESLA Overview: We give a brief overview of

µTESLA, followed by a detailed description.

 Authenticated broadcast requires an asymmetric

mechanism; otherwise any compromised receiver could

forge messages from the sender. Unfortunately,

asymmetric cryptographic mechanisms have high

computation, communication, and storage overhead,

making their usage on resource- constrained devices

impractical. µTESLA overcomes this problem by

introducing asymmetry through a delayed disclosure of

symmetric keys, which results in an efficientbroadcast

authentication scheme.

Example:µTESLA one-way key chain derivation, the

time intervals, and some sample packets that the sender

broadcasts. Each key of the key chain corresponds to a

time interval and all packets sent within one time interval

are authenticated with the same key. In this example, the

sender discloses keys two time intervals after it uses

them to compute MACs. We assume that the receiver

node is loosely time synchronized and knows K0 (a

commitment to the key chain). Packets P1 and P2 sent in

interval 1 contain a MAC with key K1.

5.5 µTESLA detailed description:µTESLA has multiple

phases: sender setup, sending authenticated packets,

bootstrapping new receivers, and authenticating packets.

We first explain how µTESLA allows the base station to

broadcast authenticated information to the nodes and we

then explain how TESLA allows nodes to broadcast

authenticated messages.

M → S: NM

 S → M: TS | Ki | Ti | Tint | δ

 MAC (KMS, NM |TS | Ki |Ti |Tint | δ).

• The node broadcasts the data through the base station. It

uses SNEP to send the data in an authenticated way to

the base station, which subsequently broadcasts it.

• The node broadcasts the data. However, the base station

keeps the one-way key chain and sends keys to the

broad- casting node as needed. To conserve energy for

the broad- casting node, the base station can also

broadcast the disclosed keys, and/or perform the initial

bootstrapping procedure for new receivers.

6. Implementation

 Because of stringent resource constraints on the sensor

nodes, implementation of the cryptographic primitives is

a major challenge. We can sacrifice some security to

achieve feasibility and efficiency, but we still need a core

level of strong cryptography. Below we discuss how we

provide strong cryptography despite restricted resources.

Memory size is a constraint: our sensor nodes have 8

Kbytes of read-only program memory, and 512 bytes of

RAM. The program memory is used for TinyOS, our

security infrastructure, and the actual sensor net

application. To save program memory we implement all

cryptographic primitives from one single block cipher

Block cipher: We evaluated several algorithms for use as

a block cipher. An initial choice was the AES algorithm

Rijn- deal; however, after further inspection, we sought

alter- natives with smaller code size and higher speed.

The base- line version of Rijndael uses over 800 bytes of

lookup tables which is too large for our memory-

deprived nodes. An op- timized version of that algorithm

(about a 100 times faster) uses over 10 Kbytes of lookup

tables. Similarly, we rejected the DES block cipher

which requires a 512-entry Box table and a 256-entry

table for various permutations. A small encryption

algorithm such as TEA is a possibility, but is has not yet

been subject to cryptanalytic securutiy.We use RC5

because of its small code size and high efficiency. RC5

does notrely on multiplication and does not require large

tables. However, RC5 does use 32-bit data-dependent

rotates, which are expensive on our Atmel processor (it

only supports an 8-bit single bit rotate operation). Even

though the RC5 algorithm can be expressed succinctly,

the common RC5 libraries are too large to fit on our

International Journal of Advanced and Innovative Research (2278-7844) / #265 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 265

platform. With a judicious selection of functionality, we

use a subset of RC5 from Open SSL, and after further

tuning of the code we achieve an additional 40%

reduction in code size.

Encryption function: To save code space, we use the

same function for both encryption and decryption. The

counter (CTR) mode of block ciphers (figure 1) has this

property. CTR mode is a stream cipher. Therefore, the

size of the cipher text is exactly the size of the plaintext

and not a multiple of the block size. This property is

particularly desirable in our environment. Message

sending and receiving consume a lot of energy.

Also, longer messages have a higher probability of data

corruption. Therefore, block cipher message expansion is

undesirable. CTR mode requires a counter for proper

operation.: the same plaintext sent at different times is

encrypted into different cipher text since the encryption

pads are generated from different counters. To an

adversary who does not know the key, these messages

will appear as two unrelated random strings. Since the

sender and the receiver share the counter, we do not need

to include it in the message. If the two nodes lose the

synchronization of the counter, they can simply transmit

the counter explicitly to resynchronize using SNEP with

strong freshness.

Fig 1:Counter mode encryption and decryption. The

encryption function is applied to a monotonically

increasing counter to generate a one time pad. This pad is

then XORed with the plaintext. The decryption operation

is identical.

Key setup: Recall that our key setup depends on a secret

master key, initially shared by the base station and the

node. We call that shared key XAS for node A and base

station S. All other keys are bootstrapped from the initial

master secret key.

Fig 2 : CBC MAC. The output of the last stage serves as

the authentication code

Fig 3: Deriving internal keys from the master secret key

Memory size is a constraint: our sensor nodes have 8

Kbytes of read-only program memory, and 512 bytes of

RAM. The program memory is used for TinyOS, our

security infrastructure, and the actual sensor net

application. Pseudo-random function (PRF) F to derive

the keys, which we implement as FK(x) = MAC (K, x).

Again, this allows for more code reuse. Because of

cryptographic properties of the MAC, it must also be a

good pseudo-random function. All keys derived in this

manner are computationally independent. Even if the

attacker could break one of the keys, the knowledge of

that key would not help it find the master secret or any

other key. Additionally, if we detect that a key has been

compromised, both parties can derive a new key without

transmitting any confidentiality information.

7. Evaluation

We evaluate the implementation of our protocols by code

size, RAM size, and processor and communication

overhead.

7.1 Code Size: Table 1 shows the code size of three

implementations of crypto routines in TinyOS. The

smallest version of the crypto routines occupies about

20% of the available code space. The difference between

the fastest and the smallest implementation stems from

two different implementations of the variable rotate

function. The µTESLA protocol uses another 574 bytes.

Together, the crypto library and the protocol

implementation consume about 2 Kbytes of program

memory, which is acceptable in most applications.

International Journal of Advanced and Innovative Research (2278-7844) / #266 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 266

Table 1: Code size breakdown (in bytes) for the security

modules.

Table 2: Performance of security primitives in Tiny OS.

7.2 Performances: The performance of the cryptographic

primitives is adequate for the bandwidth supported by the

current generation of network sensors. Key setup is

relatively expensive (4 ms). In contrast, the fast version

of the code uses less than 2.5 ms to encrypt a 16 byte

message and to compute the MAC (the smaller but

slower version takes less than 3.5ms). Let us compare

these time figures against the speed of our network. Our

radio operates at 10 kbps at the physical layer. If we

assume that we communicate at this rate, we can perform

a key setup, an encryption, and a MAC for every

message we send out.

In our implementation, µTESLA discloses the key after

two intervals (δ = 2). The stringent buffering

requirements also dictate that we cannot drop more than

one key disclosure beacon. We require a maximum of

two key setup operations and two CTR encryptions to

check the validity of a disclosed TESLA key.

Additionally, we perform up to two key setup operations,

two CTR encryptions, and up to four MAC operation to

check the integrity of a TESLA message.7 that gives an

upper bound of 17.8 ms for checking the buffered

messages. This amount of work is easily performed on

our processor. In fact, the limiting factor on the

bandwidth of authenticated broadcast traffic is the

amount of buffering we can dedicate on individual sensor

nodes. Table 4 shows the memory size required by the

security modules. We configure the µTESLA protocol

with four messages: the disclosure interval dictates a

buffer space of three messages just for key disclosure,

and we need an additional buffer to use this primitive in a

more flexible way

7.3 Energy Costs: We examine the energy costs of

security mechanisms. Most energy costs will come from

extra trans- missions required by the protocols.

Table 3: RAM requirements of the security modules.

Table 5: Energy costs of adding security protocols to the

sensor network. Most of the overhead arises from the

transmission of extra data rather than from any

computational costs.

8. Applications

In this section we demonstrate how we can build secure

proto- cols out of the SPINS secure building blocks.

First, we build an authenticated routing application, and

second, a two party key agreement protocol.

8.1 Authenticated Routing: IN this section we

demonstrate how we can build secure proto- cols out of

the SPINS secure building blocks. First, we build an

authenticated routing application, and second, a two

party key agreement protocol.

Using the µTESLA protocol, we developed a

lightweight, authenticated ad hoc routing protocol that

builds an authenticated routing topology. Ad hoc routing

has been an active area of research [11, 20, 25, 26, 38,

40, 41]. Marti et al. discuss a mechanism to protect an ad

hoc network against misbehaving nodes that fail to

forward packets correctly. They describe two

mechanisms: a watchdog to detect misbehaving

neighbouring nodes, and a path ratter to keep state about

the goodness of other nodes. They propose running these

mechanisms on each node. However, we are not aware of

a routing protocol that uses authenticated routing

messages. It is possible for a malicious user to take over

the network by injecting erroneous, replaying old, or

advertise incorrect routing information. The

authenticated routing scheme we developed mitigates

these problems.

International Journal of Advanced and Innovative Research (2278-7844) / #267 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 267

The routing scheme within our prototype network

assumes bidirectional communication channels, i.e. if

node A hears node B, then node B hears node A. The

route discovery de-pends on periodic broadcast of

beacons. Every node, upon reception of a beacon packet,

checks whether it has already received a beacon (which

is a normal packet with a globally unique sender ID and

current time at base station, protected by a MAC to

ensure integrity and that the data is authentic) in the

current epoch.8 If a node hears the beacon within the

epoch, it does not take any further action. Otherwise, the

node accepts the sender of the beacon as its parent to

route towards the base station. Additionally, the node

would repeat the become with the sender ID changed to

itself. This route discovery resembles a distributed,

breadth first search algorithm, and produces a routing

topology.

 8.2 Node-To-Node Key Agreement: A convenient

technology for bootstrapping secure connections is to use

public key cryptography protocols for symmetric key

setup. Unfortunately, our resource constrained sensor

nodes prevent us from using computationally expensive

public key cryptography. We need to construct our proto-

cols solely from symmetric key algorithms. We design a

sym- metric protocol that uses the base station as a

trusted agent for key setup.

Assume that the node A wants to establish a shared secret

session key SKAB with nodeB. Since Aand B do not

share any secrets, they need to use a trusted third party S,

which is thebase station in our case. In our trust setup,

both A and B share a master secret key with the base

station, XAS and XBS, respectively. The following

protocol achieves secure key agreement as well as strong

key freshness:

 A → B: NA, A,

B →S: NA, NB, A, B,

MACK’BS, NA|NB|A|B,

S→A: {SKAB} KSA,

MACK’SA, NA|B| {SKAB} KSA,

 S → B: {SKAB} KSB,

MACK’SB,NA|B|{SKAB}KSB.

The protocol uses our SNEP protocol with strong

freshness. The nonce’s NA and NB ensure strong key

freshness to both A and B. The SNEP protocol ensures

confidentiality (throughencryptionwith the keys KAS and

KBS)of the established session key SKAB, as well as

message authentication (through the MAC using keys

KAS and KBS), so we are sure that the key was really

generated by the base station. Note that the MAC in the

second protocol message helps defend the base station

from denial-of-service attacks, and the base station only

sends two messages to A and B if it received a legitimate

request from one of the nodes.

9. Related work

Tatebayashi et al. consider key distribution for resource-

starved devices in a mobile environment. Park et al. point

out weaknesses and improvements. Beller and Yacobi

further develop key agreement and authentication

protocols. Boyd and Mathuria survey the previous work

on key distribution and authentication for resource-

starved devices in mobile environments .The majority of

these approaches rely on asymmetric cryptography.

Bergstrom et al. consider the problem of secure remote

control of resource-starved de- vices in a home .

Fox and Gribble present a security protocol providing se-

cure access to application level proxy services. Their

protocol is designed to interact with a proxy to Kerberos

and to facilitate porting services relying on Kerberos to

wireless devices.

Zhou and Haas propose to secure ad hoc networks using

asymmetric cryptography. Recently, Basagni et al.

proposed to use a network-wide symmetric key to secure

an ad hoc routing protocol. While this approach is

efficient, it does not resist compromise of a single node.

Carman et al. analyze a wide variety of approaches for

key agreement and key distribution in sensor networks.

They analyze the overhead of these protocols on a variety

of hardware platforms. Marti et al. discuss a mechanism

to protect an ad hoc net- work against misbehaving nodes

that fail to forward packets correctly.

10. Conclusion

We designed and built a security subsystem for an

extremely limited sensor network platform. We have

identified and implemented useful security protocols for

sensor networks: authenticated and confidentiality

communication, and authenticated broadcast. We have

implemented applications including an authenticated

routing scheme and a secure node-to-node key agreement

protocol.

 Most of our design is universal and applicable

to other net- works of low-end devices. Our primitives

only depend on fast symmetric cryptography, and apply

to a wide variety of device configurations. On our limited

platform energy spent for security is negligible compared

with to energy spent on sending or receiving messages. It

is possible to encrypt and authenticate all sensor

readings.

 The communication costs are also small. Data

authentication, freshness, and confidentiality properties

use up a net 6 bytes out of 30 byte packets. So, it is

feasible to guarantee these properties on a per packet

basis. It is difficult to improve on this scheme, as

transmitting a MAC is fundamental to guaranteeing data

authentication.

 Certain elements of the design were influenced

by the available experimental platform. If we had a more

powerful platform, we could have used block ciphers

other than RC5. The emphasis on code reuse is another

property forced by our platform. A more powerful device

would allow more modes of authentication. In particular,

memory restrictions on buffering limit the effective

bandwidth of authenticated broadcast.

Despite the shortcomings of our target

platform, we built a system that is secure and works.

International Journal of Advanced and Innovative Research (2278-7844) / #268 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 268

With our techniques, we believe security systems can

become an integral part of practical sensor networks.

References

1) Atmel, Secure Microcontrollers for Smartcards,

http://www.

atmel.com/atmel/acrobat/1065s.pdf

2) S. Basagni, K. Herrin, E. Rosti and D. Bruschi,

Secure Pebblenets, in: ACM International

Symposium on Mobile Ad Hoc Networking

and Computing (MobiHoc 2001) (2001) pp.

156–163.

3) M. Bellare, A. Desai, E. Jokipii and P.

Rogaway, A concrete security treatment of

symmetric encryption: Analysis of the DES

modes of operation, in: Symposium on

Foundations of Computer Science (FOCS)

(1997).

4) M. Beller and Y. Yacobi, Fully fledged two-

way public key authentication and key

agreement for low-cost terminals, Electronics

Letters 29(11) (1993) 999–1001.

5) S. Bellovin and M. Merrit, Augmented

encrypted key exchange: a password-based

protocol secure against dictionary attacks and

password file compromise, in: ACM

Conference on Computer and Communications

Security CCS-1 (1993) pp. 244–250.

International Journal of Advanced and Innovative Research (2278-7844) / #269 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 269

