
Efficient Query Processing in Data

Warehouse Using Bitmap Indexing

Mr. Nikhil Dasharath Karande
#1

#
 Scholar of Singhania University, Rajasthan,

Assistant professor, Department of Computer Science and engineering

Bharati Vidyapeeth’s College of Engineering,

Kolhapur, Maharashtra, India.
nikhilkarande18@gmail.com

Abstract- The bitmap index technology is efficient for query

processing in data warehousing applications. This paper focuses

on efficient bitmap compression algorithm and examines the

space and time complexity of the compressed bitmap index on

large data sets from real applications. According to the

conventional wisdom, bitmap indices are only efficient for low-

cardinality attributes. However, the results show that the

compressed bitmap indices are also efficient for high-cardinality

attributes. Timing results demonstrate that the bitmap indices

significantly outperform the projection index, which is often

considered to be the most efficient access method for multi-

dimensional queries. The bitmap index technology currently

supported by commonly used commercial database systems and

finally, discusses open issues for future research and

development.

Keywords- Bitmap index; data warehousing; compression

algorithm; projection index; multidimensional queries

I. INTRODUCTION

The common task in data warehousing applications is

to querying large data sets to locate some selected records. To

answering these queries efficiently is often difficult due to the

complex nature of both the data and the queries. This paper

focuses the most straightforward way of evaluating a query is

to sequentially scan all data records to determine whether each

record satisfies the specified conditions. A typical query

condition is as follows “Count the number of cars sold by

producer P in the time interval T”. This search procedure

could usually be accelerated by indices, such as variations of

B-Trees or kd-Trees (Comer, 1979; Gaede & Guenther, 1998).

Generally, as the number of attributes in a data set increases,

the number of possible indexes combinations increases as

well. To answer multi-dimensional queries efficiently, one

faces a difficult choice. One possibility is to construct a

separate index for each combination of attributes, which

requires an impractical amount of space. Another possibility is

to choose one of the multi-dimensional indices, which is only

efficient for some of the queries. This paper focuses an

indexing technology that holds a great promise in breaking the

curse of dimensionality for data warehousing applications,

namely the bitmap index. A very noticeable character of a

bitmap index is that its primary solution to a query is a

bitmap. One way to break the curse of dimensionality is to

build a bitmap index for each attribute of the data set. To

resolve a query involving conditions on multiple attributes, we

first resolve the conditions on each attribute using the

corresponding bitmap index, and obtain a solution for each

condition as a bitmap. We then obtain the answer to the

overall query by combining these bitmaps. Because the

operations on bitmaps are well supported by computer

hardware, the bitmaps can be combined easily and efficiently.

Overall, result expect the total query response time to scale

linearly in the number of attributes involved in the query,

rather than exponentially in the number of dimensions

(attributes) of the data set, thus breaking the curse of

dimensionality.

II. BASIC BITMAP INDEX

The bitmap indices are one of the most efficient

indexing methods available for speeding up multidimensional

range queries for read-only or read mostly data (O’Neil, 1987;

Rotem et al., 2005b; Wu et al., 2006). The queries are

evaluated with bitwise logical operations that are well

supported by computer hardware. For an attribute with c

distinct values, the basic bitmap index generates c bitmaps

with N bits each, where N is the number of records (rows) in

the data set.

Fig. 1 Simple bitmap index with 6 bitmaps

to represent 6 distinct attribute values.

Each bit in a bitmap is set to “1” if the attribute in the record

is of a specific value; otherwise the bit is set to “0”. Fig. 1

shows a simple bitmap index with 6 bitmaps. Each bitmap

represents a distinct attribute value. For instance, the attribute

value 3 is highlighted to demonstrate the encoding. In this

International Journal of Advanced and Innovative Research (2278-7844) / #173 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 173

case, bitmap 3 is set to “1”, all other bits on the same

horizontal position are set to “0”.

A. Encoding

The basic bitmap index introduced above is also

called equality-encoded bitmap index since each bitmap

indicates whether or not an attribute value equals to the key.

This strategy is the most efficient for equality queries such as

“temperature = 100.” Chan and Ioannidis (1998; 1999)

developed two other encoding strategies that are called range

encoding and interval encoding. These bitmap indices are

optimized for one-sided and two-sided range queries,

respectively. An example of a one-sided range query is

“pressure < 56.7”. A two-sided range query, for instance, is

“35.8 < pressure < 56.7”.

B. Binning

The strategy called binning is to reduce the number

bitmaps. Since the encoding methods described before only

take certain integer values as input, it may also view binning

as a way to produce these integer values for the encoding

Strategies. The basic idea of binning is to build a bitmap for a

bin rather than each distinct attribute value. This strategy

disassociates the number of bitmaps from the attribute

cardinality and allows one to build a bitmap index of a

prescribed size, no matter how large the attribute cardinality

is. A clear advantage of this approach is that it allows one to

control the index size. However, it also introduces some

uncertainty in the answers if one only uses the index. To

generate precise answers, one may need to examine the

original data records (candidates) to verify that the user

specified conditions are satisfied. The process of reading the

base data to verify the query conditions is called candidate

check (Stockinger et al., 2004; Rotem et al., 2005b).

C. Compression

Compression is the third strategy to reduce the size of

bitmap indices. Since each bitmap of the bitmap index may be

used separately from others, compression is typically applied

on each individual bitmap. Compression is a well-researched

topic and efficient compression software packages are widely

available. Even though these general-purpose compression

methods are effective in reducing the size of bitmaps, query-

processing operations on compressed bitmaps are often slower

than on uncompressed bitmaps (Johnson, 1999). This

motivated a number of researchers to improve the efficiency

of compressed bitmap indices. Two of the most notable

compression methods are Byte-aligned Bitmap Code (BBC)

(Antoshenkov, 1994; Antoshenkov, 1996) and Word-Aligned

Hybrid (WAH) code (Wu et al., 2004; Wu et al., 2006).

Bitmaps compressed with BBC are slightly larger in size than

those compressed with the best available general-purpose

compression methods. However, operations on BBC

compressed bitmaps are usually faster (Johnson, 1999).

Clearly, there is a worthwhile space-time trade-off. The WAH

compression takes this space-time trade-off one step further.

More specifically, WAH compressed bitmaps are larger than

BBC compressed ones, but operations on WAH compressed

bitmaps are much faster than on BBC compressed ones.

Therefore, WAH compressed bitmap indices can answer

queries much faster as demonstrated in a number of different

experiments (Stockinger et al. 2002; Wu et al., 2006).

III. SPACE COMPLEXITY – SIZES OF COMPRESSED

BITMAP INDICES

The space complexity of uncompressed bitmap

indices was studied in (Chan & Ioannidis, 1998 and 1999).

This paper discusses, analyze the size of compressed bitmap

indices. The paper mainly focuses on the WAH compression

method since BBC compression was extensively studied in

(Johnson, 1999).

A. Index Size for Real Application Data Sets

Here now, analyze experimentally the size of

compressed bitmap indices for various application data sets.

1) High-Energy Physics Data Set: Here, for experiment

we considered data set is from a high-energy physics

experiment at the Stanford Linear Accelerator

Center. It consists of 7.6 million records with 10

attributes. Figure 7 shows the size of the compressed

bitmap indices. We notice that the size of the range-

encoded bitmap index with 100 bins is about twice as

large as the base data. The equality-encoded bitmap

index with 1000 bins is about 30% smaller than the

base data. Typically, the records from these high-

energy physics experiments are not correlated with

each other. Thus, it is generally hard for the run-

length encoding to be effective. This is why the index

sizes for range encoding are relatively large

compared with the previous data sets. However,

equality encoding compresses very well for this

physics data set. Overall, it is observed that the actual

bitmap index sizes are considerably smaller than the

base data sizes and less than the sizes of typical

commercial implementations of B-trees, that are

often three to four times the size of the base data.

IV. TIME COMPLEXITY - QUERY RESPONSE TIME

The experiment is on the two basic encoding

methods, namely equality encoding and range encoding. We

have chosen these two encoding methods for the following

reason. Equality encoding showed to be the most space

efficient method. Range encoding, on the other hand, is the

most time efficient method for one-sided range queries (Chan

& Ioannidis, 1998) that we use in our experiments. Analyses

have shown that the worst case query response time to answer

a one dimensional range query using a WAH compressed

basic bitmap index (equality encoded without binning) is a

linear function of the number hits (Wu et al., 2006). The

analyses also indicate that the worst-case behavior is for

attributes following a uniform random distribution.

International Journal of Advanced and Innovative Research (2278-7844) / #174 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 174

Fig. 2 Time (in seconds) to answer a one dimensional range query using

WAH compressed bitmap index is a linear function of the number of hits.

The Fig. 2 plots the query response time against the

number of hits for a set of queries on two attributes with

different attribute cardinalities. The data values for the two

attributes are randomly distributed in the range of [0;100] and

[0;10,000] respectively. We see that in both cases the timing

measurements follow straight lines, which is theoretically

optimal.

V. CONCLUSIONS

Here, we conclude that a number of recent

developments in the area of bitmap indexing technology. We

organized much of the research work under the three

orthogonal categories of encoding, compression and binning.

We also provided a brief overview of commercial bitmap

index implementations by major vendors. Most of the

indexing methods reviewed were designed to efficiently

answer multi-dimensional range queries. However, they are

also efficient for other types of queries, such as joins on

foreign keys and computations of aggregates (O’Neil &

Quass, 1997). Despite the success of bitmap indices, there are

a number of important questions that remain to be addressed.

For example, is there an efficient bitmap index for similarity

queries? How to automatically select the best combination of

encoding, compression and binning techniques? How to use

bitmap indices to answer more general join queries? Research

work on bitmap indices so far has concentrated on answering

queries efficiently, but has often neglected the issue of

updating the indices. Clearly, there is a need to update the

indices as new records are added. Efficient solutions to this

issue could be the key to gain a wider adaptation of bitmap

indices in commercial applications.

REFERENCES

1. Chan, C.-Y., & Ioannidis, Y.E. (1998). Bitmap Index Design and
Evaluation. SIGMOD, Seattle, Washington, USA, ACM Press.

2. Chan, C.-Y., & Ioannidis, Y.E. (1999). An Efficient Bitmap

Encoding Scheme for Selection Queries, SIGMOD Conference,
Philadelphia, Pennsylvania, USA, ACM Press.

3. Chaudhuri, S., & Dayal, U. (1997). An Overview of Data

Warehousing and OLAP Technology. ACM SIGMOD Record,
26(1), 65-74.

4. Comer, D. (1979). The ubiquitous B-Tree. Computing Surveys,

11(2), 121-137.
5. Gaede, V & Guenther, O. (1998) Multidimensional Access

Methods. ACM Computing Surveys, 30(2), 170—231.

6. Johnson, T. (1999). Performance Measurements of Compressed
Bitmap Indices. International Conference on Very Large Data

Bases (VLDB), Edinburgh, Scotland. Morgan Kaufmann.

7. Keim, D., & Hinneburg, A. (1999). Optimal Grid-Clustering:
Towards Breaking the Curse of Dimensionality in High-

Dimensional Clustering. International Conference on Very Large

Data Bases (VLDB), San Francisco. Morgan Kaufmann.
8. Kiyoki, Y., & Tanaka, K., & Aiso, H., & Kamibayashi, N. (1981).

Design and Evaluation of a Relational Data Base Machine

Employing Advanced Data Structures and Algorithms. Symposium
on Computer Architecture, Los Alamitos, CA, USA. IEEE

Computer Society Press.

9. O'Neil, P., & Quass, D. (1997). Improved Query Performance with

Variant Indexes. International Conference on Management of

Data (SIGMOD 1997), Tucson, Arizona, USA. ACM Press.

10. Rotem, D. & Stockinger, K. & Wu, K. (2005b) Optimizing
Candidate Check Costs for Bitmap Indices, Conference on

Information and Knowledge Management (CIKM), Bremen,

Germany, November 2005, ACM Press.
11. Stockinger, K., & Wu, K., & Shoshani, A. (2002). Strategies for

Processing ad hoc Queries on Large Data Sets. International
Workshop on Data Warehousing and OLAP (DOLAP), McLean,

Virginia, USA.

12. Stockinger, K., & Shalf, J., & Bethel, W., & Wu, K. (2005) DEX:
Increasing the Capability of Scientific Data Analysis Pipelines by

Using Efficient Bitmap Indices to Accelerate Scientific

Visualization, International Conference on Scientific and
Statistical Database Management (SSDBM), Santa Barbara,

California, USA, June 2005, IEEE Computer Society Press.

13. Wu, K., & Otoo, E.J., & Shoshani, A. (2002). Compressing
Bitmap Indexes for Faster Search Operations. International

Conference on Scientific and Statistical Database Management

(SSDBM), Edinburgh, Scotland, UK, IEEE Computer Society
Press.

14. Wu, K., & Otoo, E.J., & Shoshani, A. (2004). On the Performance

of Bitmap Indices for High Cardinality Attributes. International
Conference on Very Large Data Bases (VLDB), Toronto, Canada.

Morgan Kaufmann.

15. Wu, K., & Otoo, E., & Shoshani, A. (2006). An Efficient
Compression Scheme for Bitmap Indices. Technical Report

LBNL-49626. To appear in ACM Transactions on Database

Systems (TODS).

Mr. N. D. Karande (Scholar of Singhania
University, Rajasthan), received the B.E.

degree in Computer Science and

Engineering from Bharati Vidyapeeth

College of Engineering, Kolhapur,

Maharashtra, India in 2006. He received the

M.Tech degree in Computer Science and
Technology from Shivaji University,

Kolhapur, Maharashtra, India in 2010.

From 2008 to till date, he is working as
Assistant Professor at Bharati Vidyapeeth

College of Engineering, Kolhapur,

Maharashtra, India. He has published
various papers in the area of Database

Engineering, Information Security and

Natural Language Processing.

International Journal of Advanced and Innovative Research (2278-7844) / #175 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 175

