
Mobile Devices Synchronization

Vidya N. Kawtikwar

IT department

P.V.P.P College of Engineering

Sion(E) Mumbai, India

vidya.kawtikwar@rediffmail.com

 Ramesh Sahabade

Computer Department

Terna Engineering College

Nerul, Navi Mumbai, India

rvs2002@rediff.com

Abstract- The synchronization process in mobile devices

allows you to execute bidirectional updates on the required data.

Any changes that have been made on the client device can be

transmitted to the server database, and any changes on the server

can be transmitted to the client device. In this way, you can keep

the data on the client and the server synchronized. In this paper,

different techniques to perform synchronization in mobile

devices are discussed in detail.

Keywords-Mobile Device, Mobile Database, Synchronization, server

database

I. INTRODUCTION

 Recent advances in mobile technology and equipment have

led to the emergence of a new computing environment and a

variety of small sized mobile devices such as PDAs (personal

digital assistants), smart mobile phones, HPCs (handheld PCs)

and Pocket PCs have been popularized. As various network

technologies are increasingly being associated with such mobile

devices, the processing of business information can be available

using mobile devices. As a result, business models that rely on

mobile technologies are appeared. Mobile devices do not have

much computing power and rely on batteries. Additionally,

constant access to network is difficult due to narrow bandwidth.

Therefore, it is not easy to process a large size of stored data and

maintain a continuous connection with the server side database.

For these reasons, mobile devices have mobile databases in

order to achieve stable data processing. Mobile devices

download replications of limited data from a connected server-

side database using a synchronization device that has a stable

wire communication function. Mobile devices process various

tasks using the data downloaded in an offline state. The work on

the network disconnected condition is a crucial point for

mobility support.

In a disconnected environment, there are inevitable

inconsistencies between the server-side database and the mobile

database. Synchronization techniques can solve the data

inconsistencies and guarantee the integrity of the data.

Consequently, synchronization is an essential subject in mobile

device computing environments. Commercial DBMS venders

offer various solutions to data synchronization in a mobile

environment. However, these solutions are not independent of

the server-side database because they use database dependent

information such as metadata or use specific functions of server-

side database such as trigger and time stamp. In other words, the

mobile database vender should be equivalent to the server-side

database vender. The solution of operating a separate

synchronization server in the middle tier is independent of the

server-side database but dedicated to the mobile database. That

is, the synchronization solution and the mobile database should

be the identical vender product. Because of these restrictions, the

extensibility, adaptability and flexibility of mobile business

systems are markedly decrease. This problem must be solved in

order to build efficient mobile business systems because

upcoming mobile environments will have heterogeneous

characteristics in which diverse mobile devices, mobile

databases, and RDBMS exist.

II. SNNCHRONIZATION ARCHITECTURE

Synchronization is most often implemented in a distributed

computing architecture with a client layer, a middle-tier layer,

and an enterprise data layer. Each layer can be implemented

using varying techniques, all aimed at accomplishing the same

goal: providing a way to extend enterprise data to a

variety of mobile devices.

Figure.1 shows the overall synchronization process.

Figure. 1: Synchronization architecture

A. Client

When synchronizing data between an enterprise server and

a persistent data store on the client device, a

synchronization layer must be present to manage the two-

way data communication .Ideally, this layer will have a

minimal impact on your client application, while still

International Journal of Advanced and Innovative Research (2278-7844) / #138 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 138

providing a simple, easy-to-use client API for controlling

the synchronization process. By implementing a modular,

self-contained synchronization layer, you can control the

entire synchronization process with little interaction from

the client application. In some cases, all that is required

from the client is the invocation of the synchronization

process; the synchronization layer does everything else

from there.

Because so many client devices are on the market,

the synchronization client must have support for the leading

mobile devices, including laptops, Windows CE devices,

Palm OS devices, Symbian OS devices, as well as

specialized devices with add-on features such as barcode

scanners and other industrial components. Each of these

devices can have a different mobile operating system with

different network protocol support. The

synchronization layer on the client takes care of the network

communication from the device back to the

synchronization middleware.

B. Middleware

The synchronization server is where the

most of the synchronization logic is contained. Figure.1

illustrates the role of the synchronization server in relation

to the other components of the synchronization architecture.

This server is responsible for communicating with the client

application to send and receive required data packets. In

order to do this, it has to be able to communicate over a

protocol that the client application understands. Most of the

time, this protocol is IP-based, and often is HTTP. When

the synchronization server receives the data from the client,

it then has to execute the synchronization logic to determine

how this data is transferred into the enterprise data source.

Many of the advanced synchronization features are

implemented within the synchronization server. Some of

these features include data, conflict detection and

resolution, data transformation, data compression, and

security. All of these features have to be implemented while

still maintaining server performance and scalability.

Two common synchronization server implementations

exist: as a standalone server application or as Java servlets

running in a servlet engine. Both of these methods have

benefits and drawbacks. The stand alone

synchronization server is convenient because it does not

require any additional software to execute. These servers

are usually programmed using the C programming

language, taking advantage of OS-level calls, leading to

enhanced performance. This also means that the server has

to be available for the operating system to which you are

deploying or you are out of luck. In terms of scalability and

availability, the server can either have its own built-in load

balancing and failover mechanisms or use third-party load

balancing solutions, such as the hardware-based systems

provided by Cisco systems.

For Java servlet-based synchronization servers, you will

need a servlet engine for deployment. Since J2EE

application servers are now commonplace in most

organizations, this requirement does not usually pose a

problem. By using an outside servlet engine, the

performance, scalability, and availability of the

synchronization server now rely on the capabilities of the

application server/servlet engine being used. The same goes

for the server operating systems that are supported; that is,

as long as the servlet engine works on a given platform,

the synchronization servlet should work as well. That said,

you should give extra consideration to

the synchronization vendor's supported platforms and

recommended application servers when deciding which

application server and operating system to use.

C. Enterprise Integration

The final part of a complete synchronization solution is the

enterprise integration layer. While this layer is often

part of the synchronization server, we are discussing it

separately because it provides different functionality. The

enterprise integration layer enables you to communicate with

various backend data sources. If you are using a commercial

mobile relational database on the client, you will most likely

have integration to enterprise relational databases on the server

using ODBC, JDBC, or native drivers. In addition to providing

integration to relational databases, you may also require access

to other forms of enterprise data, such as ERP systems, CRM

systems, or XML data. If this is the case, you will have to look

for additional enterprise adapters for the solution you are

implementing; or if you have the resources, you can create your

own adapter.

III. DATA SYNCHRONIZATION PROCESS
The basic synchronization process is explained as shown blow in

Figure.2

Figure.2: Basic synchronization process.

International Journal of Advanced and Innovative Research (2278-7844) / #139 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 139

1. The application user can initiate the synchronization process

manually, or it can be programmed into the application. At

the point where the synchronization is initiated, the data that

has changed since the last synchronization is prepared for

sending to the synchronization server. This data preparation

often involves compressing the data and, optionally,

encrypting the data.

2. Once the data is prepared, a connection is established with

the synchronization server. At this point, the user is usually

authenticated with the server; the data packets are then sent

over the communications network (wireless or wireline) to

the synchronization server.

3. The synchronization server receives the data to be

synchronized. It then uses the synchronization logic to

determine whether the data needs to be transformed before

it is sent to the enterprise data source. If it does,

transformation can occur at this time.

4. The enterprise adapter provides integration to the enterprise

data source. This adapter may simply be an ODBC or JDBC

driver for enterprise relational databases, or custom code for

other more complex data sources.

5. Using the appropriate enterprise adapter

the synchronization server can authenticate the user against

the enterprise data source (optional) before it starts the data

transfer. Once the user is authenticated, the server can

update the enterprise data source with the changes from the

client application. At this time, the synchronization server

can also detect if there are any conflicts in the data being

updated and, if there are, take appropriate action.

6. After the update has been committed, the relevant changes

that took place on the server since the last

synchronization are prepared for sending back to the client

application.

7. The synchronization server takes the enterprise data source's

changes and performs any transformation that may be

required before sending the updates to the client application.

Again, this data is usually compressed and possibly

encrypted for additional security.

8. The data is sent to the client application, where it is updated

in the mobile data store.

.

IV. SYNCHRONIZATION MODES

Synchronization modes are as follows:

A. Snapshot

 Snapshot synchronization makes it possible to move large

amounts of data from one system to another. It involves deleting

a table on one system and copying a table from another system

in its place. The result is two tables with identical data sets.

This form of synchronization is used when there are moderate to

large amounts of data that need to be synchronized or when data

is not changed at the remote location. Additionally, due to the

large amount of data being transferred, it is best suited for

reliable networks with high bandwidth.

Snapshot synchronization is a suitable candidate for instances

where a complete, or nearly complete, set of data has to be

transmitted. An example might be a salesperson who requires

updated product catalogues or price lists. The main office can

send these updates via a snapshot so that all the data is updated

to the remote worker at once. Since the remote worker will not

be making changes to the remote product list, no data will be

lost.

B. Netchanges

 For most mobile applications, a net change

mode of synchronization is more efficient than using snapshot

synchronization. In these cases, only the changed data is sent

between the remote and enterprise databases, saving network

bandwidth and reducing connection times. In order to

accomplish this, the remote database keeps track of the original

data and the most recent change that has occurred since the last

synchronization. In this way, even if the data were to change

several times on the client, only the original data and most

recent data have to be transmitted to the server. The changes to

the enterprise data source can then happen in a single transaction

since there is only one update to be made. The same approach is

taken when the server database is updated and synchronized to

the remote database.

This form of synchronization is well suited for applications in

which the user may synchronize several times in a day, sending

only small amounts of data each time. It is ideal for coping with

the bandwidth limitations on most of today's wireless networks.

It is also a good technique for situations in which larger

amounts of data are synchronized less frequently.

The net change mode does have one drawback: If you require

knowledge of each individual transaction that occurred to the

data, then keeping track of only the most recent change may not

be suitable for you. In this case, you might find a transaction

log-based synchronization approach to be more appropriate.

V. SYNCHRONIZATION TECHNIQUES

The synchronization solutions available today use many

techniques to move data from client applications to enterprise

servers. Different synchronization techniques are as follows

International Journal of Advanced and Innovative Research (2278-7844) / #140 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 140

A. Clock synchronization

Clock synchronization is a hindrance from computer science and

engineering which deals with the indication that internal clocks

of several computers may vary. Even when primarily set

precisely, real clocks will differ after some amount of time due

to clock drift, caused by clocks counting time at slightly

different rates. There are several hitches that occur as a

consequence of rate variances and several solutions, some being

more suitable than others in certain situations. In serial

communication, some people use the term “clock

synchronization” just to deliberate getting one metronome like

clock signal to pulsation at the same frequency as another one

frequency synchronization and phase synchronization. Such

“clock synchronization” is used in synchronization in

telecommunications and instinctive baud rate detection.

B Event based synchronization

 A synchronization method and apparatus describes

event objects to permit synchronization of execution units (e.g.,

threads). In one procedure, the synchronization method and

apparatus is used in aggregation with a UNIX operating system.

By describing event objects on which threads or other execution

objects can wait upon, multiple threads can wait on one event, or

otherwise, one thread can wait on multiple events. Besides,

using the event-based synchronization method and device, it is

conceivable to specify behavior, mainly when one thread or

other execution object waits on multiple events. For example,

the performance indicated can be that a condition is gratified if

any of the events occur, if all of the events occur, or some other

logical combination of events occurs.

C Non-block synchronization algorithm

Java provides supports for additional atomic operations. This

allows to develop algorithm which are non-blocking algorithm,

e.g. which do not require synchronization, but are based on low-

level atomic hardware primitives such as compare-and-swap

(CAS). A compare-and-swap operation checks if the variable

has a certain value and if it has this value it will perform this

operation. Non-blocking algorithm are usually much faster than

blocking algorithms as the synchronization of threads appears on

a much finer level (hardware).

D. Default synchronization algorithm

The default synchronization algorithm starts when an attention

identifier (AID) key is pressed. An attention identifier (AID) key

is any key that generates a presentation space update. Primarily,

the state of the terminal is UNINITIALIZED. The procedure

waits for a period of time for updates to the presentation space.

User can modify the wait time in the Timeout field in the

preferences window. The nonappearance wait time is 1200

milliseconds. If Timeout is set to 1200 milliseconds, and an

update arises during the last 600 milliseconds, the process waits

for an additional 600 milliseconds for extra updates. During this

extra wait period, added update occurs during the last 300

milliseconds, the algorithm waits again for another 600

milliseconds for further updates. This continues until no updates

are received during the last half of the last additional time

period. At this point, the state of the terminal is either LOADED

(keyboard locked) or READY (keyboard unlocked), reliant upon

the OIA status.

E. SAMD algorithm

SMAD synchronization algorithm based on message digests for

synchronizing between server-side databases and mobile

databases. The SAMD algorithm is performed with only SQL

functions of relational databases, so that it is not dedicated to

particular venders and is available for use in combination with

any server-side databases and mobile databases. Therefore,

extensibility, adaptability and flexibility are guaranteed when a

mobile business system is authorized. This feature is important

in order to build efficient mobile business systems because the

upcoming mobile business environment has heterogeneous

characteristics in which diverse mobile devices, mobile

databases and RDBMS exist.

The SAMD synchronization algorithm must keep the following

restrictions.

1) Every database table must have a primary key.

2) The primary keys of the data table and the message digest

table have an identical value for a given row.

3) A new row is inserted into the mobile database and another

one into the server-side database; the primary key values of the

two rows cannot be identical.

VI. CONCLUSION

There are different techniques to perform synchronization in

mobile devices. Each of the techniques provides value for

certain situations, but not every technique will be right for your

particular application .When implementing your synchronization

layer, keep these techniques in mind to ensure that your solution

is as efficient as possible for your application.

REFERENCES

[1] Gye-jeong kim, seung-cheon baek, hyun-sook lee,

han-deok lee,moon jeun, Joe (2006), “LGeDBMS: A small DBMS for embedded

system with flash memory”, 32nd international conference on very large data
bases, pp.1255-1258,.

[2]. Joshua savil, (2008), “Moblink Synchronization Profiles’, A white

paper from Sybase iAnywhere, October 17.
[3]. Mi-Young Choi, Eun-Ae Cho, Dae-Ha Park, Chang-Joo Moon, Doo-

Kwon Baik, (2009), Life Science Journal 2012;9(3) “A synchronization

algorithm for mobile devices for ubiquitous computing”
[4]. Mi-seon choi,young-kuk kim, juno chang (2008),

International Journal of Advanced and Innovative Research (2278-7844) / #141 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 141

“Transaction-centric split synchronization mechanism for mobile E-business

applications”, April 20th.
[5] Mi-Young Choi, Eun-Ae Cho, Dae-Ha Park, Chang-Joo Moon, Doo-

Kwon Baik (2010), “A Database Synchronization Algorithm for Mobile

Devices”, Vol. 56, No. 2, May 2010.
[6] Santashilpal Chaudhuri, Amit kumar saha, David B.Johnson (2007),

“Adaptive clock synchronization in sensor networks”, March 31st.

[7] Xianzhong tian;younggang miao; Tongsen HU;
Bojie fan; Jian pian; wei xu (2009), “Maximum likelihood estimate based on

time synchronization algorithm for wireless sensor networks”.

[8] Ziad itani, Hassan diab, Hassan Artail (2005), “optimistic pull based
replication for mobile devices”.

[09] Dr. Venkatesh. J, Aarthy. C ” An efficient database synchronization

for mobile devices using SAMD algorithm”, Life Science Journal 2012.

International Journal of Advanced and Innovative Research (2278-7844) / #142 / Volume 2 Issue 10

© 2013 IJAIR. ALL RIGHTS RESERVED 142

