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Abstract—In this work ,we propose a new methodology to 

expose the presence of image splicing .Image splicing is a form 

of tampering in which an original image is altered by 

copying a portion from a different source.Our proposed work 

seems to have more imporatnce because of the lot and lot of 

existing availabilities of sophisticated image editing tools. So 

many number of methods exist in the present scenario for dealing 

with this same problem.But all of them are working only in the 

presence of uniform space invariantblur situations only.In our 

proposed approach too,we detect image splicing by means of blur 

as a cue.In contrast to all of the existing methods,we can expose 

the presence of splicing by evaluating inconsistencies in motion 

blur even under space_varient blurring situations With the no of 

few case studies for different scene situations and camera 

motions,we validate our proposed methodology.  

Index Terms—Image splicing, camera shake, motion blur, 

transformation spread function, scaling. 
 

I. INTRODUCTION 
 

IVEN the potential that visual media has in influencing 

society, it is alarming to note that creation of fake images 
has become an effortless task with the wide availability of 

sophisticated softwares such as GIMP, Photoshop, Paint and 

the like. Such fake images are used for pushing political 

propaganda, sensationalizing news, and for even evidence 

tampering. Existing forgery detection techniques can be cate-

gorized as active  or passive  In the active approach, apriori 

information (watermark) is inserted into an image. 

However, such active embedding is also a clear limitation of 

these methods. In fact, there exist tons of images without 

any such prior information. Thus, it is not surprising that 

passive forgery detection methods have caught the attention 

of researchers. 
Image splicing and cloning are two widely followed 

approaches for generating fake images. In this paper, we focus 

on the problem of detecting whether an image is spliced or not 

and also demarcate the spliced region, if the image is spliced. 

Image splicing involves more than one image, where a part 

of one image is copied and pasted onto another. An example 

of splicing is shown in Fig. 1.  The    people in the bottom-

left part (marked in red)  were  inserted into the scene but 

this  is  difficult to discern by mere visual inspection of the 

image. There  exist many works for detecting image 

splicing.  Some  of  the commonly exploited cues for 

detecting  splicing  include  stastistical properties of   images, 

physical   prop-erties such as lighting inconsistencies, 

 

 
 
 
 
 
 
 
 
 
 

Fig. 1.     Example of a spliced image. 
 

image device characterictics such as the Camera Response 

Function (CRF) and sensor noise . Interestingly, 

inconsistency in image blurring can also act as a cue for 

splicing detection. The blur itself can be due to optical 

defocus or relative motion between camera and scene . In 

fact, Fig. 1 is one such example in which blur can be 

exploited to expose splicing. 
 
A. Related Works 
 

We have proposed methods based on the covariance 

structure of an image signal. In many situations, to arrive at a 

spliced image, one needs to apply geometric transformations 

such as scaling and rotation on the spliced region. These 

operations provide traces of resampling which can be 

used to detect the presence of splicing,proposed a method 

using lighting as a cue. The spliced region and background 

typically do not share similar lighting conditions. Hence, the 

inconsistency in estimated light source directions is a valuable 

cue for detecting splicing. However, finding the light source 

directions in a complex lighting environment (consisting of 

multiple light sources) from a single image is a challenging 

task in itself. The amount of light reflecting from a surface 

point is proportional to the angle between the surface normal 

at that point and the direction of light source. In  the authors 

describe spherical parameter modeling of a complex lighting 

environment. They consider 2-D surface normals at 

occluding boundaries to estimate the parameters of the 

model. In  a method to estimate 3-D surface normals for 

images containing persons is discussed. The parameters of 

the lighting environment are estimated by fitting 3-D models 

to persons heads. 
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We proposed a method based on the CRF which is a 

nonlinear function that maps input irradiance to image 

intensity. The CRF acts like a fingerprint for a camera. If the 

spliced region and background are from different cameras, 

there will exist inconsistencies in the CRFs of these two 

regions which can be measured using a cross-fitting framework 

.In CRF estimation from a single image is described. This 

method will fail if the spliced region and background 

happen to originate from the same camera. 
Blur in images is normally considered a nuisance and it 

is common practice to devise methods to remove its effect. 

However, blur has its advantages too. It has been shown in 

that camera motion and depth map of a 3D scene can be 

inferred from motion blur. For a real-aperture camera model, 

the depth of   the scene is related to the degree of optical 

defocus  blur. utilized optical blur as a cue for splicing 

detection. Consider two objects in the image at similar depths; 

if the difference in the induced defocus blur is greater than a 

predefined threshold value, then it can be deduced that 

the image is spliced. Not with standing the importance of 

defocus blur, the relevance of motion blur is also growing by 

the day due to increasing ubiquity of hand-held imaging 

devices. This is also evident from the spate of recent works in 

motion deblurring . While the optical blur is space-variant 

only for 3D scenes, motion blur is more challenging as it 

can be space-variant even for flat scenes. 
Interestingly, motion blur can also serve as a cue to detect 

the presence of splicing. Due to the random nature of inciden-

tal camera shake, it is unlikely that the blur introduced in the 

spliced region will be consistent with the rest of the image. 

Recently, have proposed a method based on the 

discrepancies in motion blur for splicing detection in static 

scenes by assuming uniform velocity for the camera. 
For example, in the case of horizontal camera motion, the blur 

kernel will be of the form k = 1 [1, 1, 1, ...L times], where 
 

L is the length of the blur kernel. They characterize the blur 

kernel by a 2D vector with length and angle (direction of the 

kernel) as elements. They use spectral characteristics of image 

gradients to estimate blur. The given input image is divided 

into a number of overlapping blocks and corresponding blur 

kernels are estimated. These blur kernels are interpolated for 

every pixel in the image. Finally, the image is segmented into 

two regions depending on the inconsistency in the length and 

direction of the blur kernels. One of the segmented regions 

will possibly be the spliced region. It should be noted that 

the inconsistency criterion defined in [16] will work only for 

space-invariant blur arising from uniform camera motion. 
 

B. Outline of Proposed Technique 
 

In this paper, we propose an automatic passive splicing 

detection method based on motion blur. Following other works 

[14]–[16] we also assume that the scene is static and that 

the blur induced in the image is due to camera motion. 

This is a very relevant problem since camera shake is a 

common occurrence [25]–[31]. This is challenging too since 

an object can be inserted into a static scene with ease but 

is all the more difficult to detect especially in the presence 

of space-variant blur. An elementary version of our work can 

be found  . The main advantage of our method over 

existing schemes is that it is applicable even to non-uniform 

blurring scenarios. Moreover, the blur itself can be of arbitrary 

shape. The actual induced blur depends both on camera motion 

and scene characteristics. Note that space-variant blur can be 

caused by simple rotational motion of the camera (even for 

a fronto-parallel scene). For scenes with varying depths, the 

motion blur induced will always be space-variant. Optical 

defocus blur, if present, is assumed to be negligible. We 

investigate three interesting and commonly prevalent situations 

that emerge due to the nature of the scene and type of camera 

motion. The three situations are different, arise naturally and 

have unique characteristics. We first consider a fronto-parallel 

scene and in-plane camera translation motion which can be 

characterized using the notion of the point spread function 

(PSF). The second is that of a fronto-parallel scene but with 

in-plane translations as well as rotations of the camera. Due 

to the space-varying nature of PSF, we show that several PSFs 

are needed to handle this situation. The third scenario involves 

a 3D scene and in-plane translation motion of the camera; the 

PSF is again space-varying but as a function of scene depth. 

The goal is to provide quantitative evidence based on motion 

blur to conclusively establish the act of splicing in each of 

these scenarios. Although other situations are also possible, 

such as a 3D scene with general camera motion, we limit the 

scope of our work to the above three scenarios. 
In the first case, given that the scene is fronto-parallel, 

pure translational motion of the camera will displace all the 

pixels in the image by the same amount. Hence, the blur 

kernels though arbitrarily-shaped, should ideally be the same 

anywhere in the image. If a part of this image is replaced with 

a region from a different image, it is very unlikely that the blur 

kernel in that region will match with the rest of the image. This 

inconsistency can be used as a check for splicing. In fact, we 

can directly compare the blur kernels using cross-correlation 

as a measure of similarity. 
Next, we again consider a flat scene, but allow for in-plane 

translations as well as rotations of the camera. Since this 

case involves space-variant blurring, several spatially separated 

PSFs picked randomly from the image enable description of 

camera motion. The blurred image can then be represented as a 

weighted average of warped versions of the original unknown 

image. The weights themselves depend on the amount of time 

the camera spent at a particular camera pose or homography. 

Even though the number of homographies can be large (as 

it depends upon the limits of possible transformations and 

the resolution of the motion parameters), the blurred image 

resulting from camera shake undergoes very few transforma-

tions from the possible set of allowable homographies. For 

example, if the allowable camera translations in the X and 

Y-directions is in the range −5:1:5 pixels and the rotations 

about Z-axis are in the range −2:0.25:2 degrees, then the 

total number of possible homographies will be 11 × 11 × 17. 

However, since camera motion trajectory is quite sparse, the 

captured blurred image will have been caused only by a small 

subset of the above. This motivates us to enforce a sparsity 

constraint on the motion path of the camera. 

L 
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We estimate the weights of these homographies also referred 

to as Transformation Spread Function (TSF) from a single 

blurred image. Interestingly, there exists a linear 

relationship between TSF (which is global) and the blur kernel 

(which is local). If we know the TSF, it can be used to 

describe the blur kernel at any location in the image. The 

inverse problem of determining the TSF given the blur kernels 

at various locations in the image is more involved. Since we 

consider a fronto-parallel scene, due to camera motion, every 

point in the scene should ideally be influenced by the same 

transformation. i.e., the same TSF should be valid for the entire 

image. In conjunction with the sparsity constraint, we show 

that the TSF can be recovered from the PSFs. At any location, 

the observed PSF is compared with the PSF predicted by the 

estimated TSF to reveal splicing. 
In the last case, we consider a depth-varying scene and 

translational camera motion. A 3D scene will induce space-

variant blurring wherein the blur kernels are a function of 

depth. In fact, the PSFs at different depths turn out to be 

scaled versions of each other, the scaling factor being the 

relative depth of the two scene points. In this case, we propose 

the use of Fourier-Mellin Transform (FMT) [33] to compare 

PSFs. Note that we do not assume prior knowledge of the 

depth map of the scene, yet we are able to compare the PSFs 

using the underlying scaling relationship that relates two PSFs 

at different depths. 
The previous discussion assumes that we know the specific 

scenario that we are dealing with and where the authentic blur 

kernels come from. In practice, we do not have knowledge of 

either. We propose a strategy to automate this. Given a test 

image, our method first determines whether the image is rep-

resentative of case (i), case (ii) or case (iii). It is based on the 

 
 
 

occurrence of blur include (i) increasing the shutter speed of 

the camera, and (ii) resorting to tripods. However, reduced 

shutter time will typically result in a noisy image while a 

tripod restricts mobility. In fact, in places such as heritage 

sites or museums, tripods are not even permitted . 
During image capture, what we witness is an averaging of 

light intensities at the camera sensor. Due to camera motion, 

different scene points contribute to a pixel during exposure 

resulting in blur in the captured image. The degree of blur 

at a point in the image depends on the spatial location of 

the point, structure of the scene, and relative motion between 

scene and camera. Many works exist whose goal is to recover 

the latent image from one or more blurred images. These 

deblurring algorithms are roughly classified as blind and 

non-blind. The input to blind methods is either single or 

multiple blurred images. Non-blind methods have, in addition, 

prior knowledge about the blur kernel. Note that for the task 

of splicing detection, only a single observation is available and 

there is no prior knowledge of the blur kernel. Also our goal 

is not deblurring but verifying the authenticity of an image. 
As discussed earlier, existing splicing detection methods 

model the blurred image as a convolution of the latent image 

with a uniform blur kernel i.e., the blur kernel is assumed to 

be flat and space-invariant. However, in reality, space-variant 

blurring is quite common and the blur can be quite arbitrary 

shape. For example, even in the case of a flat scene, simple 

camera rotation will result in non-uniform blurring. We now 

analyze this aspect in more detail. 
Assume the origin to be the camera center and let 

P = [X Y Z ]T be a 3D point in the static scene. The 
 

corresponding projected point in the image plane is given 

by homogeneous co-ordinates x = [x y 1]T where x = 
 

reasonable premise that the spliced region typically occupies q X/Z , y = qY/Z and q is focal length of the camera. 
 

a fraction of the total image area. Subsequently, we propose 

a scheme to automatically demarcate the spliced region. It is 

the blur kernel that serves as a cue in the inference process. 
The paper advances the state-of-the art substantively and 

in several ways including automatic segmentation of blur 

kernels, computation of camera motion, automatic detection 

and demarcation of the spliced region, handling camera trans-

lations with and without depth in the scenes, as well as general 

camera motion for flat scenes. Knowledge of neither the sus-

pect region nor the authentic area is assumed. We demonstrate 

the effectiveness of our method on several examples and also 

provide comparisons with existing methods. 
The organization of the paper is as follows. In section II, 

we describe the motion blur model. In section III, we discuss 

different blurring scenarios depending on the type of camera 

motion and scene structure. In section IV, we propose suitable 

inconsistency criteria for each of these scenarios. We validate 

our approach on several synthetic and real examples in section 

V, and conclude with section VI. 
 

II. MOTION BLUR 
 

It is not uncommon for hand-held camera users to experi-

ence motion blur resulting from incidental camera shake. The 

blur in the image is due to the slow shutter speed of the camera 

relative to camera motion. Possible solutions to prevent the 
This relation can be represented in matrix form as a linear 

q 0 0 
relationship x = K P where K = ⎣ 0 q 0 ⎦. At time τ (during 
 

0 0 1 
exposure), the 3D point P gets transformed to P = Rτ P +Tτ 
due to camera motion. Here, Rτ represents the rotation matrix 

at time instant τ and is a combination of the rotational matrices 
 

about the X, Y and Z axes. For example, the rotation matrix 
cos θZ τ − sin θZ τ 0 

about Z -axis is given by RZ τ = sin θZ τ     cos θZ τ     0 

0 0 1 
where θZ τ denotes the angle of rotation about the Z -axis. 

The vector Tτ = [TXτ TYτ TZτ ] represents translations along 

X, Y and Z axes, respectively, at time instant τ . 
 

Let the projection of P in the image plane be denoted by 

xτ = [xτ yτ 1]T . Therefore xτ = K P . Let us assume that 

point P lies on a plane with normal N and at a distance d 
 

from the camera center. Therefore, any point Q lying on this 

plane will satisfy the relation N T Q = d . We now derive the 
 

relation between P and P using this planar constraint as 
 

τ = Rτ P + Tτ 

= Rτ P + Tτ 
NT P 

  

τ 

⎡ ⎤ 

T 

τ 
τ 

P 

d 
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This yields the relation between xτ and x in the image plane 

as xτ = K Rτ + Tτ d 
K−1x since P = K−1x. For a 

fronto-parallel scene where all the scene points are at the 
 

same distance d from the camera, the image points before 

and after camera motion (at time τ ) are then related through 

homography Hτ as xτ = Hτx where 
_
 

Hτ = K Rτ + 
d 

Tτ [0 0 1] K−1 
 

Let f be the image captured without camera shake. The 

transformed image due to camera motion at time instant τ will 

then be given by gτ (Hτ (x)) = f (x). Therefore, the blurred 

image can be modeled as the average of the transformed 

versions of f during the exposure time Te. The blurred image 
intensity at a location x can then be expressed as  

g(x) = 
Te     0 

f (H−1(x)) dτ 
 

The loss of order of transformation in the blurred image is of 

little consequence to the problem on hand. 
There is an alternative way to express g(x). Let D be 

the set of all possible transformations due to camera motion. 
This will be a 6D (translations and rotations about the three 

axes) space in general. Let h D : D 2→ R+ denote the 

transformation spread function (TSF) that maps elements in 
 

D to non-negative real numbers. The TSF h D(λ) represents 

the fraction of the exposure time Te the camera spent at a 
particular transformation λ (λ ∈ D). Hence λ∈D 

h D(λ) = 1. 

The blurred image can then be equivalently modeled as a 
 

weighted sum of the warped versions of f i.e., 
 

g(x) =  h D(λ) f (H
−1

(x)) dλ (1) 
λ∈D 

 

Incidentally, the blurred image can be related to the latent 

image f through a space-variant blur kernel h as 
 

g(x) = f (x − u)h(x − u, u) du (2) 
 
where h(x, u) denotes the PSF at the image point x and u 

is an independent variable. The PSF h(x, u) represents the 

amount of displacement undergone by image point x due to 

the homographies, weighted by the fraction of time spent at 
each homography during exposure [26] i.e., 

h(x, u) = 
1 

 Te 

δ(u − x̄τ )dτ (3) 
e     0 

 

Here, x̄τ indicates displacement of point light source at x due 

to transformation Hτ while δ is the 2D dirac delta. 
Importantly, we can write the PSF in terms of the TSF as 

 

 
 

h(x, u) =  h D(λ)δ(u − (Hλ(x) − x)) dλ (4) 
λ∈D 

 

The corresponding discrete form then becomes 
_ 

h(i, j ; m, n) =  h D(λ)δd (m − (iλ − i ), n − ( jλ − j )) (5) 

λ_ D 
 

where (iλ, jλ) denotes the coordinates of the point when a 
transformation Hλ is applied on a point p = [i j ]T and δd 
 

denotes the 2D Kronecker delta. 

III. SCENE, MOTION AND BLUR 
 

Although general camera motion consists of six degrees of 

freedom, argue that the cause of blur in an image is 

predominantly due to camera rotations. have shown that in 

practical scenarios, general (6D) camera motion can be 

reasonably approximated by 3D (in-plane translations and 

rotations). According to them, even small out-of-plane 

rotations can be modeled as in-plane translations. Following 

we too model camera motion to consist of in-plane 

translations and rotations. Thus, D represents a 3D vector 

space in our formulation. We now discuss three interesting 

cases of motion blur that stem from specific situations of 

camera motion and scene structure. 
 
 

A. Planar Scene (a Scene With Insignificant Depth Variations) 
 

• In-plane translation: In this case, the camera is trans-

lated on a plane parallel to the image plane. Hence, 

all the points in the image plane will be displaced by 

the same amount which will result in space-invariant 

blurring. Hence, the blurred image can be expressed as a 

convolution of the latent image with the blur kernel. The 

homography relation in the image plane will then be 
 

xτ = K (Rτ + Tτ 
NT 

)K−1x (6) 
 

where Rτ = I , N T = [0 0 1] and Tτ = [TXτ TYτ 0]T 

and d is the same for all the points. Hence, we get 
 

xτ = K (I + 
Tτ 

[0 0 1])K−1x (7) 
 

which further simplifies to xτ = x + 
qTXτ      and yτ = 

y + 
qTYτ . 

 

• In-plane translational and rotational motion: If the camera 

is rotated about the Z-axis, the points in the image 

plane do not inherit the same displacement. The image 

points near the axis of rotation have less displacement as 

compared to points that are away from the axis of rotation 

and this results in non-uniform (i.e., space-variant) blur. 

In addition, when there is in-plane translation, the homog- 
raphy relation in the image plane for a fronto-parallel 

scene becomes xτ = K (Rτ + 
Tτ [0 0 1])K−1x where 

Rτ = RZτ     and Tτ = [TXτ     TYτ     0]T . 
 

 

        B. General 3D Scene 
 

• In-plane translational motion: In the case of a 3D scene, 

even when the camera motion is only in-plane transla-

tions, the displacement of pixels in the image plane will 

vary as a function of the depth of the corresponding 

point in the 3D scene. Due to parallax, points near to 

the camera will incur a large displacement in the image 

plane compared to points that are farther-off from the 

camera. This in turn results in non-uniform blurring. 

_ 

τ 

λ 

T 

d 

d 
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The homography relation for points lying on a fronto- 
 

parallel plane at distance d0 is by
⎤ 1 

0 Xτ 
 

Hτ = K ⎣ 0 1 
d
τ ⎦ K

−1 (9) 

0 0 1 
 

Correspondingly, the PSF at a location x with respect to 
 

reference depth d0 is given by 

h0(x, u) = 
1 

 Te 

δ(u − (Hτ (x) − x)) dτ (10) 
e     0 

 

where xτ = x + 
qT

0 

τ     and yτ = x + 
qT

0

τ . Thus, we get 

h0(x, u) = 
1 

 Te 

δ

_

u − 
qTXτ 

, v − 
qTYτ 

_ 

dτ (11) 
e     0 0 0 

 

For any point lying on a fronto-parallel plane at a different 
 

depth d , the homography (under in-plane translation) is 

⎡
1 0 

TXτ 

⎤ 

Hτd 
= K ⎣ 0 1 

T

d
τ ⎦ K

−1 (12) 

0 0 1 
 

Correspondingly, the blur kernel at depth d = kd0 is 

given by 

hd (x, u) = 
1 

 Te 

δ

_

u − 
qTXτ 

, v − 
qTYτ 

_ 

dτ     (13) e     

0                              0                       0 
 

From equations (11) and (13) and using the scaling 

property of delta, the relation between the blur kernels 

corresponding to depth d0 and d turns out to be 

 
 

then the cross-correlation is defined as ρ(t) = 
_

a 
h1(a) h2(a+t) 

where a represents the spatial location of the blur kernel 

while t represents the shift. A match is reported if the cross- 
correlation value is above 0.8. This is repeated for every 
PSF. If the number of matches for any kernel exceeds 

Np 
, 

 

we conclude that the test image is representative of case (i) 

and this kernel is chosen as the reference PSF; else, the blur 

kernels are clearly space-varying and we proceed to employ 

the Fourier-Mellin transform (FMT) which is typically used 

for image registration and yields the rotation, scale and 

translation parameters governing the geometric relation 

between two images. We use FMT to compute the relative 

orientation of each kernel with respect to every other blur 

kernel. Depending upon the angle returned by FMT, we 

perform grouping such that PSFs within a group have similar 
orientation. If the cardinality of the largest group (set) is less 
than 

Np 
, we conclude that the space-varying PSFs are not 

 

scaled versions of each other and hence the test image must 

belong to case (ii); else, we conclude that it represents case 

(iii) and the PSF with the largest support (from this set) is 

chosen as the reference PSF. 
 
 

A. Case (i): Planar Scene and In-Plane Translations 
 

For a static planar scene and in-plane translational camera 

motion, the displacement undergone by all the image pixels 

will be the same. Therefore, the TSF and PSF will be identical. 

In fact, all the pixels in the image should ideally have the 

same PSF. The reference PSF is extracted as discussed above. 

By comparing the PSFs at all the spatial locations with the 

reference PSF, inconsistency, if any, can be deduced. 
 

 

hd (x, u) = k2h0(x, ku) (14) Clearly, the above task necessitates the need for accu-

rately estimating the blur kernel or the PSF. Within the 
 
 

i.e., hd(x, y) is just a scaled version of the PSF at h0(x y) 

where k is the scale factor. 
 
 

IV. BLUR INCONSISTENCY 
 

In this section, we devise inconsistency tests for the different 

scenarios considered in section III. The inconsistency criterion 

varies from case to case. For a fronto-parallel scene and in-

plane camera translations, we show that the notion of PSF 

suffices. For the second case, we estimate the TSF (global) 

which describes the motion of the camera and use it to infer 

inconsistencies in spatially varying blur kernels. For the third 

scenario, the orientation and scale of PSFs help to unveil 

splicing. 
Given a test image, it should first be inferred to which 

scenarios this image belongs. For this purpose, we randomly 

select Np(≈15) number of patches from the test image and 

estimate the PSF at each patch using an existing blur estima-

tion technique . The patches are required to be spatially 

spread-out so as to capture as much information as possible 

about the motion of camera through the PSFs. Note that some 

of the blur kernels may also come from the spliced region 

but these are very few in number since the spliced region 

typically occupies only a fraction of the total image area. We 

pick a PSF from this set and compute its cross-correlation 

with every other kernel in the set. If h1 and h2 are two PSFs, 

context of image deblurring, many works have been proposed 

to estimate PSF from a single image. Most of these methods 

consider salient edges to estimate PSF. We use the blind 

deconvolution method proposed for estimating PSF. They 

have comprehensively compared their method with several 

state-of-the-art techniques for estimation of blur kernel and 

have demonstrated superior performance vis-a-vis others. 

The method is quite fast and has problems only in image 

regions with little or no texture. We also tested this 

method on several examples and found it to work quite 

satisfactorily. . Interestingly, their work reveals that salient 

edges are not always helpful in accurate estimation of PSF. 

They argue that if the width of the selected edge is less than 

the blur kernel width, it will, in fact, degrade the estimated 

kernel. They define a metric for selecting useful edges Here, 

∇ denotes the gradient, B is the blurred image, and Nh(x) 

is a window centered at pixel x . Those edges are ignored 

whose r value is less than a threshold value τr . The final 

edges are selected by combining the gradient threshold 

with the value of r . A coarse PSF is estimated by 

minimizing an objective function subject to Gaussian 

regularizer. In the second phase, a sparse  

⎡ 
T 

T Y 
0 

T 
X Y 

d d 

Y 

T kd kd 

_ h _ _ h 
_ 

1 2       2 2 
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To identify and demarcate the spliced region, the entire 

image is divided into non-overlapping patches and the PSF 

is estimated at these patches .These PSFs are com-pared with 

the reference PSF using cross-correlation. Since PSF 

estimation is blind, there is a possibility of shift in the 

resultant PSF with respect to the original PSF. This is because 

these shifts will get compensated in the recovered latent image 

so as to satisfy the convolution model. Therefore, we propose 

to use cross-correlation [31] which is a shift-invariant metric to 

compare PSFs. The cross-correlation profile is thresholded to 

arrive at a rough estimate of the spliced borders. By selecting 

overlapping patches around this boundary, we arrive at a finer 

demarcation of the spliced region. 
 
 

B. Case (ii): Flat Scene and In-Plane Translations With 

Rotations 
 

For this scenario, the PSFs will be space-varying. However, 

the TSF will remain valid over the entire image since there 

are no depth variations. TSF estimation is very important 

because it gives information about the motion of the camera. 

We now describe how knowledge of PSFs can be used to 

infer TSF. For this purpose, let us revisit equation (5) which 

describes the relation between TSF and PSF. For each blur 

kernel, this equation can be represented in matrix-vector form 
as hpl 

= Ml h D , l = 1, 2 . . . K , where hpl 
indicates the blur 

kernel at location pl while Ml is an interpolation matrix, 
 

whose entries are computed from the location of the blur 

kernel and by bilinear interpolation. If the size of the blur 

kernel is m × n, then after rearranging in vector form Nh × 1 

(Nh = m.n), the matrix Ml will be of size Nh × NT where NT 

denotes the number of possible transformations. To generate 

the values of matrix M , we find the displacement of point p 

due to each transformation λ ∈ D and a unit entry is made at 

the row which corresponds to the co-ordinates of displacement. 
Assume that we have ‘K ‘ authentic blur kernels. The 

procedure to get these kernels is discussed later. Arranging 

the K blur kernels selected in the form of a column vector h, 

the relationship between the blur kernels and the TSF can be 

written as h = Mh D , where the size of M will be K Nh × NT . 

As discussed earlier in section IB, even though the dimension 

of possible transformations can be quite large, the latent image 

will actually have undergone only a few transformations since 

the motion due to camera-shake is sparse. This leads to the 

incorporation of a sparsity constraint on the TSF through the 

L1 norm. The TSF can be estimated by minimizing the cost 
 

_ h − Mh D_ 2 + λs_ h D_ 1. (15) 
 

This is an L1 norm regularized least squares problem and we 

solve it using LASSO (Least Absolute Shrinkage and Selection 

Operator). More specifically, we use the nnLeastR function of 

SLEP package [35] to solve this. The value of λs is chosen 

such that equation (15) gives minimum error for non-negative 

values of TSF. 
 
 

C. Automatic Estimation Of TSF 
 

Note that TSF estimation requires that the PSFs come 

from the authentic region. From the Np randomly picked 

 
 
 
 
 
 
 
 
 
 

Fig. 2.     (a) and (b) Kernels from authentic and spliced regions, respectively. 

(c) and (d) Reconstructed kernels corresponding to Fig. 2(a) and (b), respec-

tively. (e) and (f) Both the kernels are from the authentic region. (g) and (h) 

Reconstructed kernels corresponding to Fig. 2(e) and (f), respectively. 
 
 

blur kernels, we need to eliminate outliers (those belonging 

to the spliced region) to enable accurate estimation of TSF. 

We exploit the following PSF compatability criterion for this 

purpose. For a given blur kernel h1, one can determine (from 

equation 5) the set of transformations corresponding to each 

non-zero weight of h1. We represent this set of homographies 

by S1. Note that S1 is a super-set of the actual homographies 

responsible for h1. In a similar manner, we determine the set 

of homographies S2 for a kernel h2 at a different location. Let 

the intersection of S1 and S2 be a set denoted by S12. Using the 

transformations in S12, we attempt reconstruction of h1 and 

h2. Let the recomputed kernels be h1 and h2, respectively. If 

h1 and h2 had originated from the same TSF, then the supports 

of h i and h i , i = 1, 2 would be compatible i.e, wherever h i 

is non-zero, h i will also have a non-zero entry. On the other 

hand, if one of the two kernels is from a spliced region, then 

the above compatibility is lost. We randomly choose one blur 

kernel and test its compatibility with the remaining Np − 1 

kernels. We repeat this test for each kernel. Since the number 

of kernels from spliced region is expected to be few in number, 

this test allows us to segment out kernels that are outliers since 

the effective number of compatibility failures will be higher 

for a spliced kernel. The resultant set of compatible (authentic) 

blur kernels is then used to arrive at the TSF. 
The above procedure is best explained with an example. Let 

us first consider the case where the PSFs come from authentic 

[Fig. 2(a)] and spliced region [Fig. 2(b)]. We display the 

reconstructed PSFs [Figs. 2(c) and (d)] using the intersection 

of homographies S1 and S2 of the kernels in Fig. 2(a) and (b). 

Note that the kernels are not compatible. This is quite in 

contrast to the case when both the kernels come from authentic 

region [Fig. 2(e) and (f)]. The reconstructed kernels from the 

intersection set are given in Fig. 2(g) and (h). Observe that 

the intersection of their homographies S1 and S2 is very well 

able to explain both the PSFs. 
From the estimated TSF, we can predict the blur kernel at 

any point in the image using equation (5). To identify and 

demarcate the spliced region, we adopt the same procedure 

as described for case (i) except that PSFs at non-overlapping 

patches obtained using [25] are compared with PSFs predicted 

at those locations by the estimated TSF. Post thresholding of 

cross-correlation profile, overlapping patches are used to carve 

out a finer boundary of the spliced region. 
These steps are summarized in Algorithm 1. 

¯ 

¯ 

¯ 

ˆ ˆ 

ˆ 
ˆ 
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Algorithm 1 
 

1. Randomly select Np patches from across the image 

2. Estimate the PSFs of the selected patches using [25] 
3. Eliminate outlier blur kernels using the compatibility test 

described in this section 
4. Estimate true TSF using only the authentic kernels 
 

5. Estimate PSF across non-overlapping patches using [25] 

6. Deduce PSF at these locations from the estimated TSF of 

step 4 
7. Compare both the PSFs by finding their cross-correlation 

value 
8. Detect and demarcate the spliced region by thresholding the 

cross-correlation profile 
 
 
 

D. Case (iii): Depth-Varying Scene and In-Plane Translations 
 

In the case of a 3D scene, the blur is always space-

variant. Even for simple translational motion of the camera, 

the pixel motion of scene points near to the camera will be 

faster as compared to faraway points. However, as derived 

in equation (14), there exists an elegant scaling relationship 

between PSFs at different depths which plays a vital role in 

defining inconsistency. If the PSF is from a spliced region, 

then it should not be possible to express this PSF as a scaled 

version of the reference (hre f ) PSF in the authentic region. 

The reference PSF is obtained as described in the beginning of 

section IV. We again resort to FMT to compare the PSFs. Let 

hi be a blur kernel at any image location. The kernels hre f and 

h i are given as input to FMT. If the rotation angle is less than 

a threshold, we warp hi by the angle output by FMT to yield 

h i such that the relative angle between PSFs hre f and hi is 

close to zero. Next, we warp h i by the scale factor to 
 

yield h i . Finally, we use cross-correlation between hre f and 
 

hi for determining whether h i belongs to authentic region. On 

the other hand, if the resultant rotation angle is greater than 

threshold, we can straightaway infer that the region around h i 

is spliced. As before, the comparison between hre f and PSF 

obtained using [25] is carried out initially at non-overlapping 

patches in the image. The rough splicing boundary obtained 

from the cross-correlation profile is then refined to yield the 

actual spliced region. 
 
 

V. EXPERIMENTAL RESULTS 
 

We verify the performance of our approach on several 

synthetic and real examples for the following situations. Case 

(i): Flat scene and in-plane camera translations. Case (ii): 

Flat scene with in-plane camera translations and rotations. 

Case (iii): 3D scene and in-plane camera translations. The 

examples are chosen such that it is difficult to visually 

decipher whether the image was spliced or not. The cross-

correlation threshold was set as 0.8 to determine whether two 

blur kernels are similar. We constructed a database of more 

than thirty images representing different scenarios which also 

included few untampered images. Unless otherwise stated, the 

actual and detected boundaries are shown in green and red, 

respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.     Case (i). (a) Spliced region demarcated by our approach. (b) and (c) 

PSFs randomly selected from authentic region. (d) PSF from spliced region. 
 
 

For the simulated examples, the original images were 

obtained from the web and these were blurred synthetically 

corresponding to each of the three different scenarios consid-

ered in the paper. For the real cases, we used a Canon 60D 

hand-held camera for capturing the images. 
We have also compared our method which perform 

splicing detection using blur as a cue. We give a few 

representative comparison examples to underscore how our 

method is able to advance the state-of-the art. The technique 

proposed in  uses inconsistencies in defocus blur based on 

DCT coefficients as a cue for detecting forgeries. 

Specifically, it analyzes the differences in degree of blur to 

detect the forged region by assuming the blur to be Gaussian. 

The blur threshold value is chosen relative to the global 

blurring in the entire image. The method is a recent work that 

assumes uniform space-invariant motion blur and characterizes 

the blur kernel by its length and orientation. We employed the 

modified Hausdorff distance [36] to quantify the accuracy of 

our method. 
 
 

A. Flat Scene and In-Plane Translations 
 

We first discuss some simulations followed by real exam-

ples. Deciphering the specific scenario (i.e, case (i)) followed 

by reference PSF estimation are both carried out as described 

earlier in the beginning of section IV. 
Synthetic case: In Fig. 3(a), we show a spliced image from our 

dataset. The authentic and spliced regions were synthesized 

with different translational blurs. In fact, we copied a patch 

from another translationally blurred image to mimic the effect 

of splicing. 
The spliced image of Fig. 3(a) was given as input to our 

method. The size of the image was 1024 × 646 pixels while 

the size of the spliced region was 350 × 290 pixels. The 

given image was divided into non-overlapping patches of size 

121 × 121 pixels and for each patch the PSF corresponding 

to the center of the patch was estimated .The maximum 

size of the blur kernel was chosen as 21 × 21 pixels. The 

patch size should be greater than the maximum size of the 

expected blur kernel to reliably estimate the PSF. 

ˆ 
ˆ ˆ 

ˆ 

ˆ 
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Fig. 5. Comparison results for case (i) obtained using (a) our method, 

(b) [16], and (c) [15], respectively. 
 
 
 
 
 

Fig. 4. Case (i). (a) Real spliced image. (b) and (c) PSF from genuine region 

and the reference PSF, respectively. (d) PSF from spliced region. 
 
 
 In Fig. 3(b) and (c), we show two PSFs at random locations 

from the authentic region. Note they look quite alike since the 

blur is space-invariant. In contrast, the PSF from the spliced 

region [Fig. 3(c)] looks starkly different. Its cross-correlation 

value with the reference PSF was only 0.47 which is much 

below the threshold value. The demarcated boundary of the 

spliced region in the center bottom of the image has been 

correctly detected in Fig. 3(a). Using the modified Hausdorff 

distance, the deviation of the estimated contour from the 

true contour was found to be 1.8%. 
Real case: A Canon 60D camera was mounted on a portable 

stand to induce translation motion blur along horizontal and 

vertical directions. We captured two images with different 

amounts of motion blur and arrived at the spliced image 

[Fig. 4(a)] in our dataset. Analogous to the synthetic case, 

the image was divided into non-overlapping patches (of size 

101 × 101 pixels) and the PSFs corresponding to the centers 

of these patches were computed These PSFs were compared 

with the reference PSF and the cross-correlation values 

were used to detect spliced PSFs using a threshold of 0.8. 

In Fig. 4(b)–(d), we show the reference PSF and the PSFs 

corresponding to authentic and spliced region. Note the 

similarity between Fig. 4(b) and (c) (correlation = 0.94) while 

the wrong PSF is distinctly different (correlation = 0.3). The 

spliced region has been correctly demarcated by our method 

as shown in Fig. 4(a). The contour deviation error for this 

example is 1.69%. 
In Fig. 5(b) and (c), we give some comparison results with 

[16] and [15], respectively. Since case (i) has space-invariant 

motion blur, the method works satisfactorily. On the other 

hand, fails since it is designed for optical blur. 
 
 

B. Flat Scene and In-Plane Translations With Rotations 
 

In this section, due to presence of rotational component, 

the pixels near the axis of rotation suffer relatively less 

displacement which results in space-variant blurring. Given a 

test image, the scheme outlined in section IV was followed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.     Case (ii) (a) Demarcation of spliced region. (b)–(e) Authentic PSFs 

obtained by [25]. (f)–(i) Authentic PSFs corresponding to (b)–(e) predicted 

by TSF. (j) and (k) Spliced PSFs obtained by [25]. (l) and (m) Spliced PSFs 

corresponding to (j) and (k) predicted by TSF. 
 
 
 

to first establish that the image belongs to case (ii). The 

compatibility test described in section IV-C was used to obtain 

authentic kernels to estimate the TSF. 
Synthetic case: We blurred two different images from our 

dataset with different (but known) TSFs. The TSFs were 

chosen such that they produce both in-plane translational and 

rotational blur. Each weight in the TSF corresponds to a 

particular homography. These two blurred images were used to 

arrive at the spliced image shown in Fig. 6(a). The maximum 

size of the blur kernel was assumed to be 21 × 21 pixels. 

Using the compatibility test, authentic PSFs were estimated 

at spatial locations that were spread-out across the image to 

compute the camera motion. As expected, the blur was found 

to be space-varying. From the authentic PSFs, we estimated 

the underlying TSF. 
The test image of Fig. 6(a) was next divided into non-

overlapping patches of size 121 × 121 pixels and the PSF 

was estimated at each patch .We also derived the 
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Fig. 8. Case (ii) Outputs obtained using (a) our method, (b) [16], and 

(c) [15], respectively. 
 
 

Fig. 7.     Case (ii). (a) and (b) Additional results on synthetic examples from 

our dataset using the proposed method. 
 
 
 

expected PSFs at these locations using the estimated TSF and 

compared them with the directly estimated PSFs 

Thresholding of the correlation profile yields a rough outline 

of the spliced region. This is further refined with overlapping 

patches to arrive at the final spliced boundary shown in 

Fig. 6(a). We have given the PSFs obtained using [25] and the 

corresponding PSFs as predicted by the TSF in both authentic 

and spliced regions in Fig. 6(b)–(i) and (j)–(m), respectively. 

Note that the estimated and true PSFs in the authentic region 

are quite close. The percentage deviation from the actual 

splicing boundary is 1.3%. 
Two more challenging and synthetically spliced examples 

are shown in Fig. 7(a) and (b). Following the procedure 

discussed in the previous example, the detected spliced regions 

indeed represent correct demarcation. The deviation errors are 

4.39% and 1.7%, respectively. 
Since the examples in case (ii) involve space-variant blur-

ring, we compared the performance of our method with 

that of [15] and [16]. While we implemented carefully on 

our own, the authors of [16] mailed us the results for 

their method. Few representative comparison results from our 

dataset are shown in Fig. 8 for the best possible threshold 

value for each method. The method of outputs a binary 

image corresponding to two different levels of blur while 

outputs the estimated demarcated boundary. Observe that our 

method emerges a clear winner. The outputs obtained using 

and shown in Fig. 8 are clearly wrong and bring out the 

inability of these methods to detect splicing 

 
under space-variant blurring conditions. The performance of 

encounters difficulties when blur kernels have arbitrary 

shape. Furthermore, its performance degrades severely in the 

presence of space-variant blur. The technique was able to 

identify the spliced region correctly in only one example 

(second row) and performs poorly on all the other images. 

Since this technique is primarily based on PSF comparison, 

the inconsistency criteria defined ,fails to work when the 

blur is space-varying. We also tested these methods on the 

image in the fourth row of Fig. 8 which incidentally is 

untampered, although it has space-varying blur. While our 

method was able to rightly conclude that the given test 

image was authentic, the comparison methods falsely ended-

up dividing the image into authentic and spliced regions. 
Real case: We captured two images of flat scenes with 

different camera shakes (comprising of in-plane translations 

and rotations). One such spliced image from our dataset is 

shown in Fig. 9(a). By following the same procedure as 

outlined in the synthetic case, outlier PSFs were removed 

and only the authentic blur kernels were used to estimate the 

TSF. The image patches were of size of 121 × 121 pixels 

while the maximum size of the PSF was assumed to be 

31 × 31 pixels. Some of the authentic PSFs are shown in 

Fig. 9(b)–(e). Note that even in the authentic region, the blur 

exhibits significant differences underscoring its space-variant 

nature. Again, following the steps discussed in the synthetic 

case for detection and demarcation of the spliced boundary, 

the final result with the spliced region marked is shown in 

Fig. 9(a) and has a deviation of 1.6%. 
Some more real examples are shown in Fig. 10(a) and (b). 

We choose patches of size 121×121 pixels and the maximum 
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Fig. 9. Case (ii). (a) Real splicing example and output of our method. (b)–(e) 

PSFs from authentic region. 
 
 
 
 

Fig. 11. Case (iii). (a) A bi-layered scene. (b) Depth map. (c) and (d) 

Authentic and reference PSFs, respectively. (e) PSF from spliced region. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10.      Case (ii). (a) and (b) Results obtained using our method on real 

examples. 
 
 
size of the blur kernel was assumed to be 31×31 pixels. Note 

that the spliced region has been correctly detected yet again 

by our method. The deviation errors for Fig. 10(a) and (b) are 

4.9% and 1.6%, respectively. 
 
 

C. 3D Scene and In-Plane Translations 
 

In this section, we consider the scenario of a 3D scene and 

translational motion of the camera. For this case, the scaling 

relationship of equation (14) lies at the core of detecting splic-

ing. Yet again given a test image, the methodology outlined 

in section IV was used to infer that the image represents case 

(iii). This was followed by estimation of reference PSF. 

Synthetic case: A 3D scene from our dataset with known 

(bi-layered) depth map was first considered as shown in 

Fig. 11(a). From the figure, notice that the left-half is near 

to the camera while the right-half is farther away from the 

camera. We chose an arbitrary translational PSF to induce 

blur on the left-half of the image. Using the scaling relation, 

the corresponding PSF for the right-half was generated. From 

these PSFs, the blurred image was generated according to the 

depth map of Fig. 11(b). We used a different image for splicing 

to arrive at the spliced image of Fig. 11(a). 
The test image was divided into non-overlapping blocks 

of size 121 × 121 pixels and the PSF (maximum size of 

31 × 31 pixels) was estimated for each block using yet again 

the blur estimation technique of [25]. Following the procedure 

discussed in section IV, these PSFs were compared with the 

reference PSF using FMT. The threshold value with respect 

to angle was chosen as 8 degrees. If the angle returned by 

FMT is greater than this threshold, we infer that the patch is 

spliced. The reference PSF is shown in Fig. 11(c). In contrast, 

the PSF deduced to be from the spliced region [Fig. 11(e)] 

is distinctly different. We gave two PSFs (one each from 

authentic and spliced region [Fig. 11(c) and (d)] as input to 

FMT. The relative angle between these two PSFs was found 

to be 46 degrees. On the other hand, a comparison of two 

authentic PSFs [Fig. 11(b) and (c)] gives an angle close to 

zero degrees while the scale factor was 0.53. We also checked 

the scaling relationship of each PSF with the reference PSF 

(i.e, verified the similarity by comparing the cross-correlation 

after re-scaling to be sure of the authenticity of a patch). 

The detected spliced region is shown in Fig. 11(a). The esti-

mated contour is very close (only 0.8% deviation) to the true 

contour. 
We show yet another example in Fig. 12(a) with depth 

map as given in [Fig. 12(b)]. The person standing near to the 

camera is authentic while the cat in the left-bottom corner 

was spliced. When this image was given as input to our 

method, the spliced region could be correctly demarcated 
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 HARNESSING MOTION BLUR TO UNVEIL SPLICING  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12.     Case (iii). (a) Output by the proposed technique. (b) Depth map of 

the 3D scene. 
 
 
 
 

Fig. 14. Case (iii). (a) The output of our method for a real outdoor 3D scene. 

(b) and (c) PSFs obtained from authentic region. (d) PSF from the spliced 

region. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 13.     Case (iii). (a) Splicing in a real 3D scene. (b)–(d) PSFs estimated 

at different layers. (e) PSF from spliced region. 
 
 
 

(5.1% deviation error). The method were again found to 

perform poorly on these images as the blur was space-

varying. 
Real case: A real spliced example from our dataset is shown 

in Fig. 13(a). A 3D scene was captured with the help of a 

moving translational stage to induce purely translation blur 

in the image. The depth of the scene varied from 15 cm to 

50 cm. Patches of size 101 × 101 pixels were selected at 

different locations while the maximum size of the blur kernel 

was taken to be 31 × 31 pixels. The left-bottom corner (the 

face processing book) was placed nearest to the camera, the 

right-bottom (digital communication book) was lying around 

the middle depth layer, while the background region (blanket) 

was farthest from the camera. Among the randomly estimate 

PSFs across the image, the ones corresponding to these layers 

are shown in Fig. 13(b)–(d). The parallax effect is very clear 

in this case. We observe that the PSFs are just scaled versions 

of one another. We also note that the PSF for the spliced 

region is very different from the blur kernels estimated in the 

authentic region. Again, we employed FMT for comparing 

PSFs estimated at non-overlapping patches in the image with 

the reference PSF. If the relative angle between PSFs was 

more than 8 degrees, the PSF was adjudged as belonging to 

Fig. 15.     Outputs for the case of 3D scene with camera translations. (a) Our 

method, (b) [16], and (c) [15], respectively. 
 
 

the spliced region. If not, inverse warping was applied on one 

of the PSFs with the FMT scale factor and this was compared 

with the reference PSF using cross-correlation. The final result 

shown in Fig. 13(a) with the spliced region marked reveals the 

correctness of our approach (contour deviation = 1.8%). 
Lastly, we show the example of Fig. 14 from our dataset. 

Here we selected patch size of 121×121 pixels and the maxi-

mum kernel size assumed was 21×21 pixels. By following the 

procedure described in earlier examples, the final result shown 

in Fig. 14(a) was arrived at with the spliced region marked. 

The PSFs corresponding to authentic and spliced regions are 

shown in Fig. 14(b)–(d). The algorithm is quite correct in its 

inference since the two individuals in the rear indeed belong 

to a different image and the contour deviation is 1.6%. Some 

comparison results for this case are shown in Fig. 15. Since 

case (iii) again consists of space-variant blur, the methods of 

[15] and [16] perform poorly. 
The splicing boundaries in our examples were arbitrary in 

shape which renders automatic detection of spliced areas quite 

difficult. Yet, the estimated spliced contours were close to the 

actual boundary. When quantitatively evaluated, the deviation 

from the true contour was less than 5%. Some deviation is to 

be expected since (i) the boundaries are blurred, and (ii) our 

method is patch based. 
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VI. CONCLUSION 
 

We conluded a passive approach to unveil image splicing 

by using motion blur as a cue. Since the motion blur induced 

at a point depends on the depth of the corresponding scene 

point, its location in the image, as well as camera motion, any 

inconsistency in motion blur reveals the presence of splic-

ing. Three interesting scenarios were considered and suitable 

inconsistency criteria were proposed. The method is automatic 

in the sense that neither the spliced region nor the authentic 

region is assumed to be known. The approach was validated 

on several synthetic and real examples and comparisons were 

also given to demonstrate its efficacy over existing techniques. 

In future, we plan to extend this method for the more general 

case of a 3D scene involving both in-plane translation and 

rotational camera motion. This extension is non-trivial since 

the notion of TSF is valid for a plane. 
 
 

 
 

REFERENCES 
 

[1] M. Potdar, S. Han, and E. Chang, “A survey of digital image water-

marking techniques,” in Proc. IEEE Int. Conf. Ind. Inf., Aug. 2005, 

pp. 709–716. 
[2] H. Farid, “A survey of image forgery detection,” IEEE Signal Process. 

Mag., vol. 26, no. 2, pp. 16–25, Mar. 2009. 
[3] B. Mahdian and S. Saic, “A bibliography on blind methods for 

identifying image forgery,” Signal Process., Image Commun., vol. 25, 

pp. 389–399, Jul. 2010. 
[4] A. Propescu and H. Farid, “Exposing digital forgeries by detecting traces 

of resampling,” IEEE Trans. Signal Process., vol. 53, no. 2, pp. 758–767, 

Feb. 2005. 
[5] T. T. Ng and S. F. Chang, “A model for image splicing,” in Proc. IEEE 

Int. Conf. Image Process., vol. 2. Oct. 2004, pp. 1169–1172. 
[6] W. Wang, J. Dong, and T. Tan, “Effective image splicing detection 

based on image chroma,” in Proc. 16th IEEE Int. Conf. Image Process., 

Nov. 2009, pp. 1257–1260. 
[7] W. Chen, Y. Q. Shi, and W. Su, “Image splicing detection using 2-D 

phase congruency and statistical moments of characteristic function,” 

SPIE Proc., vol. 6505, pp. 65050R-1–65050R-5, Jan. 2007. 
[8] M. Johnson and H. Farid, “Exposing digital forgeries by detecting 

inconsistencies in lighting,” in Proc. 7th Workshop Multimedia Security, 

2005, pp. 1–10. 
[9] E. Kee and H. Farid, “Exposing digital forgeries from 3-D lighting 

environments,” in Proc. IEEE Int. Workshop Inf. Forensics Security, 

Dec. 2010, pp. 1–6. 
[10] M. Johnson and H. Farid, “Exposing digital forgeries in complex 

lighting environments,” IEEE Trans. Inf. Forensics Security, vol. 2, no. 3, 

pp. 450–461, Sep. 2007. 
[11] T. T. Ng, S. F. Chang, and M. P. Tsui, “Using geometry invariants for 

camera response function estimation,” in Proc. IEEE Comput. Soc. Conf. 

CVPR, Jun. 2007, pp. 1–8. 
[12] Y. F. Hsu and S. F. Chang, “Camera response functions for image 

forensics: An automatic algorithm for splicing detection,” IEEE Trans. 

Inf. Forensics Security, vol. 5, no. 4, pp. 816–825, Dec. 2010. 
[13] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from 

sensor pattern noise,” IEEE Trans. Inf. Forensics Security, vol. 1, no. 2, 

pp. 205–214, Jun. 2006. 
[14] X. Wang, B. Xuan, and S. Peng, “Digital image forgery detection based 

on the consistency of defocus blur,” in Proc. Int. Conf. Intell. Inf. Hiding 

Multimedia Signal Process., 2008, pp. 192–195. 

 

[15] D. Y. Hsiao and S. C. Pei, “Detecting digital tampering by 

blur estimation,” in Proc. 1st Int. Workshop Syst. Approaches 

Digital Forensic Eng., Nov. 2005, pp. 264–278. 
[16] P. Kakar, N. Sudha, and W. Ser, “Exposing digital image 

forgeries by detecting discrepancies in motion blur,” IEEE 

Trans. Multimedia, vol. 13, no. 3, pp. 443–452, Jun. 2011. 
[17] M. Purnachandrarao and A. N. Rajagopalan, “Harnessing 

motion blur to uncover splicing,” in Proc. IEEE Int. Conf. 

Image Processing, Melbourne, Australia, Sep. 2013, pp. 4507–

4511. 
[18] B. Mahdian and S. Saic, “Blind authentication using periodic 

properties of interpolation,” IEEE Trans. Inf. Forensics Security, 

vol. 3, no. 3, pp. 529–538, Sep. 2008. 
[19] S. Lin, J. Gu, S. Yamazaki, and H. Y. Shum, “Radiometric 

calibration from a single image,” in Proc. IEEE Comput. Soc. 

Conf. Comput. Vis. Pattern Recognit., vol. 2. Jul. 2004, pp. 938–

945. 
[20] C. Paramanand and A. N. Rajagopalan, “Unscented 

transformation for depth from motion-blur in videos,” in Proc. 

IEEE Workshop 3rd Dimensional Inf. Extraction Video Anal. 

Mining, Jun. 2010, pp. 38–44. 
[21] S. Dai and Y. Wu, “Motion from blur,” in Proc. IEEE Comput. 

Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1–8. 
[22] C. Paramanand and A. N. Rajagopalan, “Inferring image 

transformation and structure from motion-blurred images,” in 

Proc. Brit. Mach. Vis. Conf., 2010, pp. 73.1–73.12. 
[23] C. Paramanand and A. N. Rajagopalan, “Depth from motion and 

optical blur with an unscented Kalman filter,” IEEE Trans. 

Image Process., vol. 21, no. 5, pp. 2798–2811, May 2012. 
[24] S. Chaudhuri and A. N. Rajagopalan, Depth From Defocus: A 

Real Aperture Imaging Approach. New York, NY, USA: 

Springer-Verlag, 1999. 
[25] L. Xu and J. Jia, “Two-phase kernel estimation for robust 

motion deblurring,” in Proc. Eur. Conf. Comput. Vis., Sep. 2010, 

pp. 157–170. 
[26] M. Sorel and J. Flusser, “Space-variant restoration of images 

degraded by camera motion blur,” IEEE Trans. Image Process., 

vol. 17, no. 2, pp. 105–116, Feb. 2008. 
[27] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform 

deblurring for shaken images,” in Proc. IEEE Comput. Soc. 

Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 491–498. 
[28] A. Gupta, N. Joshi, L. Zitnick, M. Cohen, and B. Curless, “Single 

image deblurring using motion density functions,” in Proc. Eur. 

Conf. Comput. Vis., 2010, pp. 171–154. 
[29] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. 

Freeman, “Removing camera shake from a single 

photograph,” ACM Trans. Graph., vol. 25, no. 3, pp. 787–794, 

2006. 
[30] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring 

from a single image,” ACM Trans. Graph., vol. 27, no. 5, pp. 

1–10, Aug. 2008. 
[31] Z. Hu and M. H. Yang, “Good regions to deblur,” in Proc. Eur. 

Conf. Comput. Vis., 2012, pp. 59–72. 
[32] C. S. Vijay, C. Paramanand, and A. N. Rajagopalan, “HDR 

imaging under non-uniform blurring,” in Proc. 12th Int. Conf. 

Comput. Vis., Oct. 2012, pp. 451–460. 
[33] B. S. Reddy and B. N. Chatterji, “An FFT-based technique for 

transla-tion, rotation, and scale-invariant image registration,” IEEE 

Trans. Image Process., vol. 5, no. 8, pp. 1266–1271, Aug. 1996. 
[34] (2010).     When     Tripods     are     not     Permitted     [Online].     

Available: http://www.shutterbug.com/content/when-tripods-are-not-

permitted 
[35] (2013, Mar. 23). Sparse Learning with Efficient Projections 

[Online]. Available: 

http://www.public.asu.edu/∼jye02/Software/SLEP/ 
[36] M. P. Dubuisson and A. K. Jain, “A modified Hausdorff 

distance for object matching,” in Proc. 12th IAPR, Oct.

International Journal of Advanced and Innovative Research (2278-7844) / # 18 / Volume 3 Conference Issue

 National Conference Power Electronics Applications In Renewable Energy© 2014 IJAIR. ALL RIGHTS RESERVED  18



 
 

International Journal of Advanced and Innovative Research (2278-7844) / # 19 / Volume 3 Conference Issue

 National Conference Power Electronics Applications In Renewable Energy© 2014 IJAIR. ALL RIGHTS RESERVED  19


