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Abstract— The Fast Fourier Transform (FFT) requires high 

Computational power, ability to choose the algorithm and 

architecture to implement it. This project explains the realization 

of a 3/6 FFT processor based on a pipeline architecture. The 

implementation has been made on a Field Programmable Gate 

Array (FPGA) as a way of obtaining high performance at 

economical price and a short time of realization.  FPGA can be 

used with segmented arithmetic of any level of pipeline in order to 

speed up the operating frequency. The processor has been 

simulated up to 200 MHz, with an Xilinx Spartan 3E as a target 

device, for a transform length of 6 complex points. To combine the 

higher parallelism of the 6-FFTs and the possibility of processing 

sequences having length of any power of 6.The simultaneous 

operation of multipliers and adder-subtracters implicit in the 3/6 

FFT, leads to faster operation at the same degree of pipeline. The 

3/6 FFT algorithm is implemented in Xilinx FPGA Spartan 3E. 
 

Keywords— Fast Fourier transform (FFT), Field Programmable Gate 

Array (FPGA), 3/6 FFT.  

I. INTRODUCTION 

 Discrete Fourier transform (DFT) is one of the most 

important tools used in almost all fields of science and 

engineering, DFT can be implemented with efficient algorithms 

generally classified as fast Fourier transforms (FFT). The most 

widely used approaches are so-called the algorithms for 6m , 

such as radix-3, radix-6 and split radix FFT (SRFFT). 

Considerable researches have carried out and resulted in the 
rapid development on this class of algorithms. The algorithm 

decompose the DFT into one length-N/3 and four length-N/6 

sub-DFT . The flexibility of the decomposition enables the 

algorithm be competent at the implementation of a non-power-

of-six DFT, while its length can exactly divided by 6. 

Appropriate permutations are used for sub-DFTs input 

sequences to reduce the computational intension.The rest of the 

brief is organized as follows. Section II proposed system 

introduction III compute the DFT  using proposed algorithm and 

compares, analyzes the performance of the proposed algorithm 

with existing algorithm. Section IV System implementation 

Section V Execution output and Section VI conclusions and the 

future works. 

II. THE PROPOSED RADIX 3/6 ALGORITHM 

Let us recall the definition of DFT:
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Where wN=e-j2π/N ,j=-1 , the length N of sequence x(n) is 

assumed as an integer, which is divisibly by six. For lengths N 

of DFT, powers-of-six would be best for the proposed 

algorithm. Obviously, the DFT can be divided into three length 

N/3 sub-DFTs. In order to derive a best possible algorithm, we 

continue to decompose the three sub-DFTs. Due to no scaling 

factor in front of it, the first sub-DFT should be let as it is and 

directly go into the recursive decomposition of the next stage. 

The other two sub DFTs are divided into four sub-DFTs of 
length-N/6 .  

Actually, if the length of a DFT can be divided by 6, the DFT 

can be decomposed by the algorithm. The generalized length- N 

can be assumed as N=2rx3m, where r≥m-1. The decomposition 

of a DFT of size N=2rx3m is denoted by,          
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Where the four length- N/6 sub DFTs are reordered. To 

simplify the description, (1) can be expressed by, 
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Where,                
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In (3), 
2 3r m

k k

kw w B and 
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k k

kw w F   can be treated in pairs, 

since 
2 3r m

k kw w and 
2 3r m

k kw w  is a conjugate-pair. In the 

similar way,
3m

kw can be handled with in pairs. The direct 

implementation performs many unnecessary operations, 

computations of
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 turn 

out to share many calculations each other. In particular, if we 

add to, the size-N/6 to k DFT are not changed (because they are 

periodic in k), while the size-N/3 DFT is unchanged if we add to 

2N/6 to k. So, the only things that changes are the,  

  terms. In order to reduce the number of 
the operations, the following six identities are necessary, 
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A complete output set  can be obtained if we let range 

from 0 to N/6 -1in the above six equations. We now summarize 

the scheme of the proposed radix-3/6 FFT algorithm. The initial 

input sequence of length- is decomposed into five sub-

sequences. This process is repeated successively for each of new 

sub-sequences, until the sizes of all subDFTs are indivisible by 
6. Figs. 1,2 illustrate the flow graph of 3 and  6point radix 3/6 

algorithm (2-points and 4-points FFT can be performed with 

SRFFT). 

In this section, we consider the performance of the proposed 

algorithm by analyzing the computational complexity and 

comparing it with existing algorithms. Let  and  be, 

respectively the number of multiplications and additions. We 

assume that a 3-point DFT requires 4 real multiplications and 12 

real additions (some algorithm assumes that a 3-point DFT is 

calculated with 2 real multiplication and 12 real additions, since 

one need not multiply ½ and the multiplication by 1/2 can be 

evaluated with bit shift). 

 
                                       Fig. 1 Flow graph of 3-point FFT 

 

 

     
Fig. 2 Flow graph of 6-point 3/6 FFT 

 

 
Fig. 3 Flow graph of 12-point 3/6 FFT 

III. PERFORMANCE ANALYSIS 

The general butterfly of the proposed algorithm requires 16 

real multiplications and 40 real additions. In general butterfly 

we evaluate (4) with 8 real multiplication and 16 real additions. 

Because =  and = .We 

calculate (14) with 8 real multiplications and 8 real additions 

because we share real additions with which have been 
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undertaken in evaluating (4). We evaluate (6) with only 4 real 

additions, because 1+u+u*=0. Furthermore, we perform (7)–(8) 

at cost of 12 real additions, because all multiplications and some 

additions have been calculated in (4)–(6). 

There are six special cases. The first special case, when k=0 

requires 8 real multiplications and 32 real additions. In this 
case,(4) is evaluated with 8 real additions (one need not multiply 

1), (5) is implemented with 4 real multiplications and 6 real 

additions because we use real additions which have been 

undertaken in evaluating above calculation, (6) can be calculated 

with only 2 real additions, because we need not add the 

duplicate portion between u and u*. In the same way, (4)–(5) 

can be performed by only 4 real multiplications and 16 real 

additions. This special butterfly is illustrated in Fig. 2. The 

second special case,when k=2r-2 x 3 m-1, requires the number of 

operations equals that of the first case. In this case, all rotator 

factors of subDFTs in (1) can be omitted, so it can be evaluated 

with 8 real additions, (4) can be implemented with 4 real 
multiplications and 6 real additions,(4) can be calculated with 

only 2 real additions. Similarly, (6)–(7) can be performed by 

only 4 real multiplications and 16 real additions. 

The decomposition in the proposed algorithm is conducted 

recursively until the lengths of all sub DFTs cannot be exactly 

divided by 6. In general, there are only 1 the first special 

butterfly (if r≥1and m≥1), 1 the second special case butterfly (if 

r≥2and m≥1 ), 1 the third special case butterfly and 1 the fourth 

special case butterfly (if r≥3and m≥1  ). The total number of the 

fifth and sixth type of butterflies is 2r-1 -4. In additions, there are 

2r-1  (3m-1- 1)general butterfly. Thus, the arithmetic complexity of 
the proposed algorithm can be given as follows, 
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Equation (8) and (9) gives the number of multiplications and 

additions required by the proposed radix 3/6 algorithm. It is seen 

that the complexity of this algorithm is less than that required by 

other algorithms. 

The third special case is when k=2r-3x3m . This butterfly 

requires 12 real multiplications and 36 real additions. In this 

case, (13) requires extra 4 real multiplication and 4 real 

additions over the first case. The computations of the rest 

equations are similar with that of the second case.The fifth 

special case is when k mod 3m and k mod 2r-3≠0. This butterfly 

requires 16 real multiplications and 36 real additions. In this 

case, (13) requires extra 8 real multiplication and 4 real 
additions over the first case. The sixth special case is when ,k 

mod 3m-1=0,k mod 3m≠0 and k mod 2r-3 . This butterfly requires 

16 real multiplications and 36 real additions. In this case, (7) 

requires extra 8 real multiplication and 4 real additions over the 

second case. 

IV. SYSTEM IMPLEMENTATION 

 Implementation Of 3/6 SRFFT Algorithm in VLSI 

Technology  use the Spartan 3E.It provides a powerful and 

highly advanced self-contained development platform for 

designs targeting the Spartan 3E FPGA from Xilinx. It features a 

500K gate Spartan 3E FPGA with a 32 bit RISC processor and 

DDR interfaces. The board also features a Xilinx Platform 
Flash, USB and JTAG parallel programming interfaces with 

numerous FPGA configuration options via the onboard Intel 

StrataFlash and ST Microelectronics Serial Flash. The board is 

fully compatible with all versions of the Xilinx ISE tools 

including the free Web Pack. The board ships with a power 

supply and USB cable for programming so designs can be 

implemented immediately with no hidden costs. The Spartan 3E 

Starter board is also compatible with the Micro Blaze Embedded 

Development Kit (EDK) and Pico Blaze from Xilinx.  

Implementing the 12  point  3/6 SRFFT algorithm  in     Xilinx 

FPGA  and check the corresponding output in the 2 No’s of   
20x4 LCD display and checking the corresponding algorithm  

over area consumption  in FPGA. Implementation of 3/6 SRFFT 

algorithm reduce the  area consumption and use less number of 

LUT. 

 

Xilink Spartan -3E FPGA Board 

The Xilinx Spartan 3E FPGA board is a robust board 
containing many features. A list of key features and their 

location on the board is listed below, and all of these features are 

explained in great detail in the manual provided with the FPGA. 

 9-pin RS-232 Serial Port 

 JTAG port for low-cost download cable 

 JTAG download/debug port compatible with the Xilinx 

Parallel Cable IV and 

 AC power adapter input for included international 

unregulated 9Vac power supply 

 1Mbit Xilinx XCF01S Platform Flash, in-system 

programmable configuration PROM, 9-pin RS-232 

Serial Port, JTAG port for low-cost download cable 
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 100,000-gate Xilinx Spartan-3E XC3S100E FPGA in a 

100-very thin quad flat package (XC3S100VQG100C

                     
Fig. 4 Xilinx Spartan-3E FPGA Kit Block Diagram 

 

 AC power adapter input for included international 

unregulated 9Vac power supply 

 Power-on indicator LED, On-board 3.3V , 2.5V , and 

1.2V regulators 

V. HARDWARE RESULT 

The output of the project is shown with FPGA kit and with the 

help of 20*4 the output is displayed in the binary where in real 
and imaginary terms the execution can be done in the 

performance of the input data’s given in the programs. 

 

Fig. 5 Output FPGA kit display 

LCD display output 

The display is the LCD display of 20*4, where in the binary 

data. 12 point output is implemented with three conditions.  

 

1. When both input are low(S0=S1=0), LCD display the 

first four point  output(A,B,C,D) 
2. When S0 = 0 and S1=1, LCD display the next four 

point output(E,F,G,H). 

3. When S0 = 1 and S1=1, LCD display the next four 

point output(I,J,K,L). 

 
Fig. 6  LCD Display Output 

VI. SIMULATION OUTPUT 

The 12 point DFT sequence has been implemented in VLSI 

and simulated using modelsim based on radix 3/6 FFT 

algorithm.  

 

 

Fig 7 Simulation screenshot 1 

International Journal of Advanced and Innovative Research (2278-7844) / # 90 / Volume 3 Conference Issue

 National Conference Power Electronics Applications In Renewable Energy© 2014 IJAIR. ALL RIGHTS RESERVED   90



The output is checked using the 12 point radix 3/6 flow graph 

theoretically and it matches with the simulated results. Fig. 7  

shows the simulation results of 12 point DFT sequence. Table I 

and Table II shows the device utilization summary of 12 point 

DFT sequence in Xilinx XSE. Simulating the 12 point SRFFT 

with twelve point input(include both real and imaginary value). 

Area Consumptions 

The Area consumed in the radix 3/6 FFT Algorithm are 

reduced in number of slices and the number of flip flops and 

number of 4 input LUTs and number of bonded IOBs and 

number of GCLKs are performed in the area consumed are very 

less and the area are configured target device are performed in 

this algorithm. 

TABLE I 

DEVICE UTILIZATION OF NORMAL FFT 

 

 

TABLE III 

DEVICE UTILIZATION OF SRFFT 

 
 

VII. CONCLUSION AND FUTURE WORK 

The implementation of radix 3/6 FFT algorithm is new type 

of algorithm where as the cooley tukey algorithm is the oldest 

algorithm and it takes more delay in transferring the data. Here 

we can able to transfer the data in very high speed while 

compared to the performance of the Digital signal processing 

method. The area consumed in this FPGA is very less compared 

to the cooley turkey algorithm method. The splices are very less 

consumed and the data are stored in the PROM memory and 

therefore the data cannot reduce the memory storage and it saves 

the output till the next data are stored in the processor data 
functions. There are two modes of testing the data in binary 

form one in the form of modelsim software and other with the 

FPGA Xilinx Spartan 3E kit. The inputs are given in the 

program and the outputs are checked in the LCD displays. Thus 

the output is performed for reducing time delay and area 

consumption and logical verification.  

 

Scope For Future Work 

The implementation of radix 3/6 FFT algorithm is new type of 

algorithm where as the cooley tukey algorithm is the oldest 

algorithm and it takes more delay in transferring the data. For 

further representation for this algorithm we can able to 

implement in ASIC as a hardware chip for direct data. 
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