
A Succinct Answering Prototype for XML Data
K.Chiranjeevi

1
, Kumar Vasantha

2
, Dr.C.Mohan Rao

3
.

1
. M.Tech II Semester, Computer Science & Engineering, Avanthi Institute of Engineering & Technology,AP,India.

2
. Head of the Department, Computer Science & Engineering, Avanthi Institute of Engineering &Technology,AP,India.

3.
 Professor&Principal, Avanthi Institute of Engineering &Technology,AP,India.

Abstract: Extracting query from the xml data is

very time taking task. It is harder task for more

amounts of xml documents. So introduced tree

based extraction prototype. It first finds association

rules and then finds sub trees among the sub-trees.

Then analyze the query then find the answer from

the tree based association rules. It provides

intentional answers from the extracted gist. Gist

means the overall idea of the data. From the gist it

answers the query and it takes less time to process.

It maintain sub trees and their sequences for xml

documents. This prototype works efficiently and

accurate answers to the queries.

I. INTRODUCTION

Extensible Markup Language (XML) is

a markup language that defines a set of rules for

encoding documents in a format that is

both human-readable and machine-readable and is

defined the XML 1.0 Specification

produced by

the W3C and several other related specifications

all gratis open standards. The design goals of

XML emphasize generality and usability over the

Internet. The textual data format with strong

support via Unicode for the languages. Although

the design of XML focuses on documents is widely

used for the representation of arbitrary data

structures and many application programming

interfaces (APIs) have been developed to aid

software developers with processing XML data

and several schema systems exist to aid in the

definition of XML-based languages.

An XML schema is a description of a type

of XML document and is expressed in terms of

constraints on the structure and content of

documents of that type above and beyond the basic

syntactical constraints imposed by XML itself,

constraints are generally expressed using some

combination of grammatical rules governing the

order of elements and Boolean predicates that the

content must satisfy the data types governing the

content of elements and attributes and also more

specialized rules such as uniqueness and referential

integrity constraints. There are languages

developed specifically to express XML and which

is native to the XML specification is a schema

language that is of relatively limited capability but

that also has other uses in XML aside from the

expression of schemas. There are two more

expressive XML schema languages in widespread

use are XML Schema (with a capital S) and

RELAX NG. The mechanism for associating an

XML document with a schema varies according to

the schema language and may be achieved via

markup within the XML document itself or via

some external means.

 There are two main approaches to XML

document access: keyword-based search and

query-answering. Paradigm for information

discovery especially over HTML documents in the

World Wide Web. The key advantage of keyword

search querying is its simplicity – users do not

have to learn a complex query language and can

issue queries without any prior knowledge about

the structure of the underlying data and the

keyword search query interface is very flexible and

queries may not always be precise and can

potentially return a large number of query results

and especially in large document collections. It is

an important requirement for keyword search is to

rank the query results so that the most relevant

results appear first.

Despite the success of HTML-based

keyword search engines, certain limitations of the

HTML data model make such systems ineffective

in many domains. These limitations stem from the

fact that HTML is a presentation language and

hence cannot capture much semantics. XML data

model addresses this limitation by allowing for

International Journal of Advanced and Innovative Research (2278-7844) / # 642 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 642

http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/File_format
http://en.wikipedia.org/wiki/Human-readable_medium
http://en.wikipedia.org/wiki/Machine-readable_data
http://en.wikipedia.org/wiki/W3C
http://en.wikipedia.org/wiki/Gratis
http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Application_programming_interfaces
http://en.wikipedia.org/wiki/Application_programming_interfaces
http://en.wikipedia.org/wiki/Application_programming_interfaces
http://en.wikipedia.org/wiki/XML_schema
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Boolean_predicates
http://en.wikipedia.org/wiki/Uniqueness
http://en.wikipedia.org/wiki/Referential_integrity
http://en.wikipedia.org/wiki/Referential_integrity
http://en.wikipedia.org/wiki/Referential_integrity
http://en.wikipedia.org/wiki/XML_Schema_(W3C)
http://en.wikipedia.org/wiki/RELAX_NG

extensible element tags it can be arbitrarily nested

to capture additional semantics. As an illustration,

consider the repository of conference and

workshop proceedings. Each conference/workshop

has the full-text of all its papers. In addition,

information such as titles and references and

sections and sub-sections are explicitly captured

using nested, application specific XML tags are not

possible using HTML.

Given the nested, extensible element tags

supported by XML, it is natural to exploit this

information for querying. There is an approach is

to use sophisticated query languages such as Query

to query XML documents. This approach can be

very effective in some cases, a downside is that

users have to learn a complex query language and

understand the schema of underlying XML. An

alternative approach, and the one and in this paper

we consider to retain the simple keyword search

query interface, but exploit XML’s tagged and

nested structure during query processing. Keyword

searching over XML introduces many new

challenges. The result of the keyword search query

is not always the entire document and it can be a

deeply nested XML element. It will be good to

return the XML element corresponding to the sub-

section rather than returning the entire workshop

proceedings (as would be done in a standard

HTML search). XML keyword search results can

be arbitrarily nested elements, and returning the

―deepest‖ node containing the keywords usually

gives more context information.

Frequent, dramatic outcomes of this

situation are either the information overload

problem and where too much data are included in

the answer because the set of keywords specified

for the search captures too many meanings the

information deprivation problem and where either

the use of inappropriate keywords the wrong

formulation of the query and prevent the user from

receiving the correct answer. Consequence when

accessing for the first time a large data set and

gaining some general information about its main

structural and semantic characteristics helps

investigation on more specific details. In this paper

addresses the need of getting the gist of the

document before querying it and both in terms of

content and discovering recurrent patterns inside

XML documents provides high-quality knowledge

about the document content: frequent patterns are

in fact intentional information about the data

contained in the document itself and they specify

the document in terms of a set of properties rather

than by means of data. It was opposed to the

detailed and precise information conveyed by the

data this information is partial and often

approximate because of synthetic and concerns

both the document structure and its content.

II.RELATED WORK

XQuery is currently still under

development by the W3C (XQuery 1.0), and is also

known as W3C XML Query. The purpose of

XQuery is extracting data from entire XML

documents, collections of XML documents, or

only document fragments. XQuery is derived from

an XML query language called Quilt and which is

in turn borrowed features from several other

languages and including XPath 1.0, XQL, XML-

QL, SQL, and OQL. XQuery 1.0 is the superset of

XPath 2.0 both in syntax and semantics. XQuery is

a functional expression language that can be used

to query or process XML data or any data that can

be represented within the same model as XML.

Being purely an expression language, XQuery

programs are easier to understand and maintain

than XSLT, because they do not include the

complexities or management of templates (rule-

based system) (Funderburg, et al. 2002). This is

especially true for highly structured data, and for

longer programs. XQuery will still be able to

effectively process semi-structured data. The query

language is small and powerful. Moreover,

XQuery is a full-fledged programming language. It

provides if/then statements, loops, variables,

quantified expressions and a set with the most

important functions. Applications are made simpler

by performing a single XQuery request over these

views and receiving satisfactory results in one step

also it has both an easy, human readable form and

an XML representation (IBM Journal 2002).

XQuery can be used to query XML data

which has no schema at all or XML Schema or by

a Document Type Definition (DTD). The data

model used by XQuery has some differences from

the classical relational model. Unlikely to

International Journal of Advanced and Innovative Research (2278-7844) / # 643 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 643

relational model, it has no hierarchy treats order as

insignificant and does not support identity and it is

a functional language and instead of executing

commands as procedural languages do every query

is an expression to be evaluated expressions can be

combined quite flexibly with other expressions to

create new expressions. When we compare XPath

and XQuery, we see that XPath only designed for

select a node out of an existing XML document or

database. XPath can't create new XML, it can't

select only part of an XML node, and it can be

hard to read and understand. XPath also can't

define variables or namespace bindings and it has a

very simple type system, essentially just data types

such as string and Boolean node set. If we need to

work with date values and calculate the maximum

of a set of numbers or sort a list of strings and then

XPath is not suitable for this method. XQuery

takes a different approach from XSLT 1.0. They

both produce same results but XQuery is more

functional. XQuery is very good at expressing

joins and sorts and can operate sequences of values

and nodes in arbitrary order and ordered

documents and XQuery takes a procedural

approach to query processing, making it easy to

write user defined functions, including recursive

ones, but more difficult to perform pattern

matching. Support for XML Schema 1.0 is built

into XQuery and XQuery was designed with

optimization in mind.

Funderburg points that number of special

features can be added to the database XQuery

processor which makes it different than other

query languages. A default view can be generated

across the entire database. If this is supported,

seamless queries against meta-data and data will be

possible. For example, one can ask for all the

tables that have a column named salary and have a

value larger than 10000. XML query languages

naturally query across meta-data (tags) and data

(node values). Exposing any XML view affords

this ability. As more data are placed in the view,

the queries can become more powerful and

abstract. For example, a view could also expose

type, ownership, and data cataloging information

as well as data values.

A. XML Mining Techniques

One of the simple methods to mine XML

documents is probably to transform the data from

XML to relations. However, the drawbacks of this

method are:

1) The transformation itself is usually complex and

time-consuming;

2) It may lose some important information for

generating rules of interests, for example, some

explicit hierarchical relationship between XML

elements may become inexplicit when transformed

into relations. Before knowledge discovery in

XML documents occurs, it is necessary to querying

XML tags and content to prepare the XML

material for mining. A structured query language

based query can extract data from XML

documents.

a)Tree Mining over XML

The method proposed in (Zaki, et.al 2003)

finds frequent structures within XML documents in

order to classify them, i.e., a set of pre-classified

XML documents (training dataset) is used to

develop a model to classify XML documents (test

dataset) that still do not belong to a class. The

model is created using the underlying structure of

the pre-classified documents.

Zaki models an XML document as an ordered,

labeled, rooted tree. There is no distinction

between attributes and elements of an XML

document; both are mapped to the label set. More

precisely an XML document is denoted as T = (V,

B), where V is the set of labeled nodes, and B the

set of branches. The label of each node is taken

from a set of items L = {1, 2, 3, . . . ,m}; different

nodes can have the same label. Each branch, b =

(x, y), is an ordered pair of nodes where x is the

parent of y.

Consider a node x in a tree T with root r,

then any node y on the unique path from r to x is

called an ancestor of x, and is denoted as y ·l x,

where l is the length of the path from y to x. If y ·1

x that is y is an immediate ancestor of x), then y is

called the parent of x, and x the child of y. A tree S

= (Vs,Bs) is an embedded sub tree of T = (V,B),

denoted as S ¹ T, if and only if Vs μ V , b = (x, y) 2

Bs, and x is an ancestor of y in T. Note that in the

traditional definition of an induced sub tree, for

International Journal of Advanced and Innovative Research (2278-7844) / # 644 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 644

each branch b = (x, y) 2 Bs and x must be a parent

of y in T.

b)Mining association rules using Query

Wan and Dobbie presented a new native

XML data mining approach in (Wan and Dobbie

2003).The authors show that extracting association

rules from XML documents without any

preprocessing or post-processing using XQuery is

possible. They propose the XQuery

implementation of the well-known Apriori. XML

document structure proposed by the authors to

mine association rules over XML reflects simply

the relational model of the Association Rule

Mining problem. The set of transactions is

identified by the tag <transactions> and each

transaction in the transactions set is identified by

the tag <transaction>. The set of items in each

transaction is identified by the tag <items> and an

item is identified by the tag <item>. The Apriori

algorithm is implemented in a classical way: first

an XQuery expression is used to create the set of

frequent items then another XQuery expression is

used to obtain the association rules from the

frequent item sets.

c)Scientio XML Miner

XML Miner classifies XML fragments

within one or more XML documents. The training

set and test set are selected by using XPath

expressions. The classifier model is created using

Fuzzy Logic, i.e., an extension to conventional

logic that allows representing the truth of an

assertion by any real number between 1 and 0.

Llogic allows only the value 1 that states the

truthful of an assertion and 0 that states is

falsehood and using Fuzzy Rules XML Miner

generates a rule set that explains and predicts

selected values in a test dataset. The resulting rule

set is expressed in Meta rule, a dialect of XML. As

an example the Fuzzy Logic uses the numeric

values of the characteristic of the Iris species to

define Fuzzy concepts of small, medium and large

for each characteristic of the flower. Then the

model is applied to the rest of the data to predict

the species.

In particular, the idea of mining association

rules [1] to provide summarized representations of

XML documents has been investigated in many

proposals either by using languages (e.g., XQuery

[29]) and techniques developed in the XML

context by implementing graph- or tree-based

algorithms. Our approach introduce a proposal for

mining and storing Tree-Based Association Rules

(TARs) as a means to represent intentional

knowledge in native XML TAR represents

intentional knowledge in the form SB) SH and SB

is the body tree and SH the head tree of the rule

and SB is a sub tree of SH. The rule SB) SH states

that, if the tree SB appears in an XML document D

and is likely that the ―wider‖ tree SH also appears

in D.

The information embodied in TARs

provides a valid support in several cases.

1. It allows to obtain and store implicit

knowledge of faces a data set for the first time and

she/he does not know its features and frequent

patterns provide a way to quickly understand what

is contained in the data set; b) besides intrinsically

unstructured documents and there is a significant

portion of XML documents which have structure

because its only implicitly their structure has not

been declared via a DTD or an XML-Schema [27].

Since most work on XML query languages has

focused on documents having a known structure

querying the above-mentioned documents is quite

difficult because users have to guess the structure

to specify the query conditions correctly. Tree

based association rules represent a data guide that

helps users to be more effective in query

formulation; c) it supports query optimization

design and first of all because recurrent structures

can be used for physical query optimization to

support the construction of indexes and the design

of efficient access methods for frequent queries

also because frequent patterns allow to discover

hidden integrity constraints can be used for

semantic optimization; d) for privacy reasons and

document answer might expose a controlled set of

TARs instead of the original document as a

summarized view that masks sensitive details [9].

2. TARs can be queried to obtain fast

although approximate answers. Approximate

answers particularly useful not only when quick

answers are needed but also when the original

documents are unavailable. In fact it once extracted

International Journal of Advanced and Innovative Research (2278-7844) / # 645 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 645

TARs can be stored in a (smaller) document and be

accessed independently of the data set they were

extracted from. Summarizing, TARs are extracted

for two main purposes: 1) to get a concise idea—

the gist—of both the content structure of an XML

document and 2) and to use them for intentional

query-answering allowing the user to query the

extracted TARs rather than the original document.

B. Tree-Based Association Rules

Association rules [1] describe the co-occurrence of

data items in a large amount of collected data and

are represented as implications of the form X Y

is relation and where X and Y are two arbitrary

sets of data items, such that X ∩Y =ф ;. The

quality of an association rule is measured by means

of support and confidence, Minimum Support

corresponds to the frequency of the set X ᵁ Y in

the data set and while confidence corresponds to

the conditional probability of finding Y , having

found X and is given by supp(X ᵁ Y)/supp(X). In

this paper, we extend the notion of association rule

introduced in the context of relational databases to

adapt it to the hierarchical nature of XML

documents. Following the Info-set conventions and

we represent an XML document as a tree
2
(N,E, r; l,

ci), where N is the set of nodes, r € N is the root of

the tree and edges E is the set of edges, l :NL is

the label function which returns the tag of nodes

(with L the domain of all tags) and c:NC u {┴}

is the content function which returns the content of

nodes (with C the domain of all contents) and let

consider the element-only Info-set content model

[28], where XML non-terminal tags include only

other elements and attributes while the text is

confined to terminal elements. We are interested in

finding relationships among sub trees of XML

documents.

III.PROPOSED WORK

TAR mining is a process composed of two

steps: 1) mining frequent sub trees with a support

above a user defined threshold from the XML

document 2) computing interesting rules with a

confidence above a user defined threshold, from

the frequent sub trees. As will be discussed in more

detail and the problem of finding frequent sub trees

has been widely treated in the literature [1].

Algorithm 1 presents our extension to a generic

frequent sub tree mining algorithm in order to

compute interesting TARs. Algorithm 1 inputs are

the XML document D the threshold for the support

of the frequent sub trees min supp, and the

threshold for the confidence of the rules, min conf.

Algorithm 1 finds frequent sub trees and then

hands each of them over to a function that

computes all the possible rules depending on the

number of frequent sub-trees and their cardinality

amount of rules generated by a naive Compute-

Rules function may be very high. Given a sub tree

with n nodes, we could generate 2n - 2 rules. This

explosion occurs in the relational context based on

similar features, it is possible to state the following

property allows us to propose the optimized

version of Compute-Rules shown in Function 2.

Algorithm 1. Get-Interesting-Rules (D, minsupp,

minconf)

1: // frequent subtrees

2: FS = FindFrequentSubtrees (D, minsupp)

3: ruleSet =ᵠ ;

4: for all s 2 FS do

5: // rules computed from s

6: tempSet = Compute-Rules(s; minconf)

7: // all rules

8: ruleSet =ruleSet [tempSet

9: end for

10: return ruleSet

Function 2. Compute-Rules ðs; minconfÞ

1: ruleSet =ᵠ; blackList =ᵠ ;

2: for all cs, subtrees of s do

3: if C is not a subtree of any element in

blackList then

4: conf = supp(s) / supp(cs)

5: if conf ≥minconf then

6: newRule =(cs, s, conf,

supp(s)

7: ruleSet =ruleSet

u{newRule}

8: else

9: blackList =blackList u cs

10: end if

11: end if

12: end for

International Journal of Advanced and Innovative Research (2278-7844) / # 646 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 646

13: return ruleSet

In Function 2, TARs are mined exploiting

Remark 1 by generating first the rules with the

highest number of nodes of body tree. Consider

two rules Tr1 and Tr2 whose body trees contain

one and three nodes, suppose both rules have

confidence below the fixed threshold. If the

algorithm considers rule Tr2 first, all rules whose

bodies are induced sub trees of Tr2 will be

discarded when Tr2 is eliminated. So is more

convenient to first generate rule Tr2 and in general

to start the mining process from the rules with a

larger body. We can use this solution we can lower

the complexity of the algorithm though not enough

to make it perform better than exponentially.

Notice that the process of deriving TARs from

XML documents is only done periodically.

Intentional knowledge represents frequent

information to update it and is desirable to perform

such process after a big amount of updates have

been made on the original document. So in the case

of stable documents the algorithm has to be

applied few times or only once (for documents that

do not change).

Once the mining process has finished and

frequent TARs have been extracted and they are

stored in XML format. The decision has been

taken to allow the use of the same language

(XQuery in our case) for querying both the original

data set and the mined rules. Each rule is saved

inside a <rule> element which contains three

attributes for the ID the support and confidence of

the rule that follows the list of elements and one

for each node in the rule head and We exploit the

fact that the body of the rule is a sub-tree of the

head and use a Boolean attribute in each node to

indicate if it also belongs to the body and each

blank node is described by an element <blank>.

Finally, the rules in the XML file are sorted.

One of the (obvious) reasons for using

TARs instead of the original document is that

processing iTARs for query answering is faster

than processing. To take full advantage of this and

we introduce indexes on TARs to further speed up

the access to mined trees—and in general of

intentional query-answering. The literature survey

the problem of making XML query-answering

faster by means of path-based indexes has been. In

general path indexes are proposed to quickly

answer queries that follow some frequent path

template and are built by indexing only those

paths having highly frequent queries. It start from a

different perspective we want to provide a quick

and often approximate, answer also to casual

queries. Given a set R of rules and the index

associates with every path p present in at least one

rule of R, the references to rules that contain p in

SH and an index is an XML document containing a

set of trees T1 to Tn such that each node n of each

tree Ti contains a set of references to the rules

containing in SH the path from the root node of Ti

to n. A TAR-index contains references both to

iTARs and sTARs and is constructed by Algorithm

3.

Algorithm 3. Create-Index (D)

1: for all Di € D do

2: for all dj € Di with j € (2, 3, . . . n) do

3: referencesi(root(d1)) =

references(root(d1))

[references(root(dj))

4: sumChildren (d1, dj)

5: end for

6: end for

7: return D

Function 4. sumChildren (T1,T2)

1: for all x €children(root(T2)) do

2: if Ǝ c €children(root(T1)) | c = x then

3: references(root(c)) = references(root(c))

[references(root(x))

4: c = sumChildren(c,x)

5: else

6: addChild(root(T1),x)

7: end if

8: end for

9: return T1

Before applying the algorithm, two sets A

and C are constructed containing consequent trees

of all the TARs which are indexed. Each tree Ti in

the index is annotated in a way that each node

contains the reference to the ID of the rule it comes

from; then trees are scanned looking for those that

have the same root. After this step two sets P =

(P1, . . . , Pn) and D = (D1, . . ,Dm) are obtained

that are partitions of A and C, respectively, where

each Pi and Di contains trees having same root.

International Journal of Advanced and Innovative Research (2278-7844) / # 647 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 647

The Algorithm 3 is applied to merge the trees in

each set using the same rationale behind the Data

Guide construction procedure, in particular, for

each set, the first tree is merged together with the

other and this means that the references of its root

are added to the references of the roots of the other

trees (line 3) and the same procedure is applied

recursively to the children of the two roots (line 4).

iTARs provide an approximate intentional

view of the content of an XML document which is

in general more concise than the extensional one

because it describes the data in terms of its

properties and because only the properties that are

verified by a high number of items are extracted

and a user query over the original data set can be

automatically transformed into a query over the

extracted. The answer will be intentional and

rather than providing the set of data satisfying the

query the system will answer with a set of

properties that these data frequently satisfy along

with support and confidence.

There are two major advantages: 1)

querying iTARs requires less time than querying

the original XML document; 2) approximate

intentional answers are in some cases more useful

than the extensional ones . For example, if a user

asks for the incidents registered in the data, the

extensional answer is the list of all incidents

(possibly megabytes) to be inspected manually

while an intentional answer might be that ―80

percent of incidents were robberies.‖

 Class 1: σ/π-queries. Used to impose a

simple, or complex restriction on the value of an

attribute or the content of a leaf node possibly

results are ordered. The query imposes some

conditions on a node’s content and on the content

of its descendants orders the results according to

one of them and returns the node itself. For

example ―Retrieve all incidents where Full Metal

Jacket types of bullets were used and ordered by

the date the incident was reported.‖

Class 2: count-queries. Used to count the

number of elements having a specific content and

query creates a set containing the elements which

satisfy the conditions and then returns the number

of elements in such set used to select the best k

answers satisfying a counting and grouping

condition and this query counts the occurrences of

each distinct value of a variable in a desired set;

then orders the variables with respect to their

occurrences and returns the most frequent k. Let us

take an example that Retrieve the k most used

types of bullets and in all classes of queries

conditions can be imposed on the descendants of

the element that is returned and not on its

ancestors. The query containing conditions on the

contents of an element is supposed to be as

depicted in Fig. 8b (where x is the element

returned by the query). Given query qE, a file

containing iTARs and the index file and it is

possible to obtain the intentional answer in two

steps: 1) rewrite qE into qI ; 2) apply qI on the

intentional knowledge. a) access the index

retrieving the references to the rules satisfying the

conditions in qI; b) access the iTARs file returning

the rules whose references were found in Step a. In

Step 1, we start from the extensional query qE and

apply a rewriting algorithm to obtain the

intentional query I . We first extract from qE the

following variables and lists:

. vF , the path in the FOR clause of qE.

. vOB, the variable in the ORDER BY clause of qE.

. vDV , the variable in the distinct-values function

of qE.

. VW= (vwj,vwj is a variable of the paths in the

WHERE clause of qE, in the same orderi. . CONN

= (connk,connk) is a connective in the WHERE

clause of qE, in the same order i.

These objects are the input of Algorithm 5

and its variants whose output is the intentional

query qI . In the following, we describe the

algorithm for obtaining the rewritten query qI for

each class of queries and each algorithm

progressively builds the query qI by concatenating

pieces of the query. Notice that the operator ―_‖ is

used to denote concatenation of strings.

 Algorithm 5. Class1-Query (vF ,VW,CONN,vOB)

1:// the intensional query is empty

2: IQ=ф

3: if VW ≠ф ; then

4: instance rules for paths with a constraint

5: IQ =IQ .get_iTARs(vF; VW;CONN; false)

6: else

7: The path without constraint

8: IQ = IQ . get_sTARs(vF)

International Journal of Advanced and Innovative Research (2278-7844) / # 648 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 648

9: end if

10: order the results

11: IQ= IQ .―for $r in $Rules/Ruleorder by

$r/vF/vOB

return $r‖

12: return IQ

Function 6. get_iTARs for variables and

connectives of count

1: IQ=ф

2: for all vj € variables do

3: if count = true then

4: sql count queries match only in the antecedent

5: Q =Q .―let RefIj:=referencesA(for,

vj)‖

6: else

7: match both in antecedent and consequent

8: Q =Q . ―let RefIj:=references(for, vj)‖

9: end if

10: end for

11: Q = Q. ―let Rules :=‖

12: for all vj 2 variables, j€ (1 . . . n) do

13: Q = Q. ―ruleset($RefIj) connectivej‖

14: end for

15: return Q

Function 7. get_sTARs (variable)

1: Q =―let $RefS:=references(variable,―‖)

let $Rules := ruleset($RefS)‖

2: return Q

According to above algorithms we called that

frame work as Tree Ruler prototype is a tool that

integrates the functionalities are proposed in our

approach and also given an XML document it

enables users to extract intentional knowledge and

compose traditional queries as well as queries over

the intentional knowledge receiving both

extensional and intentional answers and users

formulate XQueries over the original data and

queries are automatically translated and executed

on the intentional knowledge and the answer is

given in terms of the set of TARs which reflect the

search criteria.

Tree Ruler interface offers three tabs. . Get the gist

allows intentional information extraction from an

XML document given the support and confidence

and the files where the extracted TARs and their

index are to be stored. . Get the idea allows

showing the intentional information as well as the

original document to give users the possibility to

compare the two kinds of information.

. Get the answers allows to query the intentional

knowledge and the original XML document and

users have to write an extensional query when the

query belongs to the classes we have analyzed it is

translated and applied to the intentional

knowledge. Once it is executed, the TARs that

reflect the search criteria are shown.

A) Comparative Analysis of previous and

proposed approaches:

There are so much usage is increasing day

by for answering a query, the answering is

predictable but not accurate. The answer content is

so large, so its leads to more occupation of the

memory. Considering the above reasons its taking

more amount of time to search. The content is in

paragraph format there is increasing time

complexity to retrieve the query answer.

So we introduced answering the query is

intentional and accurate by maintaining the content

in xml format. And also by finding the association

rules of the searching query keyword. We

introduced TARs (Tree based Association Rules)

for finding the answering the query. The

information is stored in the xml format, so that it is

very to search and it reduce the processing time

and retrieval time. We can the data find as per the

query is intentional answers based on the mining of

the gist (summary of the content).

Our proposed system process as follows: 1.

first input the content (xml documents) 2. Get the

gist of the xml documents and the extracted

content is stored in TAR and index the sub trees

present in the Tree. 3. According to the query the

system have to give intentional answers, the

system have to compare the content in the

extracted content from the TARs. 4. If the query

belongs to the classes analyzed from the TARs.

International Journal of Advanced and Innovative Research (2278-7844) / # 649 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 649

IV.CONCLUSION

 We introduced tree based query answering

prototype for xml documents. It reduces the

processing of the xml documents. All process

designed the prototype in the form of xml format

only. The extracted sub trees are stored in xml

format only. These are so called as tree based

association rules. It will find the patterns, used to

describe general properties of the schema applying

to all instances are not mined but derived as an

abstraction of similar instance patterns and are less

precise and reliable. This is particularly useful not

only when quick answers are needed but also when

the original documents are unavailable. In

fact, once extracted, tree based association rules

can be stored in a (smaller) document and be

accessed independently of the data set they were

extracted from.

REFERENCES

[1] R. Agrawal and R. Srikant, ―Fast Algorithms for Mining

Association Rules in Large Databases,‖ Proc. 20th Int’l Conf.

Very Large Data Bases, pp. 478-499, 1994.

[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto,

and S. Arikawa, ―Efficient Substructure Discovery from

Large Semi- Structured Data,‖ Proc. SIAM Int’l Conf. Data

Mining, 2002.

[3] T. Asai, H. Arimura, T. Uno, and S. Nakano,

―Discovering Frequent Substructures in Large Unordered

Trees,‖ Technical Report DOI-TR 216, Dept. of Informatics,

Kyushu Univ., http:// www.i.kyushu-

u.ac.jp/doitr/trcs216.pdf, 2003. 1406 IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 24, NO. 8, AUGUST 2012 TABLE

2 Tree-Mining Algorithms Overview

[4] E. Baralis, P. Garza, E. Quintarelli, and L. Tanca,

―Answering XML Queries by Means of Data Summaries,‖

ACM Trans. Information Systems, vol. 25, no. 3, p. 10, 2007.

[5] D. Barbosa, L. Mignet, and P. Veltri, ―Studying the XML

Web: Gathering Statistics from an XML Sample,‖ World

Wide Web, vol. 8, no. 4, pp. 413-438, 2005.

[6] D. Braga, A. Campi, S. Ceri, M. Klemettinen, and P.

Lanzi, ―Discovering Interesting Information in XML Data

with Association Rules,‖ Proc. ACM Symp. Applied

Computing, pp. 450-454, 2003.

[7] Y. Chi, Y. Yang, Y. Xia, and R.R. Muntz,

―CMTreeMiner: Mining both Closed and Maximal Frequent

Subtrees,‖ Proc. Eighth Pacific- Asia Conf. Knowledge

Discovery and Data Mining, pp. 63-73, 2004.

[8] C. Combi, B. Oliboni, and R. Rossato, ―Querying XML

Documents by Using Association Rules,‖ Proc. 16th Int’l

Conf. Database and Expert Systems Applications, pp. 1020-

1024, 2005.

[9] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke,

―Privacy Preserving Mining of Association Rules,‖ Proc.

Eighth ACM Int’l Conf. Knowledge Discovery and Data

Mining, pp. 217-228, 2002.

[10] L. Feng, T.S. Dillon, H. Weigand, and E. Chang, ―An

XMLEnabled Association Rule Framework,‖ Proc. 14th Int’l

Conf. Database and Expert Systems Applications, pp. 88-97,

2003.

[11] S. Gasparini and E. Quintarelli, ―Intensional Query

Answering to XQuery Expressions,‖ Proc. 16th Int’l Conf.

Database and Expert Systems Applications, pp. 544-553,

2005.

[12] B. Goethals and M.J. Zaki, ―Advances in Frequent

Itemset Mining Implementations: Report on FIMI 03,‖

SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 109-117,

2004.

[13] R. Goldman and J. Widom, ―DataGuides: Enabling

Query Formulation and Optimization in Semistructured

Databases,‖ Proc. 23rd Int’l Conf. Very Large Data Bases,

pp. 436-445, 1997.

[14] R. Goldman and J. Widom, ―Approximate DataGuides,‖

Proc. Workshop Query Processing for Semistructured Data

and Non-Standard Data Formats, pp. 436-445, 1999.

[15] A. Inokuchi, T. Washio, and H. Motoda, ―Complete

Mining of Frequent Patterns from Graphs: Mining Graph

Data,‖ Machine Learning, vol. 50, no. 3, pp. 321-354, 2003.

[16] A. Jime´nez, F. Berzal, and J.C. Cubero, ―Mining

Induced and Embedded Subtrees in Ordered, Unordered, and

Partially- Ordered Trees,‖ Proc. 17th Int’l Symp.

Methodologies for Intelligent Systems, pp. 111-120, 2008.

[17] D. Katsaros, A. Nanopoulos, and Y. Manolopoulos,

―Fast Mining of Frequent Tree Structures by Hashing and

Indexing,‖ Information and Software Technology, vol. 47,

no. 2, pp. 129-140, 2005.

[18] M. Kuramochi and G. Karypis, ―An Efficient Algorithm

for Discovering Frequent Subgraphs,‖ IEEE Trans.

Knowledge and Data Eng., vol. 16, no. 9, pp. 1038-1051,

Sept. 2004.

[19] H.C. Liu and J. Zeleznikow, ―Relational Computation

for Mining Association Rules from XML Data,‖ Proc. 14th

ACM Conf. Information and Knowledge Management, pp.

253-254, 2005.

[20] G. Marchionini, ―Exploratory Search: From Finding to

Understanding,‖ Comm. ACM, vol. 49, no. 4, pp. 41-46,

2006.

[21] M. Mazuran, E. Quintarelli, and L. Tanca, ―Mining

Tree-Based Association Rules from XML Documents,‖

technical report, Politecnico di Milano,

http://home.dei.polimi.it/quintare/ Papers/MQT09-RR.pdf,

2009.

[22] M. Mazuran, E. Quintarelli, and L. Tanca, ―Mining

Tree-Based Frequent Patterns from XML,‖ Proc. Eighth Int’l

Conf. Flexible Query Answering Systems, pp. 287-299,

2009.

[23] S. Nijssen and J.N. Kok, ―Efficient Discovery of

Frequent Unordered Trees,‖ Proc. First Int’l Workshop

Mining Graphs, Trees and Sequences, 2003.

International Journal of Advanced and Innovative Research (2278-7844) / # 650 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 650

http://home.dei.polimi.it/quintare/

[24] J. Paik, H.Y. Youn, and U.M. Kim, ―A New Method for

Mining Association Rules from a Collection of XML

Documents,‖ Proc. Int’l Conf. Computational Science and Its

Applications, pp. 936-945, 2005.

[25] A. Termier, M. Rousset, and M. Sebag, ―Dryade: A New

Approach for Discovering Closed Frequent Trees in

Heterogeneous Tree Databases,‖ Proc. IEEE Fourth Int’l

Conf. Data Mining, pp. 543-546, 2004.

[26] A. Termier, M. Rousset, M. Sebag, K. Ohara, T.

Washio, and H. Motoda, ―DryadeParent, an Efficient and

Robust Closed Attribute Tree Mining Algorithm,‖ IEEE

Trans. Knowledge and Data Eng., vol. 20, no. 3, pp. 300-320,

Mar. 2008.

[27] World Wide Web Consortium, XML Schema, http://

www.w3C.org/TR/xmlschema-1/, 2001.

AUTHORS DETAILS:

K.Chiranjeevi received the B.Tech degree in Computer

Science and Engineering from SRKR Engineering College,

Bhimavaram, A.P in 2008. He is pursuing his M.Tech in

Computer Science and Engineering in Avanthi Institute of

Engineering & Technology,Vizag,A.P.His area of interests

include Data Warehousing and Data Mining, and Secure

Database Applications.

Kumar Vasantha, M.Tech (CSE)
He received the B.Tech degree in Computer Science and

Information Technology from JNT University, Kukatpalli,

Hyderabad and received the M.Tech degree in Software

Engineering from JNT University, Kakinada. Presently he is

working as Head of the Department in Computer Science and

Engineering in Avanthi Institute of Engineering and

Technology, Vizag, A.P.His area of interests include Data

Warehousing and Data Mining, RDBMS and Web

Technologies.He has Published more than 10 papers in

various national and international journals.

Dr.C.Mohan Rao.M.Tech (CST), Ph.D.
He received the M.Tech degree in Computer Science and

Technology from Andhra University College of

Engineering,Vizag and awarded PhD by Andhra University

in 2000.He has 18 years of teaching and research experience

and guided number of M.Tech students for their

projects.Presently he is working as Principal in Avanthi

Institute of Engineering and Technology, Vizag,A.P.His

research interests include Data Warehousing and

DataMining,Cryptography and Network Security and

Artificial Intelligence..He has published 23 papers in

various national and international journals.He is guiding 2

research scholars for Ph.D.He received the Best Teacher

Award from JNTU,Kakinada in 2009.

International Journal of Advanced and Innovative Research (2278-7844) / # 651 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 651

