
Efficient Analytical and Implementation work on

Frequent Pattern Mining Algorithms
Prof. Paresh Tanna

#1
, Dr. Yogesh Ghodasara

*2

#1
School of Engineering – MCA Department, RK. University, Rajkot, Gujarat, India

*2
College of Information Tech., Anand Agriculture University, Anand, Gujarat, India

1paresh.rkcet@gmail.com

2yrghodasara77@yahoo.co.uk

Abstract—Apriori, DHP and ECLAT are the best-known basic

algorithms for mining frequent patterns in a dataset. Here we

describe implementations of these three algorithms that use

several optimizations to achieve maximum performance with

efficiency. The Apriori implementation is based on a k-1 itemset

prefix and uses a recursive scheme to count the transactions. The

DHP uses the hashing technique to reduce number of candidate

set and dataset size in each step. The ECLAT implementation

uses bit matrices to represent transactions lists.

Keywords— Apriori, DHP, ECLAT, frequent pattern mining,

association rule.

I. INTRODUCTION

Finding frequent itemsets in a set of transactions is a

popular method for so called market basket analysis, which

aims at finding regularities in the shopping behaviour of

customers of supermarkets, mail order companies, online

shops etc. In particular, it is tried to identify sets of products

that are frequently bought together [6].

The main problem of finding frequent itemsets, i.e.,

itemsets that are contained in a user specified minimum

number of transactions, is that there are so many possible

sets, which renders approaches infeasible due to their

unacceptable execution time[4,6]. Among the more

sophisticated approaches three algorithms known under the

names of Apriori[1], DHP[2] and ECLAT[3] are most popular.

All rely on a top down search in the subset lattice of the items.

An example of such a subset lattice for five items is shown

in Table 1, 2, 3 and 4.

To structure the search, all three algorithms organize the

subset lattice as a prefix tree, which for five items is

shown in Table 1, 2, 3 and 4. In this, those itemsets are

combined in a set which have the same prefix w.r.t. to some

arbitrary, but fixed order of the items (in the five items

example, this order is simply a, b, c, d, e). With this

structure, the itemsets contained in a node of the tree can be

constructed easily in the following way: Take all the items

with which the edges leading to the node are labelled (this is

the common prefix) and add an item that succeeds, in the

fixed order of the items, the last edge label on the path. Note

that in this way we need only one item to distinguish between

the itemsets represented in one node, which is relevant for

the implementation of three algorithms[6].

The main differences between Apriori, DHP and ECLAT are

how they traverse this prefix tree and how they determine

the support of an itemset, i.e., the number of transactions the

itemset is contained in. Apriori traverses the prefix tree in

breadth first order, that is, it first checks itemsets of size 1,

then itemsets of size 2 and so on. Apriori determines the

support of itemsets either by checking for each candidate

itemset which transactions it is contained in, or by traversing

for a transaction all subsets of the currently processed size

and incrementing the corresponding itemset counters. The

latter approach is usually preferable[1].

Apriori is a classic algorithm for frequent itemset mining

and association rule learning over transactional databases[5].

It proceeds by identifying the frequent individual items in the

database and extending them to larger and larger itemsets as

long as those itemsets appear sufficiently often in the

database. The frequent itemsets determined by Apriori can be

used to determine association rules which highlight general

trends in the database: this has applications in domains such

as market basket analysis[1,5].

DHP can be used for efficient large itemset generation. It

has two major features: efficient generation for large itemsets

and effective reduction on transaction database. It uses

hashing technique. In particular, for the large 2-itemsets,

where the number of candidate large itemsets generated by

DHP is, in orders of magnitude, smaller than that of by

Apriori method[2]. Thus improving the performance

bottleneck of the whole process. It uses pruning technique to

reduce the size of the database progressively [2].

ECLAT, on the other hand, traverses the prefix tree in depth

first order. That is, it extends an itemset prefix until it

reaches the boundary between frequent and infrequent

itemsets and then backtracks to work on the next prefix (in

lexicographic order w.r.t. the fixed order of the items)[3,6].

ECLAT determines the support of an itemset by constructing

the list of identifiers of transactions that contain the itemset.

It does so by intersecting two lists of transaction identifiers of

two itemsets that differ only by one item and together form

the itemset currently processed[3].

International Journal of Advanced and Innovative Research (2278-7844) / # 606 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 606

II. APRIORI IMPLEMENTATION

Apriori is designed to operate on databases containing

transactions (for example, collections of items bought by

customers, or details of a website frequentation). Each

transaction is seen as a set of items (an itemset). Given a

threshold C, the Apriori algorithm identifies the itemsets

which are subsets of at least C transactions in the database.

Apriori uses a "bottom up" approach, where frequent subsets

are extended one item at a time (a step known as candidate

generation), and groups of candidates are tested against the

data. The algorithm terminates when no further successful

extensions are found. Apriori uses breadth-first search and a

Hash tree structure to count candidate itemsets efficiently. It

generates candidate itemsets of length k from itemsets of

length k-1. Then it prunes the candidates which have an

infrequent sub pattern. According to the downward closure

lemma, the candidate set contains all frequent k-length

itemsets. After that, it scans the transaction database to

determine frequent itemsets among the candidates[1,6].

Table :1 : The Apriori Algorithm—An Example

Database TDB

1st scan

C1

L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2

The Apriori Algorithm[1]

Ck: Candidate itemset of size k

Lk : frequent large itemset of size k

 ;kLk return L

minsup}|c.countkC { c kL

c.count
t Cc

 candidatet that areubsets of get the s

,t)k(C tC

 countsScan D for

 D t

)k-(L kC

); k k-12; L(k

ts}e 1-itemsequent larg {find fre L



















}

}

;

do candidates forall

//

subset

 //

 { action each transfor

;1genapriori-

 { for
1



Candidate Generation : Join Step

1k
q.item

1k
p.item,

2k
q.item

2k
p.item,...,1q.item1p.item

q
1k

p,L
1k

L
1k

itemq
1k

itempitemp1p.item
k

C













 where

 from

.,.,2.,select

 intoinsert

Candidate Generation : Prune Step

k
c from C

)
k-1

 L(s

ets s of c(k-1)-subs
k

 C itemsets c

 delete

then if

do forall

do forall





Considering an example for joining and pruning : Let L3 =

{ {1 2 3}, {1 2 4}, {1 3 4}, {1 3 5}, {2 3 4} } After joining :

{ {1 2 3 4}, {1 3 4 5} } and After pruning : {1 2 3 4} since {1

4 5} and {3 4 5} are not in L3.

Also Apriori algorithm can be modified to improve its

efficiency (computational complexity) by hashing, removal of

transactions that do not contain frequent itemsets, sampling of

the data, partitioning of the data, and mining frequent itemsets

without generation of candidate itemsets[6].

III. DHP IMPLEMENTATION

These algorithms generate candidate k+1- itemsets from

large k-itemsets by counting the occurrence of candidate k+1-

itemsets in the dataset. DHP utilizes a hashing technique to

filter the unnecessary itemsets to generate next candidate

itemsets[2,6].

The set of large k-itemsets, Lk, is used to generate a set of

candidate k+1-itemsets, Ck+1, by joining Lk with itself on k-1

denoted by, Lk * Lk, to find the common items for next pass.

Increasing number of items in the Ck+1 will increase the

processing cost of finding the Lk+1. Scanning all database

transactions and testing each transaction to determine Lk from

Ck is very expensive process[2].

DHP algorithm constructs smaller size Ck than Apriori

algorithm. Therefore it is faster in counting Ck from database

to determine Lk. The size of Lk decreases rapidly as k

increases. A smaller Lk will lead to smaller Ck+1, so lower

corresponding processing cost. DHP reduces the

corresponding processing cost of determining Lk from Ck by

reducing the number of itemsets to be explored in Ck in initial

iteration significantly. DHP algorithm has two major features;

making efficient generation of large itemsets and reducing

transaction database size in effective way[2]

International Journal of Advanced and Innovative Research (2278-7844) / # 607 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 607

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Tree_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Downward_closure_lemma&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Downward_closure_lemma&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Downward_closure_lemma&action=edit&redlink=1

Database TDB

1st scan

C1

L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, C}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2

Table :2 : The DHP Algorithm - Example

Database TDB

1st scan

C1
L1

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Supmin = 2

Part : 1 : Gets a set of large 1-itemsets and makes a hash table (i.e. H2)
for 2-itemsets

Making Hash Table

Tid K-Itemsets for Tid (K=2)

10 {A,C}, {A,D}, {C,D}

20 {B,C}, {B,E}, {C,E}

30 {A,B}, {A,C}, {A,E}, {B,C}, {B,E}, {C,E}

40 {B,E}

Supmin = 2
Database TDB

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

H{{x,y}}=((order of x)*10 + (order of y)) mod 7

3 1 2 0 3 1 3

0 1 2 3 4 5 6

The number of items hashed to bucket 2

{C,E} {B,E} {A,C}

{C,E} {B,C} {B,E} {C,D}

{A,D} {A,E} {B,C} {B,E} {A,B} {A,C}

Part : 2 : Generates the set of candidate itemsets C2 based on the
hash table (H2), determines the set of large 2-itemsets L2 . Also
reduces the size of database for the next large itemsets & makes h3

for next C3 candidate large itemsets

Generating C2
Itemset # in bucket

with itemset

{A,B} 1

{A,C} 3

{A,E} 1

{B,C} 2

{B,E} 3

{C,E} 3

Itemset

{A, C}

{B, C}

{B, E}

{C, E}

L1 X L1

C2

Counting Support in a hash tree

Counting Support in a hash tree

{A,C}

{B,C}, {B,E}, {C,E}

{A,C}, {B,C}, {B,E}, {C,E}

{B,E}

Database TDB

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Discard

Keep {B,C,E}

Keep {B,C,E}

Discard

C2

Itemset count

{A,C} 2

{B,C} 2

{B,E} 3

{C,E} 2

L2

Database TDB

Tid Items

20 B, C, E

30 B, C, E

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

C3 L33rd scanItemset

{B, C, E}

Itemset sup

{B, C, E} 2

Part : 3 : Further process same as Apriori method. But it provides
database reduction in each pass .

In DHP algorithm, we find support count of Ck by scanning
the database. The algorithm also accumulates information
about candidate k+1-itemsets. That means all possible k+1
subset of items of each transaction after pruning item are
less than min_support from hash table. Each entry in hash
table consists of number of items that have been hashed to
this entry. Thus far this table will be used to determine
Ck+1- itemsets from Lk as Apriori algorithm. Each bucket in
the hash table consists of number to present how many
itemset have been hashed to this bucket. A bit vector can
be constructed. If the number of corresponding entry of
the hash table is greater than or equal to s, set the value of
a bit vector to one. The hash function is a black box which
produces an address every time you drop in a key. H(k)
transforms key, k, into the correct address, that is used to
store and retrieve set of records[2].

Table 2 shows a representation of the data structure to
provide a direct access to the returned value of a hash
function. For many cases, the address generated by the
hash function is a random value and depends in the
architecture of the table. A collision is occurred when two
different keys are transformed to the same address. In fact,
it is impossible to hold two records in the same space
address[2].

Hash Table Construction

Consider two items sets, all items are numbered as I1, I2, …In.

For any pair (x, y), has according to Hash function bucket # =

h({x y}) = ((order of x)*10+(order of y)) % 7. Example: Items

= A, B, C, D, E, Order = 1, 2, 3 4, 5, then H({C, E})=

(3*10 + 5)% 7 = 0. Thus, {C, E} belong to bucket 0.

How to trim candidate itemsets

In k-iteration, hash all “appearing” k+1 itemsets in a

hashtable, count all the occurrences of an itemset in the

correspondent bucket. In k+1 iteration, examine each of the

International Journal of Advanced and Innovative Research (2278-7844) / # 608 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 608

candidate itemset to see if its correspondent bucket value is

above the support (necessary condition)[2].

Examples for Trim and Reduction in transaction

(I) In transaction 10 (A, C, D) , a single candidate AC is found

in C2. Occurrence frequencies of all the items are : a[0] = 1,

a[1] = 1, a[2] = 0. Since all the values of a[i] are less than k

(k=2), this transaction is deemed not useful for generating

large 3-itemsets and thus discarded. (II) In transaction 30 (A,

B, C, E), has four candidate 2-items (AC, BC, BE, CE) found

in C2. Occurrence frequencies of all the items are : a[0] = 1,

a[1] = 2, a[2] = 2, a[3] = 2. Since all the values of a[0] are less

than k (k=2), and remaining are >=2, this transaction will be

reduced to (B, C, E) and A is thus discarded.

Effective Database Pruning

Apriori - don’t prune database but prune Ck by support

counting on the original database, while DHP -Its more

efficient support counting can be achieved on pruned

database[2,4]

IV. ECLAT IMPLEMENTATION

ECLAT implementation represents the set of transactions

as a (sparse) bit matrix and intersects rows to determine the

support of itemsets. The search follows a depth first traversal

of a prefix tree as it is shown in Table 3 and 4.

A convenient way to represent the transactions for the

ECLAT algorithm is a bit matrix, in which each row

corresponds to an item, each column to a transaction (or the

other way round). A bit is set in this matrix if the item

corresponding to the row is contained in the transaction

corresponding to the column, otherwise it is cleared[3,6].

There are basically two ways in which such a bit matrix

can be represented: Either as a true bit matrix, with one

memory bit for each item and transaction, or using for each

row a list of those columns in which bits are set. (Obviously

the latter representation is equivalent to using a list of

transaction identifiers for each item.). ECLAT searches a

prefix tree like the one shown in Table 3 and 4 in depth first

order. The transition of a node to its first child consists in

constructing a new bit matrix by intersecting the first row

with all following rows. For the second child the second row

is intersected with all following rows and so on.[3] The item

corresponding to the row that is intersected with the

following rows thus is added to form the common prefix of

the itemsets processed in the corresponding child node. Of

course, rows corresponding to infrequent itemsets should be

discarded from the constructed matrix, which can be done

most conveniently if we store with each row the

corresponding item identifier rather than relying on an

implicit coding of this item identifier in the row index[3,6].

Intersecting two rows can be done by a simple logical

and on a fixed length integer vector if we work with a true

bit matrix. During this intersection the number of set bits

in the intersection is determined by looking up the number

of set bits for given word values (i.e., 2 bytes, 16 bits) in a

precomputed table. For a sparse representation the column

indices for the set bits should be sorted ascending order for

efficient processing. Then the intersection procedure is

similar to the merge step of merge sort.

As for Apriori the way in which items are coded has an

impact on the execution time of the ECLAT algorithm[4].

The reason is that the item coding not only affects the

number and the size of gaps in the counter vectors for Apriori,

but also the structure of the pruned prefix tree and thus the

structure of ECLAT’s search tree. Sorting the items usually

leads to a better structure. For the sorting there are basically

the same options as for Apriori.

The ECLAT Algorithm[3]

Input: D, σ, I ⊆ T

Output: F [I](D, σ)

F [I] := {}

for all i ∈ T occurring in D do

F [I] := F [I] ∪ {I ∪ {i}}

// Create D
i

D
i

:= {}

for all j ∈ T occurring in D such that j > i do

C := cover ({i}) ∩ cover ({ j})

if |C | ≥ σ then

D
i

:= D
i ∪ {(j, C)}

 end if

end for

// Depth-first recursion

Compute F [I ∪ {i}](D
i
, σ)

F [I] := F [I] ∪ F [I ∪ {i}]

end for

Table :3 : The ECLAT Algorithm - Example

TID Items

1 a, b, c ,d

2 a, b, c

3 a, b ,d ,e

4 c ,e

5 b ,d ,e

6 a, b, e

7 a, c, e

8 a ,d ,e

9 b ,c ,e

10 b ,d ,e

a b c d e

1

2

3

6

7

8

1

2

3

5

6

9

10

1

2

4

7

9

1

3

5

8

10

3

4

5

6

7

8

9

10

b c d e

1

2

3

6

1

2

7

1

3

8

3

6

7

8

c d e

1

2

9

1

3

5

10

3

5

6

9

10

Database

Step1:
Transform to vertical
format

(d) e

1 4

7

9

e

3

5

8

10

Step2:
 Depth-first traversed
 Left to right

Da
Db

Dc Dd

c d e

1

2

1

3

3

6

(d) (e)

1 7

e

3

8

(d)

1

(e)

3

(d) (e)

1 9

e

3

5

10

Dab Dac Dad

Dbc Dbd

Dabc Dabd

min_sup=2

International Journal of Advanced and Innovative Research (2278-7844) / # 609 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 609

a b c d e

1

2

3

6

7

8

1

2

3

5

6

9

10

1

2

4

7

9

1

3

5

8

10

3

4

5

6

7

8

9

10

b c d e

1

2

3

6

1

2

7

1

3

8

3

6

7

8

c d e

1

2

9

1

3

5

10

3

5

6

9

10

Step1:
Transform to vertical
format

e

4

7

9

e

3

5

8

10

Step2:
 Depth-first traversed
 Left to right

Da

Db

Dc Dd

e

3

5

10

Dbd

Dab

Output
Sequennce

[a, b, c] : 2
[a, b, d] : 2
[a, b, e] : 2

[a, b] : 4
[a, c] : 3

[a, d, e] : 2
[a, d] : 3
[a, e] : 4

[a] : 6
[b, c] : 3
[b, d, e]
[b, d] : 4
[b, e] : 5

[b] : 7
[c, e] : 3
[c] : 5

[d, e] : 4
[d] : 5
[e] : 8

c d e

1

2

1

3

3

6

e

3

8

Dad

Note : PRINT and DELETE
leaf node only

Table :4 : The ECLAT Algorithm – Example with Final Result

V. EXPERIMENTAL RESULTS

We ran experiments with three programs on a dataset,

which so that the advantages and disadvantages of the three

approaches and the different optimizations can be observed.

The data sets we used is: T10I4D10K (an artificial data set

generated with IBM’s data generator [7]). The results for

these dataset is shown in Figure 1. We can easily

understood from the figure 1 i.e. Apriori is much slower than

DHP. Also ECLAT takes only around 1/10 time of taken by

Apriori. ECLAT also gives result in much higher speed than

Apriori and DHP. Between Apriori and DHP, DHP is still

somewhat speedy than Apriori.

Fig. 1 Apriori Vs DHP Vs ECLAT (T10I4D10K)

VI. CONCLUSIONS

Apriori is best for frequent pattern mining approach for

newer algorithm development. But after implementation you

can find some challenges like multiple scans of transaction

database, huge number of candidates, tedious workload of

support counting for candidates and we can improve Apriori

with effective hash-based algorithm for the candidate itemset

generation i.e. a two phase transaction database pruning and

much more efficient (time & space) than Apriori algorithm.

DHP is different only in step of 2-itemset generation than

Apriori. After that 2+ -itemsets, DHP takes lots time to

traverse to each transaction for support count and candidate

set generation. While ECLAT outperforms with all compare

to Apriori and DHP. ECLAT is best and most suitable for

larger datasets. The only problem with ECLAT is that it

consumes lots more memory during execution by storing bit

matrix for each transaction .

REFERENCES

[1] R. Agrawal and S. Srikant, "Fast Algorithms for Mining Association

Rules in Large Databases“, Proceedings of the 20th International
Conference on Very Large Data Bases, September 1994.

[2] J. Park, M. Chen and Philip Yu, "An Effective Hash-Based Algorithm

for Mining Association Rules", Proceedings of ACM Special Interest
Group of Management of Data, ACM SIGMOD’95, 1995.

[3] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, " New Algorithms

for Fast Discovery of Association Rules", Proc. 3rd ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining (KDD'97, Newport

Beach, CA), 283-296 AAAI Press, Menlo Park, CA, USA 1997

[4] Shruti Aggarwal, Ranveer Kaur, “Comparative Study of Various

Improved Versions of Apriori Algorithm”, International Journal of

Engineering Trends and Technology (IJETT) - Volume4Issue4- April
2013

[5] Agrawal, R., T. Imielin´ ski, and A. Swami (1993). Mining association

rules between sets of items in large databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’93, New York, NY, USA, pp. 207–216. ACM.

[6] Data Mining: Concepts and Techniques, Jiawei Han and Micheline
Kamber, MORGAN KAUFMANN PUBLISHER, An Imprint of

Elsevier

[7] Synthetic Data Generation Code for Associations and Sequential
Patterns. http://fimi.cs.helsinki.fi

International Journal of Advanced and Innovative Research (2278-7844) / # 610 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 610

Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
Apriori%20Research%20Paper.pdf
DHP%20Research%20Paper.pdf
DHP%20Research%20Paper.pdf
DHP%20Research%20Paper.pdf
DHP%20Research%20Paper.pdf

