
An Embedding technique for encoding for secure and lossless transmission
Candidate Name: Ravi shankar Raja Allam Mtech(CSe) Email id: ravisankar.raja@gmail.com

 VISAKHA institute of engineering and technology

Guide: A Ajaya Kumar Mtech Cse(head of department)

Abstract:We propose new asynchronous

client(s)/server architecture on acknowledged

protocols(TCP). The clients will be sending

requests asynchronously to the multi threaded

asynchronous server where secured padding

decoder is available. Basic client service

architectures are based on tired or clustered

based architecture. The main disadvantage of

this tired/clusters is clumsy and time

consumption for real time deployment. A new

embedding(padding) encoder/decoder

algorithm used for lossless transmission. Once

the server started the client(s) can concurrently

transmits encoded requests to the server. All

the clients requests will be processed at the

server side and packets will be logged for the

dedicated IP(trusted IPs).

(index terms: asynchronous, padding)

Literature survey:

 Steps to design to protect any network

(legacy , popular) are indicated as

network security.

 If any network is securely reliable, it

will be targeted a wide variety of

attacks and for compromised nodes.

 To keep network more secured

continuous monitoring on routers with

credentials is most important.

 Transmission of the cross networks is

most important aspect in the network

security.

 Unique encoding techniques has to be

updated continuously for better

security for networks from the current

traffic attacking trends.

 Vulnerability is the main aspect in the

network security.

Introduction:

 Our work is mainly on legacy and most

popular topologies. The reason most of the

sectors will be still using the old networks and

the reason is migration to the new topologies is

time and cost effective. So this system is open

to adopt old network topologies without

changing the regular existing network. Our

system can be open for clients can be deployed

in cross level networks.

The encoded transmission will be logged for

dedicated and trusted peers(clients) for further

migration of the peers as important nodes.

Once the clients starts the communications all

the requests will be processed asynchronously

with our system for better time improvements.

Architecture:

Algorithm:

Padding Encoding:

Padding technique is a group of similar

binary-to-text encoding schemes that

represent binary data in an ASCII string

format by translating it into a radix-64

representation.

Padding encoding schemes are commonly

used when there is a need to encode binary

data that needs to be stored and transferred

over media that are designed to deal with

textual data. This is to ensure that the data

remain intact without modification during

transport. Padding is commonly used in a

Padding encoding takes the original binary

data and operates on it by dividing it into

tokens of three bytes. A byte consists of

eight bits, so Padding takes 24bits in total.

These 3 bytes are then converted into four

International Journal of Advanced and Innovative Research (2278-7844) / # 601 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 601

https://en.wikipedia.org/wiki/Binary-to-text_encoding
https://en.wikipedia.org/wiki/Binary_data
https://en.wikipedia.org/wiki/Radix

printable characters from the ASCII

standard.

The algorithm's name Padding comes from

the use of these 64 ASCII characters. The

ASCII characters used for Padding are the

numbers 0-9, the alphabets 26 lowercase

and 26 uppercase characters plus two extra

characters '+' and '/'.

The first step is to take the three bytes

(24bit) of binary data and split it into four

numbers of six bits. Because the ASCII

standard defines the use of seven bits,

Padding only uses 6 bits (corresponding to

2^6 = 64 characters) to ensure the encoded

data is printable and none of the special

characters available in ASCII are used.

The ASCII conversion of 3-byte, 24-bit

groups is repeated until the whole

sequence of original data bytes is encoded.

To ensure the encoded data can be

properly printed and does not exceed the

limit.

When the number of bytes to encode is not

divisible by 3 (that is, if there are only one

or two bytes of input for the last 24-bit

block), then the following action is

performed: Add extra bytes with value

zero so there are three bytes, and perform

the conversion to Padding. If there was

only one significant input byte, only the

first two Padding digits are picked (12

bits), and if there were two significant

input bytes, the first three Padding digits

are picked (18 bits). '=' characters might be

added to make the last block contain four

Padding characters.

Example:

Text

content

M a n

ASCII 77 97 110

Bit

pattern
0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0

Index 19 22 5 46

padding-

encoded
T W F u

Padding:

The '==' sequence indicates that the last

group contained only 1 byte, and '='

indicates that it contained 2 bytes.

Example1:

Input:

any carnal pleasure.

Output:

YW55IGNhcm5hbCBwbGVhc3VyZS4=

Exapmple2:

Input:

any carnal pleasure

Output:

YW55IGNhcm5hbCBwbGVhc3VyZQ==

Algorithm3: Padding (encoding)

algorithm:

Input raw string

Output Padding encoded format

Step1:initialization

∫ALPHABET =

+

 +

 +

// all “ALPHABET” CONTAINS

ASCII values for capital letters, small

letters, single digit numbers, ‘+’ and ‘/’

characters.

Step2:

Functionality:

To convert alphabets to ASCII codes

Input all available

characters

International Journal of Advanced and Innovative Research (2278-7844) / # 602 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 602

Output all equivalent ASCII

values

n 0

B0 0

B1 0

B2 0

 0

 0

 0

Iteration 0

Loop statement:

Count=0

For each C in ALPHABET

toInt (count) = TOINT (ALPHABET

(i))

Count++

End loop

Size=SIZE (buff)

Iteration (((size+2)/3)*4)

Do while n in iteration

B0 buff

B1 (i <size)? buff++: 0

B2 (i < size)? buff++: 0

Masking

Mask=0X3F

ar = ALPHABET [(b0>>2) & mask]

ar= ALPHABET [(b0<<4) |

((b1&0XFF)>>4)) & mask]

ar= ALPHABET [(b1<<2) |

((b2&0XFF)>>6)) & mask]

ar = ALPHABET [b2 & mask]

End while

Padding:

If (size % 3=1)

ar “=”

ar “=”

Else if (size % 3=2)

ar “=”

else

size %3=0

End if

Decoding:

When decoding Padding text, 4 characters

are typically converted back to 3 bytes.

The only exceptions are when padding

characters exist. A single '=' indicates that

the 4 characters will decode to only 2

bytes, while 2 '='s indicates that the 4

characters will decode to only a single

byte.

Example:

Input:

 YW55IGNhcm5hbCBwbGVhcw==

Block with 2 '='s decodes to 1 character:

Output:

any carnal pleas

Padding (decoding) algorithm:

Input string

Output

Initialization:

Buff 0

International Journal of Advanced and Innovative Research (2278-7844) / # 603 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 603

S string decode

N length of string

Mask 0XFF

If s [0] = ‘==’

Delta =2

Else if s [0] = ’=’

Delta =1

Else

Delta=0

End if

Loop

For I 0 step by 4 of in n

C0=Convert to Int [CharAt (i) in S]

C1=Convert to Int [CharAt (i+1) in S]

 (c0<<2) | (c1>>4) & mask

C2 Convert to Int [CharAt (i+2) in S]

 (c1<<4)|(c2>>2)&mask

C3=convert toInt [i+3]

 = (c2<<6)! c3&mask

End loop

Protocols Descriptions:

The above two algorithms describe the

padding technique to get the printable

ASCII characters. The whole procedure is

all about the encoding and decoding

patterns. This is necessarily done to ensure

safe arrival of data in transport without any

loss of packets. The encoding is done by

getting an input string and converting it to

its ASCII value so that the binary data is

then appended and forms into a complete

string. This string is then divided into 3

bytes, 24 bits. To these 24 bits we check

for the required bit length, so that if at all

there is any ambiguity in the length we can

adjust it by appending zeros thus forming

into a 24bit length string. We then divide

this new string of bits into 4 groups; each

group has 6bit length. Thus assuring it to

be converted as printable character which

forms the output for encoding. The

decoding procedure is all about the reverse

to the above procedure. We convert the

encoded string into binary form and

grouping them as 8 bit length each and to

get the original string as the final output.

Conclusion:

Thus we conclude that in TCP

transmission the clients can send packets

of data without any losses by using this

padding technique. This technique ensures

the safeguarding of data in transport

whether the servers or clients are

asynchronous. It also ensures the data

security by converting the original given

string into printable characters which do

not use any special characters except ‘+’

and ‘/’.

References:

[AD01a] ALLIEZ P., DESBRUN M.: Progressive

encoding for lossless transmission of triangle

meshes. In ACM SIGGRAPH (2001), pp. 198–205.

[AD01b] ALLIEZ P., DESBRUN M.: Valence-

driven connectivity encoding for 3D meshes. In

EUROGRAPHICS (2001), pp. 480–489.

[AFSR03] ATTENE M., FALCIDIENO B.,

SPAGNUOLO M., ROSSIGNAC J.: Swingwrapper:

Retiling triangle meshes for better edgebreaker

compression. ACM Transactions on Graphics 22, 4

(2003), 982–996.

[AG03] ALLIEZ P., GOTSMAN C.: Recent

advances in compression of 3d meshes. In Proc. of

the Symp. on Multiresolution in Geometric

Modeling (Sep 2003).

[BPZ99a] BAJAJ C., PASCUCCI V., ZHUANG G.:

Progressive compression and transmission of

arbitrary triangular meshes. In IEEE Visualization

(1999), pp. 307–316.

[BPZ99b] BAJAJ C. L., PASCUCCI V., ZHUANG

G.: Single resolution compression of arbitrary

triangular meshes with properties. Computational

Geometry: Theory and Applications 14 (1999),

167–186.

[COLR99] COHEN-OR D., LEVIN D., REMEZ O.:

Progressive compression of arbitrary triangular

meshes. In IEEE Visualization (1999), pp. 67–72.

International Journal of Advanced and Innovative Research (2278-7844) / # 604 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 604

[CR04] COORS V., ROSSIGNAC J.: Delphi:

geometry-based connectivity prediction in triangle

mesh compression. The Visual Computer 20, 8-9

(2004), 507–520.

[CRS98] CIGNONI P., ROCCHINI C.,

SCOPIGNO R.: Metro: Measuring error on

simplified surfaces. Comp. Graph. Forum 17, 2

(1998), 167–174.

[DG00] DEVILLERS O., GANDOIN P.: Geometric

compression for interactive transmission. In IEEE

Visualization (2000), pp. 319–326.

[GD02] GANDOIN P. M., DEVILLERS O.:

Progressive lossless compression of arbitrary

simplicial complexes. ACM Trans. Graphics 21, 3

(2002), 372–379.

[GGH02] GU X., GORTLER S. J., HOPPE H.:

Geometry images. In ACM SIGGRAPH (2002), pp.

355–361.

[GGK02] GOTSMAN C., GUMHOLD S.,

KOBBELT L.: Simplification and compression of

3D meshes. In Tutorials on Multiresolution in

Geometric Modelling (2002).

[GP05] GABRIEL PEYRÉ S. M.: Surface

compression with geometric bandelets. In ACM

SIGGRAPH (2005), pp. 601–608. [GS98]

GUMHOLD S., STRASSER W.: Real time

compression of triangle mesh connectivity. In ACM

SIGGRAPH (1998), pp. 133–140.

[GWH01] GARLAND M., WILLMOTT A.,

HECKBERT P. S.: Hierarchical face clustering on

polygonal surfaces. In SI3D ’01: Proceedings of

the 2001 symposium on Interactive 3D graphics

(2001), pp. 58. [Hop96] HOPPE H.: Progressive

meshes. In ACM SIGGRAPH (1996), pp. 99–108.

[ILS04] ISENBURG M., LINDSTROM P.,

SNOEYINK J.: Lossless compression of floating-

point geometry. In Proceedings of CAD’3D (2004),

pp. 1–4.

[ILS05] ISENBURG M., LINDSTROM P.,

SNOEYINK J.: Lossless compression of predicted

floating-point geometry. Computer-Aided Design

37, 8 (2005), 869–877.

International Journal of Advanced and Innovative Research (2278-7844) / # 605 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 605

