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Abstract: The step-stress accelerated life tests allow the
experimenter to increase the stress levels at fixed times
during the experiment. This paper discusses the design of
the optimal SSALT plan using type-lI censoring for
Pareto distribution. The scale parameter of the
distribution is assumed to be a log-linear function of the
stress and a cumulative exposure model holds. Point
estimates as well as the interval estimates of the model
parameters are obtained. Optimal step stress ALT plan is
proposed by minimizing the asymptotic variance of the
MLE of the percentile of the lifetime distribution at
normal stress condition. A simulation study is also
performed to analyze the performance of parameter
estimates.
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1. INTRODUCTION

In traditional life tests, products are tested under normal
operating conditions to infer the parameters of the life
distribution so that the life, reliability and other quality
associated measures of the product can be expected. These
days’ products have great reliability because of their good
manufacturing designs, quality material used in it and use of
advanced technologies for quality improvements. Therefore,
traditional life tests have become very time consuming and
costly which renders them of no practical use. One way to
overcome this problem is the use accelerated life tests (ALTS)
in which the products are tested at more severe than operating
conditions to induce early failures. The test data obtained at
these severe (accelerated) conditions is then analyzed and
extrapolated by using a suitable physical model to obtain the
life characteristics of the product at use stress level. Interested
readers may refer to Meeker and Escobar [9] and Nelson [11].

In Step-stress ALT all test items are first tested at a
specified constant stress for a specified period of time and
then Items which are not failed will be tested at next higher
level of stress for another specified time and so on until all
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items have failed or the test stops for other reasons. The step-
stress scheme allows the stress setting of a product to be
changed at pre-specified times or upon the occurrence of a
fixed number of failures. The former is called time-step-stress
ALT and the latter failure-step-stress ALT. The step-stress
ALT has been studied by several authors. Miller and Nelson
[10] obtained the optimal simple step-stress ALT plans for the
case where test products have exponentially distributed lives
and are observed continuously until all test products fail; Bai
et al. [1] extended their results to the case of censoring. The
optimal step-stress test under progressive type-lI censoring,
assuming exponential lifetime distribution was considered by
Gouno et al. [5]. Gouno [4] studied optimum step-stress for
temperature ALT models. Balakrishnan et al. [2] considered
the simple step-stress ALT under type Il censoring, assuming
a cumulative exposure model with lifetimes being
exponentially distributed. They have obtained distributions of
the MLEs of the parameters using exact distributions. For
more recent research on step-stress ALTs, see Xu and Fei
[14], Li and Fard [7], Fan et al. [3], Nelson [12], Ma and
Meeker [8], Wu et al. [13] and Kamal et al. [6].

In this paper the problem of simple-step-stress ALT with
type-l censoring for Pareto distribution is considered. The
estimates of parameters of model are obtained by using
maximum likelihood estimation method. Fisher information
matrix is constructed to obtain the asymptotic variance of the
parameters. The asymptotic confidence intervals for model
parameters are also obtained. An optimal step stress ALT plan
is also proposed. To examine the performance and statistical
properties of the estimates obtained here in this study are
evaluated by a simulation study with different pre-fixed values
of parameters.

2.  TEST PLAN AND MODEL DESCRIPTION
2.1 The Pareto Distribution
The concept of this distribution was first introduced by

Vilfredo Pareto (1897) in his well known economics text
“Cours d’Economie Politique”.
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The two parameter form of Pareto probability density
function (pdf), cumulative distribution function (CDF), the
reliability function (RF) and the hazard rate (HR) with shape
parameter and scale parameter given respectively by

f(t;@,a):ﬁ, £>0,0>0,a>0 @)

F(t:0,0) =1 (eiat)“' t>0,0>0a>0 @)
— Ha

R(t)_(0+t)“ 3)
o«

h(t)_(9+t) (4)

The HR is a decreasing function as t>0and an increasing
functionast<0.

2.2 Pareto Cumulative Exposure Model

According to cumulative exposure model, the remaining
life of test items depends only on the current cumulative
fraction failed and current stress regardless of how the fraction
accumulated. Moreover, if held at the current stress, items will
fail according to the CDF of stress, but starting at the
previously accumulated fraction failed. Numerically CE
model the is given by

F (t) 0<t<r
F(t)= &)
® {Fz(t—r+r') r<t<oo ®)
where 7', is obtained by solving F,(z)=F,(z') for z'that is
'=(0,16,) .

Now using the value of z'in (5), the corresponding CDF
and PDF for the simple SSALT maodel is given by

F, (t), O<t<r
F@) = 6
® FZ(&T-FI—T], r<t<w ©)
&
fi (1), O<t<r
ft)= 7
® f{%ﬂ—t—rj, r<t<o® )
1

From the equations (6) and (7), the CDF and PDF of a
test product failing according to Pareto distribution under
simple SSALT are given respectively by
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2.3 Assumptions

i. Two stress levels S, and S, S, <S, are used.

ii. A random sample of nidentical products are placed
on test initially at stress level s, and run until time
7, then the stress is changed to S, and the test is
continued until a pre-determined censoring time »
(type-I censoring).

iii. For any level of stress, the product failure times
follow Pareto distribution.

iv. The scale parameter ¢ is a log-linear function of
stress i.e. log@,) =, +4S; , where B, and g, are
unknown parameters depending on the nature of the

product and the test method.
V. A cumulative exposure model holds

Now we have first to estimate the parameters 3,, B and
a in a time step stress ALT and second is to obtain the
optimal stress changing time 7 which minimizes the AV of
the ML estimate of the P™ percentile t,(Sy) of the lifetime

distribution at normal stress condition.

3  ESTIMATION OF MODEL PARAMETERS

Maximum likelihood (ML) method of parameter
estimation is used to estimate the model parameters because it
is not only very robust but gives the estimates of parameter
with good statistical properties. However, it is very simple for
one parameter distributions but its implementation in ALT is
mathematically more complicated and does not give the
estimates of parameters in closed form, therefore, numerical
techniques such as Newton-Raphson method and some
computer programs are used to compute them.

Let n, the number of failures that occurs before 7 at

stress level S;and N, denote the number of failures that occur
before 7 at stress level S, , and N denote the total number of

failures observed before termination (i.e. N=n,+n, ).

Failures occur in order statistic
0<tyy <...<ty.y <T<ty 4., <...<ty., <77 and the likelihood

function in SSALT with type-l censoring for Pareto
distribution can be written as

nl n N 02
002 TTon | T 6 Zeeta—)
nt| =1 1 (10)

i=n+1

0 K
{l— Fz(?zr + n—rﬂ
1

Where n, =n—-Nand t = (t;.,,....ty.)
The log-likelihood function log L(t;6,«) , denoted by I(t;0, @)
takes the form
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I(t:6.0) = Iog[ ] ilog ()
+ Z log f, [ ti., —rJ+n,] Iog{l—F{%Hn_TH
1

i=m+1
Now the parameters of the Pareto distribution can be
estimated by substituting the relevant values in the above
mentioned form of likelihood function. Hence, the log
likelihood function of a two parameter Pareto distribution for
time step stress ALT takes the form

I(t:6,c) = log| [Ioga+alog¢91 (@ +1)10g(@, +t;)]
n!
n*

+ i {Iogaﬂzlog@z —(a+)) Iog[é’2 J{%_l}ﬂmﬂ (12)

i=m+1 1

+ n,{a logd, —a Iog[e2 + (% —1} + nﬂ
1

By using assumption (iv) in equation (12), the log likelihood
function of for Pareto distribution in time step stress ALT
takes the form

(11)

I(t;0.a) = '09[ J [Iogam(ﬁowlsl) (@ +1)logEVo %) +t‘3‘]ﬁ

4. FISHER-INFORMATION MATRIX

The Fisher-information matrix composed of the negative
second partial derivatives of log likelihood function can be
written as

o I 5
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S
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5. INTERVAL ESTIMATES

According to large sample theory, the ML estimators,
under some appropriate regularity conditions, are consistent
and normally distributed. Since ML estimates of parameters
are not in closed form, therefore, it is impossible to obtain the
exact confidence intervals, so asymptotic confidence intervals
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based on the asymptotic normal distribution of ML estimators
instead of exact confidence intervals are obtained here.

The asymptotic variance-covariance matrix of &, ,BO and

B, is obtained by inverting the Fisher-information matrix and
given by

-1

ol a! ol
" 0a®  0adp,  Oadp,
s_pi_|_ o1 o
boa o OPoh
o a! ol
| o opok  op |
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Now, the two-sided approximate 1004% confidence limits
for population parameters «, S,and g, can be constructed as

[o} +7,/Avar(q) ],[/}0 +7, Avar(f,) }
and [ﬂl + Z“lAVar(,fil) }

6. OPTIMAL TEST PLAN FOR TIME STEP STRESS

ALT

The optimum criterion here is to find the optimum stress
change time 7 . Since the accuracy of ML method is measured
by the asymptotic variance of the MLE of the 100 p™
percentile of the lifetime distribution at normal stress
condition t,(S,) , therefore the optimum value of the stress
change time will the value which minimizes the AV of the
MLE oft, (Sg) - The 100 P™ percentile of a distribution F()

is the age tp by which a proportion of population fails,
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Nelson [11]. It is a solution of the equation P=F(t,) ,
therefore the 100 P™ percentile for Pareto distribution is

¢ _op-a-Ppey

p (1_ P)l/a

The 100 P™ percentile for Pareto distribution at use condition
is

exp(f, + fiSy){1- (- P} |
(1_ P)l/a

Now the AV of MLE of the 100 P" percentile at normal
operating conditions is given by

tp(SO) =

AVar(t,(S,)) =

1 1

2 8) 2,(80) o) | A4 80) 2,8 4,8 |
oa ' ofy ' op oa ' ofy ' op

The optimum stress change time 7 will be the value which
minimizes AVar(t,,(S,)) -

7. SIMULATION STUDY

To assess the performance of the method described in
present study a simulation study is performed in which a
number of data sets with sample sizes n=100, 200, ..., 500 are

generated from Pareto distribution which are censored at
n=>50, 75 . The values for true parameters and stress levels are
chosen to be =0.80, 3, =1.50, B, =250 and s=3 and5. The

estimates and the corresponding statistical values are obtained
by using the present SSALT model. For different given
samples, stress levels and censoring times with
a=0.80, B, =150, B, =250, the ML estimates, Mean squared

errors (MSEs), absolute relative biases (RBias), relative error
(RE), and the 95% and 99% asymptotic confidence intervals
for a, fyand g, are obtained. The results of the estimates for

a, B, and g based on 750 simulation replications are

summarized in Table 1 and 2 while the confidence intervals
and interval coverage are shown in Table 3 and 4 respectively.
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Table 1: Simulation Study Results with
a=0.80, f, =150, p, =250, S, =3,S, =5and =50

Table 3: Confidence intervals with  =0.80, S, =1.50, 3, =2.50,

$5,=3S,=5and =50

@ | MSE(@) |RAB(d&) | RE(@) | Var(a)
n Bo MSE( ) RAB( ) RE(fSy) | Var(f)
B | MSE(p) | RAB(B) | RE(B) | Var(A)
0.846 | 0.0203 0.0575 0.1782 | 0.0182
100 | 1.439 | 0.0076 0.0407 0.0582 | 0.0039
2.534 | 0.0295 0.0136 0.0687 | 0.0283
0.839 | 0.0194 0.0488 0.1742 | 0.0179
200 | 1.446 | 0.0085 0.0360 0.0615 | 0.0056
2529 | 0.0210 0.0116 0.0580 | 0.0202
0.810 | 0.0133 0.0125 0.1442 | 0.0132
300 | 1.512 | 0.0079 0.0080 0.0594 | 0.0078
2511 | 0.0170 0.0044 0.0522 | 0.0169
0.792 | 0.0115 0.0100 0.1338 | 0.0114
400 | 1.520 |  0.0096 0.0133 0.0653 | 0.0092
2502 | 0.0157 0.0008 0.5010 | 0.0157
0.784 | 0.0105 0.0200 0.1278 | 0.0102
500 | 1.534 | 0.0175 0.0227 0.0881 | 0.0163
2498 | 0.0121 0.0008 0.0440 | 0.0121

Table 2: Simulation Study Results with

=080, B, =150, B, =250, S, =3,S,=5and =75

? 95 % Confidence 99 % Confidence
n B Interval Interval
A LCL ucL LCL UcL
0.846 0.5816 1.1104 0.4979 1.1941
100 | 1.439 1.3166 1.5614 1.2779 1.6001
2.534 2.2043 2.8637 2.0999 2.9680
0.839 0.5768 1.1012 0.4938 1.1842
200 | 1.446 1.2993 1.5927 1.3539 1.6391
2.529 2.2504 2.8076 2.2504 2.8957
0.810 0.5848 1.0352 0.5136 1.1064
300 | 1.512 1.3389 1.6851 1.2841 1.7399
2.511 2.2562 2.7658 2.1756 2.8464
0.792 0.5827 1.0013 0.7626 1.0675
400 | 1.520 1.3320 1.7080 1.2725 1.7675
2.502 2.2564 2.7476 2.1787 2.8253
0.784 0.5860 0.9820 0.5234 1.0446
500 | 1.534 1.2838 1.7842 1.4919 1.8634
2.498 2.2824 2.7136 2.1962 2.7818

Table 4: Confidence intervals with
a=0.80, £, =150, B =250, $,=3,S,=5and =75

& | MSE(cx) | RAB(@) | RE(&) | Var(a)
n Bo | MSE(A) | RAB(f) | RE(Sy) | Var(f)
B | MSE(B) | RAB(4) | RE(A) | Var(f)
0.893 | 0.0225 0.1163 0.1877 | 0.0139
100 | 1.594 | 0.0130 0.0627 0.0761 | 0.0042
2587 | 0.0237 0.0348 0.0615 | 0.0161
0.889 | 0.0204 0.1113 0.1786 | 0.0125
200 | 1.568 | 0.0113 0.0453 0.0709 | 0.0067
2542 | 0.0201 0.0168 0.0567 | 0.0183
0.874 | 0.0313 0.0925 0.2211 | 0.0258
300 | 1.502 | 0.0083 0.0013 0.0608 | 0.0083
2.499 | 0.0204 0.0004 0.0571 | 0.0204
0.832 | 0.0178 0.0400 0.1669 | 0.0168
400 | 1.483 | 0.0054 0.0113 0.0489 | 0.0051
2474 | 0.0199 0.0104 0.0564 | 0.0192
0.804 | 0.0087 0.0050 0.1167 | 0.0087
500 | 1.492 | 0.0122 0.0053 0.0735 | 0.0121
2482 | 0.0231 0.0072 0.0608 | 0.0228
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Of 95 % Confidence 99 % Confidence
n B Interval Interval
A LCL UCL LCL UCL
0.893 0.6619 1.1241 0.5888 1.1972
100 | 1.594 1.4669 1.7210 1.4268 1.7612
2.587 2.3383 2.8357 2.2596 2.9144
0.889 0.6699 1.1081 0.6005 1.1775
200 | 1.568 1.4076 1.7284 1.3568 1.7792
2.542 2.2769 2.8071 2.1929 2.8910
0.874 0.5592 1.1888 0.4596 1.2884
300 | 1.502 1.3234 1.6806 1.2669 1.7370
2.499 2.2191 2.7789 2.1305 2.8675
0.832 0.5779 1.0860 0.4976 1.1664
400 | 1.483 1.3430 1.6229 1.2988 1.6672
2.474 2.2024 2.7456 2.1165 2.8315
0.804 0.6212 0.9868 0.5634 1.0446
500 | 1.492 1.4799 1.7076 1.2082 1.7758
2.482 2.1860 2.7780 2.0924 2.8716

From the results obtained in table 1, 2, 3 and 4, the
following observations are made

For the first set of values the ML estimators have
good statistical properties (as the parameter
estimates are close to their true values) than the
second.
i. As the sample size increase the estimates have
smaller MSEs, RABs and REs. This indicates that
the ML estimates provide asymptotically normally
distributed and consistent estimator for the
parameters.
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iii. It is also found that confidence intervals are getting

narrower as the sample size increases.

8. DISCUSSION AND CONCLUSION

In this paper SSALT model for Pareto distribution

with type-l censored data has been considered. It is found
from the results that the present model works well with
good statistical properties. Hence, it can be said that the
proposed model can be used in the analysis of ALT. For
future research in SSALT one can choose another
optimization criterion, different censoring schemes and test
settings for other lifetime distributions.
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