
© 2013 IJAIR. ALL RIGHTS RESERVED492

International Journal of Advanced and Innovative Research (2278-7844) / # 492 / Volume 2 Issue 11

Comparative Analysis of Effective Pattern Search Implementation

Vasudeva Reddy.P*, Kumar Vasantha #,Prof. C.Mohan rao $

Dept of CSE, Avanthi Institute of Engineering and Technology ,makavarapalem

*student M.Tech 2 nd Year ,Dept of CSE, Avanthi Institute of Engineering and Technology

HOD,Dept of CSE, Avanthi Institute of Engineering and Technology

$ Professor and Principal ,Dept of CSE, Avanthi Institute of Engineering and Technology

Abstract: In this paper we are introducing an efficient

comparative analysis approach with different pattern search

mechanism, A new algorithm to search for multiple patterns at the

same time is presented.. In this paper we analyzed optimal

pattern search mechanisms like quick large pattern matching

algorithm and temporal pattern search algorithms. Quick large

pattern search mechanism works with Shifted table and next

array. TPS algorithm works with presence and absence

function.

I. INTRODUCTION

Text-processing systems must allowth eir users to search

for a given character string within a body of text. Database

systems must be capable of searching for records with

stated values in specified fields. Such problems are

instances of the following string-matching problem: For a

specified set ((X(i) ,Y (i)))o f pairs of strings, determine,

if possible, an r such that X(r) = Y(r). Usually the set is

specified not by explicit enumeration of the pairs, but

rather by a rule for computing the pairs (X(i)Y, (i))f rom

some given data.[1][2][3].

a general framework that can be specialized to yield several

particular string-matching problems and algorithms. An

instance of the general stringmatching problem is specified

by Positive integers n and t. An index set R of cardinality t.

0 For each r E R, strings X(r) and Y(r) in (0, 1)". The

problem is to decide whether there exists an index 7 such

that X(r) = Y(r) and, if so, to find one such index.

Particular string-matching problems lead to particular

choices of R and particular rules for determining X(r) and

Y(r) from the input data and the index r. We indicate two

examples.

 Pattern matching is one of the important concepts of Data

Mining. In a standard formulation it is required to search

for the string pattern in the string text. If the string pattern

is present in the string text then we have to find the

position of the first occurrence of pattern string in the

string of text and this process of searching for a pattern

string over streams of data is called Pattern Matching

approach. [1][2][3].

Network security applications such as virus scan

software, anti-spam software, and firewall use pattern

matching algorithms to extract the threat from the network

by properly tracking incoming traffic for suspicious

contents. When Pattern matching algorithms are used to

such applications the speed of the algorithm usually forms

the bottleneck. Many algorithms have been designed in the

literature as improvements of Brute Force algorithm each

of which tries to avoid problems of existing algorithms.

Still to determine which of the algorithms is the best

depends on the application where the algorithm is to be

used. A command line language such as SQL, and then

review the results in an analysis tool, there are high costs

associated with this approach. Because the multiple

turnarounds are detrimental to the process and interfaces

exist to circumvent the learning curve of query languages.

Searching for temporal patterns is often unsupported by the

interface, in favor of the simpler Boolean or conjunctive

queries. Finally, searching temporal patterns on personal

histories that have hundreds or thousands of events with

tens of thousands of histories in a database can take a long

time.

II. METHODOLOGY

Even though various traditional mechanisms

available for pattern search mechanisms, they are not

optimal, because either they work with suffix based

approach or prefix based approaches, here time complexity

issues takes place while searching the string in all patterns.

Temporal events are the time based events, it days

interesting fields in the recent days of medical field event

atterns,Various sql approaches are availble,but the

problem with the number of join operations and one more

disadvantage is we can not insist the analyst to learn the

SQL language to process and visualize the patterns,

traditional approaches are not feasible when we have more

number of records

We allow analysts to specify a temporal pattern

such that each item in the pattern can be a presence item or

an absence item (negation). These items are selected from a

list of combo boxes. The ordering of the combo boxes

determines the temporal ordering. We do not allow other

additional temporal constraints (e.g., a Stroke occurs within

three days after a Heart Attack) in this interface. However,

© 2013 IJAIR. ALL RIGHTS RESERVED493

International Journal of Advanced and Innovative Research (2278-7844) / # 493 / Volume 2 Issue 11

this kind of temporal constraints can be specified via

temporal summaries in our interface [28]. Once a pattern is

specified, Lifelines2 finds all records that contain this

pattern and visually filters out the rest. As these decisions

were made to support existing features of the tool and

before we designed our Temporal Pattern Search

algorithm, the constraints represent interesting design

challenges. In Lifelines2, each record is represented as a set

of sorted arrays of events. There is one array for each event

type. All events of the same type are sorted by their time

stamps in their array. This decision comes from the

following constraints:

 Data constraint: It seems most straight forward to

store all events on a single sorted array regardless of type.

However, for events that have the same timestamp, this

scheme can create conflicts, mislead analysts, and produce

wrong results. In order to merge events that are in fact the

same but come from two cylindrical depots data sources.

While this assumption is practical and reasonable for

personal records, it may not apply to all temporal event

data.

Drawing constraint: Lifelines2 maintains a

drawing order of events by event types. Lifelines2

maintains the z-order by event types to avoid visual

inconsistencies that can potentially disrupt analytical tasks.

The separated arrays would allow the drawing algorithm an

efficient way to access events of the same type.

Interface constraint: it is useful to analysts to hide

event types that are not of interest. These interface features

involve finding event data of a specific type. Separating

events into different arrays by type would allow Lifelines2

to afford these features most efficiently.

Index: 0 1 2 3 4 5 6 7 8 9

Time: 0 10 20 10 40 50 60 70 80 90

Record

R=A

A C E B C A C D C F

Index: 0 1 2 3 4 5

Pattern A’ B’ C D’ E’ F

 Current index

 and current

time

Binary Search

performed in

matching pattern

with data

Code Line # β T Δ Φ π

 Initialization False [] [] [] [] 0 -

∞

-

1

1

Matching

P[0]=A…R[0]

(73-78) False [0]0 [0]-

1

 1 0 0

2

Matching

P[1]=B’...R[3]

Matching

P[2]=C....R[1]

(48-53) True [2]10 [2]0 [0]30 [2]True 3 10 2

3 Matching

P[3]=D’...R[7]

Matching

P[4]=E’...R[2]

Matching

P[5]=F....R[9]

(42-46) True [5]True 2 19 0

4 Matching

P[1]=B’...R[3]

Matching

P[2]=C....R[4]

(68-70) False 0 29 -

1

5

Matching

P[0]=A....R[5]

(73-78) False [0]50 [0]-

1

 1 50 0

6 Matching

P[1]=B’..NIL

(30-34) [1]∞ 2 2

7 Matching

P[2]=C....R[6]

(73-78) False [2]60 [2]0 3 60 0

8 Matching

P[3]=D’...R[7]

(42-46) True [5]True 2 69

© 2013 IJAIR. ALL RIGHTS RESERVED494

International Journal of Advanced and Innovative Research (2278-7844) / # 494 / Volume 2 Issue 11

Matching

P[4]=E’...NIL

Matching

P[5]=F....R[9]

9 Matching

P[2]=C...R[8]

(73-78) False [2]80 [2]0 3 80 2

10 Matching

P[3]=D’...NIL

Matching

P[4]=E’...NIL

(30-34) [2]∞ 5

11

Matching

P[5]=F....R[9]

(73-78) False [5]90 [5]5 6 90 5

Fig. 1

III. TPS ALGORITHM

We present Temporal Pattern Search (TPS), a

novel algorithm for searching for temporal patterns of

events. The traditional method of searching for such

patterns uses an automaton-based approach over a single

array of events,. Instead, TPS operates on a set of arrays,

where each array contains all events of the same type. TPS

searches for a particular item in the pattern using a binary

search over the appropriate arrays. Although binary search

is considerably more expensive per item, it allows TPS to

skip many unnecessary events.

 This algorithm using efficient back tracking with

the status flags and uses IS_A_MATCH(),PRESENCE()

and ABSENCE METHODS . IS_A_MATCH takes one

pattern at a time for search in the records. When processing

an item in the pattern, if it is a presence item,

IS_A_MATCH(R,P) calls HANDLE_PRESENCE(R,P),

which attempts to find an event that satisfies the current

item. If it is an absence item, TPS calls

HANDLE_ABSENCEEVENT(R, P), which finds the next

absence event, and checks to see if that absence event

occurs between the previous presence item match and the

next presence item match. If it does, then a constraint is

violated, and the algorithm backtracks. Backtracking

means TPS tries to look for an alternative to one or more of

its previously made matches. The algorithm increments the

variables x (the current item on pattern) and T (the current

time) when processing the search. When backtracking

occurs, TPS rolls back these variables, among others,

appropriately to restart a previous search.

STARTING FUNCTION AND INITIALIZATION OF

GLOBAL VARIABLES

IS_A_MATCH(R, P){

β FALSE //backtrack flag

T[P. Length] //matching times

Δ[P .Length] //last pos item

Ф[P. Length+1] //next neg item time

Π[P. Length] //if has neg item before

χ 0 //current index

Τ -∞ //current time

Δ-1 //last pos item

While(χ<P.Length)

 If(χ == -1)

 Return False

 If(P[χ.isNeg])

 HANDLE_ABSENSE(R,P)

 Else

 HANDLE_PRESENSE(R,P)

Return TRUE;

}

THE HANDLE ABSENSE FUNCTION
HANDLE_ABSENCEEVENT(R,P)

{ minTimeNIL

 numAbs0

For(iχ to P.Length)

ItemP[i]

If(NOT item.isNeg) break

numAbsnumAbs+1

absEventNEXT(R[item,Type],τ)

If(absEvent==NIL)

 Continue

minTime MIN(absEvent.Time,minTime)

If(minTime==NIL)

If(minTime==NIL)

If(δ>-1)

 Ф[δ] ∞

 else

Ф(ф.Length-1]∞

χχ+numAbs

 Else

If(χ+numAbs<P.Length)

nItemP[χ+numAbs]

nEventNEXT(R[nItem.Type],τ)

Π[χ+numAbs]TRUE

If(nEvent==NIL OR nEvent.Time>minTime)

nEvent.Time>minTime

Χδ

If(χ>0)

δΔ[χ]

© 2013 IJAIR. ALL RIGHTS RESERVED495

International Journal of Advanced and Innovative Research (2278-7844) / # 495 / Volume 2 Issue 11

 ΤminTime-1

 ΒTRUE

 Else

T[χ+minAbs]nEvent.Time

 Ф[δ]minTime

 Δ[χ+numAbs] χ-1

 δ χ+numAbs

 Χ χ+numAbs+1

 ΤnEvent.Time

 Else

 χδ

 ΔΔ[χ]

 ΤminTime-1

 ΒTRUE

}

THE HANDLE_PRESENCE FUNCTION

HANDLE_PRESENCE(R,P)

{ EventNEXT(R[P[χ].Type,τ)

If(event==NIL)

 Χ-1

Else

 backtrackingMoreFALSE

 If(β AND π[χ])

 If(Δ[χ]<0)

 badTimeф[ф.Length-1]

 Else

 badTimeф[Δ[χ]]

 If(badTime<event.Time)

 χΔ[χ]

 τф[χ]-1

 Δ Δ[χ]

 backtrackingMoreTRUE

 If(backtrackingMore) return

 τevent.Time

 T[χ]event.Time

 Δ[χ]δ

 Δχ

 Χ χ+1

 ΒFALSE

}

TPS searches for each and every event in the

record until the pattern is completed. For each and every,

iteration it checks whether the event is negative or not, if

the event is negative event it makes a call to absence

function otherwise it makes a call to presence function.

If it is a presence event in the record it maintains

the current index and position of the presence item in the

respective positions. If it is an absence event and presents

in previous presence item and next present item, it needs to

back track. No need to back track when there is no absence

event.

Consider an example of pattern AB’CD’E’F and

the record as R = ACEBCACDCF, Initially declare the

variable for current index of event, Matched time stamp,

item last position, time stamp of the next negative item,

Boolean array for status, if it contains the negative item

before.

In our example Initially it starts the search with

initial event A at P[0] and available at record R[0] at time

stamp updated to 0, it simply increments the current index,

β is false, because there is no back tracking. In the second

iteration now the current event B is an absence event and

presence between the previous present event A and next

immediate presence event B and makes a call next function

of event in the record, currently no violation and no need to

back track, simply maintains the time stamps and current

positions or index of the current event.

In the next phase it again deals with the absence

block DE presents between the previous presence Event C

and immediate next F and now set the back tracking flag to

True. Reduce a minimal time stamp during the backtrack,

the current time stamp is 20(i.e. R[2]= E),it reduces to 20-

1=19 for smallest time granularity in consideration

In the next iteration it finds the third position

event C in R[4] again it violates the constraint again there

is a back track and increments the current position.

In the next iteration it finds the p[0]=A in R[5]

and sets the back tracking flag t false, while processing B,

there are no more B but next negative event position is

maintained and sets the negative event to NIL for further

process

In the Seventh iteration C available at R[6] and

sequentially D available at R[7] and next available in R[9]

another back track with D and E and again set them to Nil

as above process and initialize the other variables, new C

found in R[8] in iteration 9,no violations, finally matches

the last items and returns True.

1) The seat shifted table:

 Use the parallel technology for the establishment

of a chain. The establishing rules of the seat shifted table

are as follows

a) Handling alphabet :

 According to alphabet size, definite first level size

of the seat shifted table. Assuming that the size of an

alphabet is to SIZE, and then the size of the first level is to

SIZE. Each character uses its value of the decimal base

corresponding with its ASCII to mark the first level of the

position

b) Handling the Pattern:

 First mark the location of the characters in the

pattern from left to right, and then the positions of each

© 2013 IJAIR. ALL RIGHTS RESERVED496

International Journal of Advanced and Innovative Research (2278-7844) / # 496 / Volume 2 Issue 11

character which appears in the pattern string according to

the decrease order, in turn enter the position which is

indicated with its ASCII, which would constitute a chain of

other levels

Next Array:

 Next array holds the pattern individual characters

with their presence bits, if the character occurs previously

we need to mention the previous character position, this

mechanism maintains window size approach for individual

search with 2m-1.

Pattern Search:

 Now consider window size content from the large

pattern, select a character with respect to the next array size

and search that character in the shift table if it is present get

the position and if it is not zero go to the next position that

decides the number of characters, which are divided from

the left side and right side. If it is not present leave the first

next array sized characters and move to next window sized

character until the pattern found.

Future Enhancement:

Main drawback in this approach is, Even though

the initial event or any event in the pattern not present in

the record pattern proceeds with the next event, it leads to

the useless computation of search over the all patterns. We

can solve this issue by ignoring the process of searching

when the event (i.e. initially or middle event of the pattern)

not present in the record.

We can enhance the procedure by initially

checking the all the negative items, if not available in the

search pattern, we need not to declare and initialize the

negative array initializes; it preserves the space and

obviously gives the optimal time complexity.

Integration of new pattern helps the future record

patterns when the search pattern not available in the record

set, specifically in the field of medical events.

IV. CONCLUSION

Even though various pattern search algorithms available for

searching the patterns from the large set of patterns. Time

complexity and performance are important factors during

the searching. Traditional approaches are suffers from the

various problem we explained above ,our quick large

pattern and temporal pattern search approach gives an

efficient search performance than the traditional suffix and

prefix based approaches.

REFERENCES

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman,

“Efficient Pattern Matching over Event Streams,” Proc.

ACM SIGMOD Int’l Conf. Management of Data, pp. 147-

160, 2008.

[2] R.S. Boyer and J.S. Moore, “A Fast String-Searching

Algorithm,” Comm. ACM, vol. 20, no. 10, pp. 762-772,

1977.

[3] R. Cox, “Regular Expression Matching Can Be Simple

and Fast,” http://swtch.com/rsc/regexp/regexp1.html, 2007.

[4] DataMontage,

http://www.stottlerhenke.com/datamontage/2011.

[5] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W.

White, “Towards Expressive Publish/Subscribe Systems,”

Proc. 10th Int’l Conf. Extending Database Technology

(EDBT), pp. 627-644, 2006.

[6] J. Fails, A. Karlson, L. Shahamat, and B. Shneiderman,

“A Visual Interface for Multivariate Temporal Data:

Finding Patterns of Events across Multiple Histories,”

Proc. IEEE Symp. Visual Analytics Science and

Technology (VAST ’06), pp. 167-174, 2006.

[7] D. Ficara, S. Giodano, G. Procissi, F. Vitucci, G.

Antichi, and A.D. Pietro, “An Improved DFA for Fast

Regular Expression Matching,” ACM SIGCOMM

Computer Comm. Rev., vol. 38, no. 5, pp. 29- 40, 2008.

[8] L. Harada and Y. Hotta, “Order Checking in a CPOE

Using Event Analyzer,” Proc. ACM Int’l Conf.

Information and Knowledge Management (CIKM), pp.

549-555, 2005.

[9] L. Harada, Y. Hotta, and T. Ohmori, “Detection of

Sequential Patterns of Events for Supporting Business

Intelligence Solutions,” Proc. Int’l Database Eng. and

Applications Symp. (IDEAS ’04), pp. 475-479, 2004.

[10] J.E. Hopcroft, R. Motwani, and J.D. Ullman,

Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley,2000.

[11] R.M. Karp and M.O. Rabin, “Efficient Randomized

Patter

Matching Algorithms,” Technical Report TR-31-81, Aiken

Computation Laboratory, Harvard Univ., 1981.

[12] D.E. Knuth, J.H. Moris, and V.R. Pratt, “Fast Pattern

Matching in Strings,” SIAM J. Computing, vol. 6, no. 2,

pp. 323-350, 1977.

[13] S. Kumar, B. Chandrasekaran, J. Turner, and G.

Varghese, “Curing

Regular Expressions Matching Algorithms from Insomnia,

Amnesia, and Acalculia,” Proc. Third ACM/IEEE Symp.

Architecture for Networking and Comm., Systems

(ANCS), pp. 155-164, 2007.

[14] H. Lam, D. Russell, D. Tang, and T. Munzner,

“Session Viewer: Visual Exploratory Analysis of Web

Session Logs,” Proc. IEEE Symp. Visual Analytics Science

and Technology (VAST ’07), pp. 147- 154, 2007.

© 2013 IJAIR. ALL RIGHTS RESERVED497

International Journal of Advanced and Innovative Research (2278-7844) / # 497 / Volume 2 Issue 11

BIOGRAPHIES

P.Vasudeva Reddy: He has obtained B.Tech in

Information Technology from Acharya Nagarjuna

University Guntur and pursuing M.Tech in Computer

Science and Engineering at Avanthi Insistute Of

Engneering and Technology Makavarapalem, interested in

Java and DBMS

Mr. kumar vasantha: He has obtained M.Tech in

Software Engineering from jawaharlal nehru

technological university Kakinada, He has published 10

papers in National and International journals his interested

areas are Web Technologies,Network Security

Dr. C P V N J Mohan Rao : He has obtained M.Tech in

Computer Science and Technology from Andhra University

College of Engineering and awarded Ph.D by Andhra

University during 2000. He has 18 years of teaching and

research experience and guided number of M.Tech students

for their projects. He has published 23 papers in National

and international journals. He is guiding research scholars

for Ph.D. He received Best Teacher award from JNTU,

Kakinada during 2009.

