
The New Convergence for Similitude Examination of Data

Bhanu Rekha Pydi
1

 D.T.V. Dharmajee Rao
2

1
(Final Year M.Tech Student, Dept. of CSE, Aditya Institute of Technology and Management (AITAM), Tekkali,

Srikakulam, Andhra Pradesh, bhanu6996@gmail.com)
2
(Professor, Dept. of CSE, Aditya Institute of Technology and Management(AITAM), Tekkali, Srikakulam, Andhra

Pradesh,dharmajee@hotmail.com)

Abstract:

To achieve similitude examination of data,

first accumulate the data in cloud. Due to the

appealing features of cloud computing,

accumulation of more data is possible. But

the security of data is big concern. So the

encrypted and compressed accumulation

protects the data from illegal access. To do

this, use BASE-64 and Zip compression

algorithms. After accumulation simply

cleans the data and categorizes the data.

When the user examines the data most

related information to be retrieved. To do

these use the data sensitivity technique by

using DSI (Data Sensitivity and

Insensitivity) algorithm. Also examination

of data can be done in simple manner using

LDAP (Light Weight Directory Access

protocol). It is used to control and

organizing the data in cloud. Finally, when

the user sends the query the most related

data can be retrieved effectively.

Index terms:

Data cleaning, data categorization, data

accumulation, data sensitivity, LDAP (Light

Weight Directory Access Protocol), data

insensitivity, encrypted and decrypted data,

compression and decompression.

Introduction:

The cloud accumulates more data and

Moving data into the cloud offers great

convenience to users since they don’t have

to care about the complexities of direct

hardware management. But the security and

privacy is the main problem in cloud.

The accumulation of data in un-

trusted cloud gives the security problem. So

to overcome the security problem

accumulate the encrypted and compressed

data in cloud .it prevents the unauthorized

access and reduces the size of the data.

 Once the client accumulates the data

in cloud then users can access the required

data by sending a query to server (cloud).

When we categorize the data the searching

process can be done quickly.

In the cloud we are maintaining two

devices. One device is used to accumulate

the data and another device is used to

control the accumulated data. The

accumulated device maintains the sensitive

and in-sensitive data. We consider a

threshold value. If any document exceeds

the threshold value then the data is

considered as sensitive data and less than the

threshold value considered as in-sensitive

data. The control device is used to control

the accumulated data. The control device

consists of LDAP protocol. When the user

sends a query to server the LDAP protocol

take’s the responsibility to send the required

related data to user. The control device

consists of folders. Each folder contains

related files. So based on the threshold value

the LDAP protocol examine the data. So,

LDAP will play vital role at the service side.

This LDAP will maintain all the information

of the accumulated data. This information

International Journal of Advanced and Innovative Research (2278-7844) / # 475 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 475

helps to save the time for search criteria. So

when user sends a request the most related

data to be retrieved.

Client-Server Architecture:

 Users Stub Skelton

Fig 1: client-server architecture

When the client accumulates the encrypted

and compressed data in cloud then the users

can access the required data from cloud.

Here cloud is treated as server. The users

send a query to server to get the required

information. The server consists of a control

device. The control device maintains LDAP

(Light Weight Directory Access Protocol).

When the server receives the request from

users it passes to LDAP protocol. The

LDAP protocol examines the data from

storage device. First it checks the data based

on threshold value. After examination

simply it collects the related data and

forwards to server. The server transmits the

data to user. In summary, there are several

notable contributions of this paper. They are,

Data Cleaning: It is a technique to remove

the unnecessary data. The data consists of

UTF characters. If the data consists of

unnecessary symbols or data then the

Cloud (server)

examination of data is difficult. So first

remove the unnecessary data from cloud.

Data categorization: categorizing the data is

nothing but place the related data in one

folder. In the same way we separate all data

Put it in related folders. The data

categorization simplifies the examination of

data.

Data Sensitivity and In-Sensitivity: After

performing data categorization, we examine

the sensitivity of data. Consider a threshold

value. If any document exceeds the

Control

Device

LDAP

Protocol

Storage

Device

 Sensitive

data

In

Sensitive

Data

International Journal of Advanced and Innovative Research (2278-7844) / # 476 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 476

threshold value then the data is considered

as sensitive data and the remaining data is

considered as in-sensitive data. Here data

sensitivity means that information is mostly

related to user’s request.

Data Encryption: The data encryption is

applied on the categorized data. The

encrypted accumulation protects the data

from un-authorized access. We are using

base-64 algorithm to encrypt the data.

Data compression: To perform the data

compression technique on the encrypted

data use ZIP compression. It reduces the size

of the data in cloud.

Data decryption and decompression:
When the user sends a query to server before

the searching process the data is decrypted

and decompressed and then the required data

is sends to the user.

Examine the data based on user’s request:

When the client accumulates the data in

cloud then the data is shared to permitted

data users. So if any user wants to use the

data then the user sends a query to server.

The query consists of several words and

each word is considered as an object. The

query in each word is compared with the

data accumulated in cloud. If any data is

suitable to the particular requested query

then that data is retrieved based on the

threshold value and it is considered as

sensitive data. That is the data is mostly

related to users request and the data is send

to the user.

LDAP: LDAP stands for Lightweight

Directory Access Protocol. It is a protocol

for accessing directories originally designed

to act as a gateway to other directories. It is
an application protocol for accessing and
maintaining distributed directory
information services over an Internet

Protocol (IP) network. It placed in server
side to manage the accumulated data.

Algorithm1: Data categorization

In this algorithm first clean the data and

categorize the data. Based on the

categorized data perform data sensitivity

calculation.

Steps: Initially the cloud consists of number

of non cleaned documents (Nc).

Consider each document to clean the data.

1. It removes the UTF characters from

each document one by one. So

examination of data can be done

easily.

2. After cleaning categorize the data.

Here each document is checked with

related category like c, .net, java etc.

3. If any document is related to one

category then the document not

compared with remaining categories.

EX: if the second document is

matched with java category then the

document not checked with

remaining categories.

4. Finally we get the categorized data.

Next we have to perform data

sensitivity calculation.

Terminology:

 : Number of non cleaned documents,

 Data categorization,

 UTF characterized vector,

 Non sensitive vector,

 Sensitive vector,

International Journal of Advanced and Innovative Research (2278-7844) / # 477 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 477

 Data vector(s) to mine,

 : Temporary document vector,

 : Temporary document category vector,

 Temporary document vector

Data categorization:

Input

Output P

Count=0

For each d (document) in

 ∈ UTFR (d)

 Count++

 End for

For each category c in C

 For each d (document) in

 If d ∈ c

 d

 P

 C – d

 End if

End for

Algorithm2: DSI (Data Sensitivity and

Insensitivity Calculation)

Steps:

1. We give categorized data as input to

perform data sensitivity calculation.

2. Initially we take threshold value. For

each categorized document we

assign fixed threshold value.

3. If any categorized document

exceeds the threshold value then the

document can be considered as

sensitivity data. Otherwise the

document can be considered as

insensitivity data.

4. The data sensitivity calculation is

performed to retrieve most related

data based on user’s request.

Data Sensitivity and Insensitivity

Calculation:

Input P

Output

Initialization =15

Loop statement

 For all c in C

 For each p in P

 If 0 (p) 15

 ∈ Mark (p)

 Else

 p

 End if

 End for

 End for

End loop

International Journal of Advanced and Innovative Research (2278-7844) / # 478 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 478

Algorithm3: Base64

Encryption: Base64 is a group of similar

binary-to-text encoding schemes that

represent binary data in an ASCII string

format by translating it into a radix-64

representation.

 Base64 encoding schemes are commonly

used when there is a need to encode binary

data that needs to be stored and transferred

over media that are designed to deal with

textual data. This is to ensure that the data

remain intact without modification during

transport. Base64 is commonly used in a

Base64 encoding takes the original binary

data and operates on it by dividing it into

tokens of three bytes. A byte consists of

eight bits, so Base64 takes 24bits in total.

These 3 bytes are then converted into four

printable characters from the ASCII

standard.

The algorithm's name Base64 comes from

the use of these 64 ASCII characters. The

ASCII characters used for Base64 are the

numbers 0-9, the alphabets 26 lowercase and

26 uppercase characters plus two extra

characters '+' and '/'.

The first step is to take the three bytes

(24bit) of binary data and split it into four

numbers of six bits. Because the ASCII

standard defines the use of seven bits,

Base64 only uses 6 bits (corresponding to

2^6 = 64 characters) to ensure the encoded

data is printable and none of the special

characters available in ASCII are used.

The ASCII conversion of 3-byte, 24-bit

groups is repeated until the whole sequence

of original data bytes is encoded. To ensure

the encoded data can be properly printed and

does not exceed the limit.

When the number of bytes to encode is not

divisible by 3 (that is, if there are only one

or two bytes of input for the last 24-bit

block), then the following action is

performed: Add extra bytes with value zero

so there are three bytes, and perform the

conversion to base64. If there was only one

significant input byte, only the first two

base64 digits are picked (12 bits), and if

there were two significant input bytes, the

first three base64 digits are picked (18 bits).

'=' characters might be added to make the

last block contain four base64 characters.

Example:

Text

content

M

a

n

ASCII 77 97 110

Bit

pattern
0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0

Index 19 22 5 46

Base64-

encoded
T W F u

Padding:

The '==' sequence indicates that the last

group contained only 1 byte, and '='

indicates that it contained 2 bytes.

Exapmple1:

Input:

 any carnal pleasure.

Output:

YW55IGNhcm5hbCBwbGVhc3VyZS4=

Exapmple2:

Input:

 any carnal pleasure

International Journal of Advanced and Innovative Research (2278-7844) / # 479 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 479

https://en.wikipedia.org/wiki/Binary-to-text_encoding
https://en.wikipedia.org/wiki/Binary_data
https://en.wikipedia.org/wiki/Radix

Output:

YW55IGNhcm5hbCBwbGVhc3VyZQ==

Base64 (encryption) algorithm:

Input raw string

Output base64 encoded format

Step1: initialization

∫ALPHABET =

 +

 +

 +

// all “ALPHABET” CONTAINS ASCII

values for capital letters, small letters,

single digit numbers, ‘+’ and ‘/’

characters.

Step2:

Functionality:

To convert alphabets to ASCII codes

Input all available characters

Output all equivalent ASCII

values

n 0

B0 0

B1 0

B2 0

 0

 0

 0

Iteration 0

Loop statement:

Count=0

For each C in ALPHABET

toInt (count) = TOINT (ALPHABET (i))

Count++

End loop

Size=SIZE (buff)

Iteration (((size+2)/3)*4)

Do while n in iteration

B0 buff

B1 (i <size)? buff++: 0

B2 (i < size)? buff++: 0

Masking

Mask=0X3F

ar = ALPHABET [(b0>>2) & mask]

ar= ALPHABET [(b0<<4) |

((b1&0XFF)>>4)) & mask]

ar= ALPHABET [(b1<<2) |

((b2&0XFF)>>6)) & mask]

ar = ALPHABET [b2 & mask]

End while

Padding:

If (size % 3=1)

ar “=”

International Journal of Advanced and Innovative Research (2278-7844) / # 480 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 480

ar “=”

Else if (size % 3=2)

ar “=”

else

size %3=0

End if

Decryption:

When decoding Base64 text, 4 characters

are typically converted back to 3 bytes. The

only exceptions are when padding characters

exist. A single '=' indicates that the 4

characters will decode to only 2 bytes, while

2 '='s indicates that the 4 characters will

decode to only a single byte.

Example:

Input:

 YW55IGNhcm5hbCBwbGVhcw==

Block with 2 '='s decodes to 1 character:

Output:

 any carnal pleas

Base64 (decoding) algorithm:

Input string

Output

Initialization:

Buff 0

S string decode

N length of string

Mask 0XFF

If s [0] = ‘==’

Delta =2

Else if s [0] = ’=’

Delta =1

Else

Delta=0

End if

Loop

For I 0 step by 4 of in n

C0=Convert to Int [CharAt (i) in S]

C1=Convert to Int [CharAt (i+1) in S]

 (c0<<2) | (c1>>4) & mask

C2 Convert to Int [CharAt (i+2) in S]

 (c1<<4)|(c2>>2)&mask

C3=convert toInt [i+3]

 = (c2<<6)! c3&mask

End loop

Algorithm4: Compression and

Decompression.

The compression technique is performed on

encrypted data. We are using compression

technique to reduce the size of the data. So

we can store more data on cloud. We are

using ZIP compression technique. A zip file

is a single file that contains one or more

compressed files. Zip files usually have the

".ZIP" filename extension, which helps to

clearly identify them.

In cloud each file in a zip file

consists of compressed data or as raw

uncompressed data, and can be encrypted.

International Journal of Advanced and Innovative Research (2278-7844) / # 481 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 481

The zip file format is designed to support

more than one type of compression method,

so that new and improved compression

methods can be used. This ZIP algorithm

applicable to maximum size 1GB of data. It

compress the more than 80% of data. When

decompression can be done it gives the

original data without loss.

Compression Algorithm:

Input: file

Output: compressed file (zip file)

Step 1:

Take a file from directory (along with

path)

From file (input)

Specify directory to save zip file (path)

To file (output)

Step 2:

Initialize buffer with specified size

Buffer byte [4096]

Step 3:

Initialize bytes read buffer

Buffer1 read (from)

Bytes read read (buffer)

Loop starts

While bytes read! = -1

Buffer write

Step 4:

Create zip directory (dir, zip file)

If dir! =available directory then

Directory not available

Step 5:

Buffer for copying

Buffer byte [4096]

Entries data in buffer

Step 6:

Loop starts for entries in buffer

For all entries in buffer

I ∈ entries.length

File add (entries [I])

To zip (file)

d mk.dir (to)

Save (d)

Decompression:

Step 1:- input: Zip file.

Consider the zip file path with removing the

(.Zip 4 characters) Extension.

Temp path

Mk.dir (temp)

Step 2 :- Read content

Content zip file. Entries

Loop start // entries in file.

File.entries iterate each entry from zip

File,

International Journal of Advanced and Innovative Research (2278-7844) / # 482 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 482

Dest File File (path, file.entries)

Directory Mk.dir (Dest File)

Step3:-

If available directory then

 Save File into directory

Else

 Buffer bytes [1024]

Buffer [Read the current directory from

zip file and extract]

Loop starts //

While buffer! = -1

Write (buffer)

(Write Extracted File.)

Experimental results:

The experimental results shows that when

user sends a request based on threshold

value the related data was retrieved. If client

fix large number of threshold value then less

number of data but most related to requested

data was retrieved. If the threshold value is

less then more related information related to

request was retrieved. So based on threshold

value the retrieved data was varied.

Conclusion: In this paper, we proposed

new convergence for similitude examined

data. The similitude examined data was

retrieved when the user requested the server.

Based on threshold value sensitivity of data

was calculated on categorized data. So the

result shows that fast and effective

similitude examined data. So when the user

sends a query the most related data can be

retrieved based on threshold value.

References:

[1] Mehmet Kuzu, Mohammad Saiful

Islam, Murat Kantarcioglu,”Efficient

Similarity Search over Encrypted Data”.

[2] J. Li, Q. Wang, C. Wang, N. Cao,

K.Ren, and W. Lou, “Enabling

efficient fuzzy keyword search over

encrypted data in cloud computing,”

in Cryptology ePrint Archive, Report

2009/593, 2009.

[3] Q. Lv, W. Josephson, Z. Wang, M.

Charikar, and K. Li, “Multi-probelsh:

Efficient indexing for high-dimensional

similarity search,” in Proc.of VLDB’07,

2007, pp. 253–262.

[4] A. Gionis, P. Indyk, and R. Motwani,

“Similarity search in high dimensions via

hashing,” in Proc. of VLDB’99, 1999, pp.

518–529.

[5] A. Rajaraman and J. D. Ullman, Mining

of Massive Datasets.

http://infolab.stanford.edu/ullman/mmds/boo

k.pdf, 2010.

[6] C. Faloutsos and K. Lin, “Fastmap: a fast

algorithm for indexing, data mining and

visualization,” in Proc. of the SIGMOD’95,

1995, pp. 163–174.

[7] Federal Cloud Computing Strategy,

http://www.cio.gov/documents/Federal-

Cloud-Computing-Strategy.pdf

[8] Chief Information Officers Council,

“Privacy Recommendations for Cloud

Computing”,

http://www.cio.gov/Documents/Privacy-

International Journal of Advanced and Innovative Research (2278-7844) / # 483 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 483

http://www.cio.gov/Documents/Privacy-Recommendations-Cloud-Computing-8-19-2010.docx

Recommendations-Cloud-Computing-8-19-

2010.docx

[9] NIST SP 800-144, “Guidelines on

Security and Privacy Issues in Public Cloud

Computing”,

http://csrc.nist.gov/publications/drafts/800-

144/Draft-SP-800-144_cloud-computing.pdf

[10] IETF internet-draft, “Cloud Reference

Framework”, http://tools.ietf.org/html/draft-

khasnabish-cloud-reference-framework-00

International Journal of Advanced and Innovative Research (2278-7844) / # 484 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 484

http://csrc.nist.gov/publications/drafts/800-144/Draft-SP-800-144_cloud-computing.pdf
http://csrc.nist.gov/publications/drafts/800-144/Draft-SP-800-144_cloud-computing.pdf

