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ABSTRACT 

A new distributed association rule mining (D-ARM) algorithm is presented in this paper 

that demonstrates super-linear speedup with the number of computing nodes. Our distributed 

algorithm scans the database once, just like the Sampling algorithm, and is thus more efficient 

than any D-ARM algorithm known today, not only this algorithm divide the disk-I/O costs of the 

single scan by partitioning the database among several machines, but also uses the combined 

memory to linearly increase the size of the sample. This increase further improves the 

performance of the presented, distributed association rule mining algorithm.  

1. INTRODUCTION 

The economic value of data mining 

is today well established. Most large 

organizations regularly practice data mining 

techniques. One of the most popular 

techniques is association rule mining 

(ARM), which is the automatic discovery of 

pairs of element sets that tend to appear 

together in a common context. An example 

would be to discover that the purchase of 

certain items in a supermarket transaction 

usually implies that another set of items is 

also bought in that same transaction. Like 

other data mining techniques that must 

process enormous databases, ARM is 

inherently disk-I/O intensive.  

 

These I/O costs can be reduced in 

two ways: by reducing the number of times 

the database needs to be scanned, or through 

parallelization, by partitioning the database 

between several machines which then 

perform a distributed ARM (D-ARM) 

algorithm. In recent years much progress has 

been made in both directions. The main task 

of every ARM algorithm is to discover the 

sets of items that frequently appear together 

the frequent itemsets. The number of 

database scans required for the task has been 

reduced from a number equal to the size of 

the largest itemset in Apriori , to typically 

just a single scan in modern ARM 

algorithms such as Sampling and DIC Much 

progress has also been made in parallelized 

algorithms. With these, the architecture of 

the parallel system plays a key role.  
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For instance, many algorithms were 

proposed which take advantage of the fast 

interconnect, or the shared memory, of 

parallel computers. The latest development 

with these is, in which each process makes 

just two passes over its portion of the 

database.  Parallel computers are, however, 

very costly. Hence, although these 

algorithms were shown to scale up to 128 

processors, few organizations can afford to 

spend such resources on data mining. The 

alternative is distributed algorithms, which 

can be run on cheap clusters of standard, 

off-the-shelf PCs. Algorithms suitable for 

such systems include the CD and FDM 

algorithms , both parallelized versions of 

Apriori, which were published shortly after 

it was described.  

However, while clusters may easily 

and cheaply be scaled to hundreds of 

machines, these algorithms were shown not 

to scale well. The DDM algorithm, which 

overcomes this scalability problem, was 

recently described. Unfortunately, all the D-

ARM algorithms for share-nothing machines 

scan the database as many times as Apriori. 

Since many business databases contain large 

frequent itemsets, these algorithms are not 

competitive with DIC and Sampling. In this 

work we present a parallelized version of the 

Sampling algorithm, called P-Sampling. The 

algorithm is intended for clusters of share-

nothing machines. The main obstacle of this 

parallelization, that of achieving a coherent 

view of the distributed sample at reasonable 

communication costs, was overcome using 

ideas taken from DDM. Our distributed 

algorithm scans the database once, just like 

the Sampling algorithm, and is thus more 

efficient than any D-ARM algorithm known 

today. Not only does this algorithm divide 

the disk-I/O costs of the single scan by 

partitioning the database among several 

machines, but also uses the combined 

memory to linearly increase the size of the 

sample. 

This increase further improves the 

performance of the algorithm because the 

safety margin required in Sampling 

decreases when the (global) sample size 

increases. Extensive experiments on 

standard synthetic benchmarks show that D-

Sampling is superior to previous algorithms 

in every way. When compared to Sampling 

one of the best sequential algorithms known 

today it offers super-linear speedup. When 

compared to FDM, it improves runtime by 

orders of magnitude. Finally, on scalability 

tests, an increase in both the number of 

computing nodes and the size of the 

database does not degrade D-Sampling 

performance. FDM, on the other hand, 

suffers performance degradation in these 

tests.  

2. PREVIOUS WORK 

Many algorithms, representing 

several different approaches, were 

suggested. Some algorithms, such as 

Apriori, Partition, DHP, DIC, and FP-

growth, are bottom-up, starting from 

itemsets of size eand working up. Others, 

like Pincer-Search, use a hybrid approach, 

trying to guess large itemsets at an early 

stage. Most algorithms, including those cited 

above, adhere to the original problem 

definition, while others search for different 

kinds of rules.  Algorithms for the D-ARM 

problem usually can be seen as 

parallelizations of sequential ARM 

algorithms. The CD, FDM, and DDM 

algorithms parallelize Apriori, and PDM  

parallelizes DHP . The major difference 

between parallel algorithms is in the 

architecture of the parallel machine.  This 

may be shared memory, distributed shared 

memory, or shared nothing. One of the best 

sequential ARM algorithms. The idea 

behind Sampling is simple.  
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A random sample of the database is 

used to predict all the frequent itemsets, 

which are then validated in a single database 

scan. Because this approach is probabilistic, 

and therefore fallible, not only the frequent 

itemsets are counted in the scan but also 

their negative border. If the scan reveals that 

itemsets that were predicted to belong to the 

negative border are frequent then a second 

scan is performed to discover whether any 

superset of these itemsets is also frequent. 

To further reduce the chance of failure, 

Toivonen suggests that mining be performed 

using some low_fr < MinFreq, and the 

results reported only if they pass the original 

MinFreq threshold. He also gives a heuristic 

which can be used to determine    the cost of 

using low_fr is an increase in the number of 

candidates.  

The performance of the two is thus 

unrivaled by any other sequential ARM 

algorithm. The algorithm presented here 

combines ideas from several groups of 

algorithms. It first mines a sample of the 

database and then validates the result and 

can, thus, be seen as a parallelization of the 

Sampling algorithm. The sample is stored in 

a vertical trie structure that resembles the 

one in, and it is mined using modifications 

of the DDM  algorithm, which is Apriori-

based. 

 

3. D-SAMPLING ALGORITHM 

All distributed ARM algorithms that 

have been presented until now are Apriori 

based and thus require multiple database 

scans. The reason why no distributed form 

of Sampling was suggested in the six years 

since its presentation may lie in the 

communication complexity of the problem.  

As we have seen, the communication 

complexity of D-ARM algorithms is highly 

dependent on the number of candidates and 

on the noise level in the partitioned 

database.  

When Sampling reduces the database 

through sampling and lowers the threshold, 

it greatly increases both the number of 

candidates and the noise level. This may 

render a distributed algorithm useless. This 

is the reason that the reduced 

communication complexity of DDM seems 

to offer an opportunity. The main idea of D-

Sampling is to utilize DDM to mine a 

distributed sample using low_fr  .instead of  

MinFreq. After low_fr has been identified, 

the partitioned database is scanned once in 

parallel to find the actual frequencies of 

low_fr and its negative border. Those 

frequencies can then be collected and rules 

can be generated from itemsets more 

frequent than MinFreq.  

Three modifications has been made 

to this scheme. First, although the given 

DDM is levelwise, here it is executed on a 

memory resident sample. Thus we could 

modify DDM to develop new itemsets on-

the-fly and calculate their estimated 

frequency with no disk-I/O. Second, a new 

method for the reduction of MinFreq to 

low_fr yielded two additional benefits: it is 

not heuristic, i.e., our error bound is 

rigorous, and it produces many less 

candidates than the rigorous method 

suggested previously. 

 Third, after scanning the database, it 

would not be wise to just collect the 

frequencies of all candidates. Since these 

candidates were calculated according to the 

lowered threshold, few of them are expected 

to have frequencies above the original 

MinFreq. Instead, we run DDM once more 

to decide which candidates are frequent and 

which are not. 

3.1 ALGORITHM 

D-Sampling begins by loading a 

sample into memory. The sample is stored in 

a trie-a lexicographic tree. This trie is the 

main data structure of D-Sampling and is 
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accessed by all its subroutines. Each node of 

the trie stores, in addition to structural 

information (parents, descendants etc.), the 

list of TIDs of those transactions that 

include the itemset associated with this 

node. These lists are initialized from the 

sample for the first level of the trie; when a 

new trie node- and itemset - are developed, 

the TID lists of two of the parent nodes are 

intersected to create the TID list of the new 

node. The first step of D-Sampling is to run 

a modification of DDM on the distributed 

sample.  

Then, in order to set low_fr the 

algorithm enters a loop; in each cycle 

through the loop it calls another DDM 

derivative called M-Max to mine the next M 

estimated-frequent itemsets. M ais a tunable 

parameter we set to about 100. After it finds 

those additional itemsets, D-Sampling 

reduces low_fr to the estimated frequency of 

the least frequent one and re-estimates the 

error probability using a formula described 

in section 4. When this probability drops 

below the required error probability, the 

loop ends. Then D-Sampling creates the 

final candidate set C by adding to low_fr its 

negative border. 

 

ALGORITHM 1 D-SAMPLING 

 

For node i out of n 

Input: 

 MinFreq,MinConf,DB,s,M,ᵟ 

Output: 

 The set of confident association 

between globally frequent itemsets 

 

Main: 

 Set   p_error  ˂ l,  

low_fr  ˂   MinFreq 

 Load a sample s
i  

of size s from DB
i 

into memory 

Initialize the trie with all the size-1 

itemset and calculate their TID lists 

Low_fr  ˂ MDDM(MinFreq) 

While p_error ˂ ᵟ 

 1.low_fr ˂          low_fr U 

M_Max(M) 

 2.set low_fr to the frequency 

of least frequent itemset in low_fr 

3.set p_error to the new error 

bound according to MinFreq, 

low_fr,Flow_fr . 

Let C be 

 Flow_fr U Negative_Border(Flow_fr) scan the 

database and compute Freq(C, DB
i
) for each 

c£C. Update the frequency in the trie to the 

computed ones. Compute fminFreq such that 

c≠Flow_fr report failure 

Gen_Rules(FMinFreq,MinConf). 

 

Once the candidate set is established, 

each partition of the database is scanned 

exactly once and in parallel, and the actual 

frequencies of each candidate are calculated. 

With these frequencies D-Sampling 

performs yet another round of the modified 

DDM. In this round the original MinFreq  is 

used; thus, unless there is a failure, this 

round should never develop a candidate 

which is outside the negative border. 

 If indeed no failure occurs, then all 

frequent itemsets will be evaluated 

according to the actual frequencies which 

were found in the database scan. Hence, 

after this round it is known which of the 

candidates in yare globally frequent and 

which are not. In this case, rules are 

generated from FMinFreq  using the known 

global frequencies. 

 If an itemset belonging to the 

negative border of  Flow_fr does turn out to be 

frequent, this means that DSampling has 

failed: a superset of that candidate, which 

was not counted, might also turn out to be 

frequent.  
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In this case we suggest the same 

solution offered by Toivonen: to create a 

group of additional candidates that includes 

all combinations of anticipated and 

unanticipated frequent itemsets, and then 

perform an additional scan. The size of this 

group is limited by the number of 

anticipated frequent itemsets times the 

number of possible combinations of 

unanticipated frequent itemsets.  

Since failures are very rare events, 

and the probability of multiple failure is 

exponentially small, the additional scan will 

incur costs that are of the same scale as the 

first scan. 

3.2 MDDM - A MODIFIED 

DISTRIBUTED DECISION MINER 

The original MDDM algorithm, as 

described in, is levelwise. When the 

database is small enough to fit into memory, 

the levelwise structure of the algorithm 

becomes super-fluous. Modified Distributed 

Decision Miner, or MDDM(Algorithm 2), 

therefore starts by developing all the locally 

frequent candidates, regardless of their size. 

It then continues to develop candidates 

whenever they are required, i.e., when all 

their subsets are assumed frequent 

(according tothe local hypothesis) or when 

another node refers to the associated itemset. 

The remaining steps in MDDM are the same 

as in DDM. Each party looks for itemsets 

for which the global hypothesis and local 

hypothesis disagree and communicate their 

local counts to the rest of the parties.  

When no such itemsets exists, the 

party passes (it can return to activity if new 

information arrives). If all of the parties 

pass, the algorithm terminates and the 

itemsets which are predicted to be frequent 

according to the public hypothesis are the 

estimated globally frequent ones.  

If a message is received for an 

itemset which has not yet been developed, it 

is developed on-the-fly and its local 

frequency is calculated. 

ALGORITHM2MODIFIED 

DISTRIBUTED DECISION MINER 

For node I out of n 

Input: 

fr-target frequency 

Output: 

Ffr 

Definitions: 

                ∑j£G(X)|s
j
|Freq(x,s

j
)   

P(x,s
i
)   =     ________________   

          |S|   

   

 

 

  ∑j£G(X)|s
j
|freq(x,s

j
) 

H(X)= _________________ 

   ∑j£G(X)|s
j
|  

 

Main: 

Develop all the candidates which are more 

frequent than fr according to P 

Do 

 Choose a candidate X that was not yet 

choosen and for which either H(X) < fr ≤ 

P(X,s
i
) or P(X,s

i
) < f r ≤ H(X) 

 Broadcast m=<id(X), freq(X,S
i
)> 

 If no such itemset exist broadcast <pass> 

Untill |Passed|=N 

R  ˂ all X with H(X)  ≥  fr 
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return R 

when node i receive a message m from party j 

1) If m=<pass>insert j into Passed 

2) Else m = <id(X),Freq(x,s
j
)> 

3) If j є Passed remove j from Passed 

Insert j to G(X) 

Recalculate H(X) and P(X,S
i
) 

3.3 MMAX ALGORITHM 

The modified DDM algorithm 

identifies all itemsets with frequency above 

MinFreq. D-Sampling, however, requires a 

further decrease in the frequency of itemsets 

which are included in the database scan. The 

reason for this, is that three parameters 

affect the chances for failure. These are the 

size of the sample N, the size of the negative 

border, and the estimated frequency of the 

least frequent candidate. The first parameter 

is given, the second is a rather arbitrary 

value which we can calculate or bound, and 

the last parameter is the one we can control. 

The frequency of the least frequent 

candidate can be controlled by reducing 

low_fr. However, this must be done with 

care: lowering the frequency threshold 

increases the number of candidates. This 

increase depends on the distribution of 

itemsets in the database and is therefore 

nondeterministic. The larger number of 

candidates affects the scan time: the more 

candidates you have, the more comparisons 

must be made per transaction. In a 

distributed setting, the number of candidates 

is also strongly tied to the communication 

complexity of the algorithm. To better 

control the reduction of low_fr, we propose 

another version of DDM called M-Max 

(Algorithm 3).  

 

MMax increases the number of 

frequent itemsets by a given factor rather 

than decreasing the threshold value by an 

arbitrary value. Although worst case 

analysis shows that an increase of even one 

frequent itemset may require that any 

number of additional candidates be 

considered, the number of such candidates 

tends to remain small and roughly 

proportional to the number of additional 

frequent itemsets.  

The M-Max algorithm is based on 

the inference that changing the MinFreq 

threshold to the H-value of the Ma-largest 

itemset1 every time an itemset is developed 

or a hypothesis value is changed will result 

in all parties agreeing on the a most frequent 

itemsets when DDM terminates. This is easy 

to prove. Take any final state of the 

modified algorithm. The H value of each 

itemset is equal in all parties; hence, the 

final MinFreq is equal in all parties as well.   

ALGORITHM 3 M-MAX 

For node I out of n 

Input: 

low_fr-target frequency 

Output: 

The M most frequent itemsets not yet in Flow_fr 

Definitions: 

Same as for MDDM algorithm 

Let B denote theinitial size of Flow_fr, 

fr=low_fr 

Main: 

Develop all the candidates which are more 

frequent than fr according to P 
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Do 

 Choose a candidate X that was not yet 

choosen and for which either 

H(X) < fr ≤ P(X,s
i
) or P(X,s

i
) < f r ≤ H(X) 

 Broadcast m=<id(X), freq(X,S
i
)> 

 If no such itemset exist broadcast <pass> 

Untill |Passed|=N 

R ˂ all X in the trie with  H(X)  ≥  fr which are 

not in Flow_fr. 

return R 

when node i receive a message m from party j 

1) If m=<pass>insert j into Passed 

2) Else m = <id(X),Freq(x,s
j
)> 

3) If j є Passed remove j from Passed 

Insert j to G(X) 

Recalculate H(X) and P(X,S
i
) 

Call set_fr 

 

Procedure set_fr: 

 

Do M times: 

Select next most frequent itemset outside 

Flow_fr and develop its descendant if they 

have not been developed yet. Set fr to H 

value of last itemset selected. For itemset 

H=0 consider P instead. 

The static MinFreq value set to the 

one finally agreed upon. The state attained 

by M-Max is also a valid final state for this 

DDM. Thus, by virtue of DDM correctness, 

all parties must be in agreement on the same 

set of frequent itemsets.  

As a stand-alone ARM  M-Max may 

be impractical because a node may be 

required to refer to itemsets it has not yet 

developed. If the database is large, this 

would require an additional disk scan 

whenever new candidates are developed. 

Nevertheless, at the low_fr correction stage 

of D-Sampling, the database is the memory-

resident sample.  

5. CONCLUSIONS AND FUTURE 

RESEARCH 

We presented a new D-ARM 

algorithm that uses the communication 

efficiency of the DDM algorithm to 

parallelize the single-scan Sampling 

algorithm. Experiments prove that the new 

algorithm has superlinear speedup and 

outperforms both FDM and DDM with any 

MinFreq value. The exact improvement in 

relation to previous algorithms depends on 

the number of database scans they require.  

Experiments demonstrate good 

scalability, provided the database scan is the 

major bottleneck of the algorithm. Some 

open questions still remain. First, it would 

be interesting to continue partitioning the 

database until every partition becomes 

memory resident. This approach may lead to 

a D-ARM algorithm that mines a database 

by loading it into the memory of large 

number of computers and then runs with no 

disk-I/O at all. Second, it would be 

interesting to have a parallelized version of 

the other  single-scan ARM algorithm . DIC 

on a share-nothing cluster, or of the two-

scans partition algorithm. Finally, the full 

potential of the M-Max algorithm has not 

yet been realized; we intend to research 

additional applications for this algorithm. 
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