
AN EFFICIENT PARALLELIZED ALGORITHM FOR MINING

ASSOCIATION RULES
G.SUMATHI

#1
,M.INDUMATHI

*2
,K.TAMILARASI

#3

#
ASSISTANT PROFESSOR, ME STUDENT, DEPT OF CSE,

MUTHAYAMMAL ENGINEERING COLLEGE

RASIPURAM - 637 408, NAMAKKAL DT,INDIA.

subamecsep@gmail.com

indumathimurugesan@gmail.com
*
M.E STUDENT, DEPT OF CSE,

MUTHAYAMMAL ENGINEERING COLLEGE,

RASIPURAM - 637 408, NAMAKKAL DT, INDIA.

Tamilarasik1990@gmail.com

ABSTRACT

A new distributed association rule mining (D-ARM) algorithm is presented in this paper

that demonstrates super-linear speedup with the number of computing nodes. Our distributed

algorithm scans the database once, just like the Sampling algorithm, and is thus more efficient

than any D-ARM algorithm known today, not only this algorithm divide the disk-I/O costs of the

single scan by partitioning the database among several machines, but also uses the combined

memory to linearly increase the size of the sample. This increase further improves the

performance of the presented, distributed association rule mining algorithm.

1. INTRODUCTION

The economic value of data mining

is today well established. Most large

organizations regularly practice data mining

techniques. One of the most popular

techniques is association rule mining

(ARM), which is the automatic discovery of

pairs of element sets that tend to appear

together in a common context. An example

would be to discover that the purchase of

certain items in a supermarket transaction

usually implies that another set of items is

also bought in that same transaction. Like

other data mining techniques that must

process enormous databases, ARM is

inherently disk-I/O intensive.

These I/O costs can be reduced in

two ways: by reducing the number of times

the database needs to be scanned, or through

parallelization, by partitioning the database

between several machines which then

perform a distributed ARM (D-ARM)

algorithm. In recent years much progress has

been made in both directions. The main task

of every ARM algorithm is to discover the

sets of items that frequently appear together

the frequent itemsets. The number of

database scans required for the task has been

reduced from a number equal to the size of

the largest itemset in Apriori , to typically

just a single scan in modern ARM

algorithms such as Sampling and DIC Much

progress has also been made in parallelized

algorithms. With these, the architecture of

the parallel system plays a key role.

International Journal of Advanced and Innovative Research (2278-7844) / # 407 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 407

mailto:subamecsep@gmail.com
mailto:indumathimurugesan@gmail.com
mailto:Tamilarasik1990@gmail.com

For instance, many algorithms were

proposed which take advantage of the fast

interconnect, or the shared memory, of

parallel computers. The latest development

with these is, in which each process makes

just two passes over its portion of the

database. Parallel computers are, however,

very costly. Hence, although these

algorithms were shown to scale up to 128

processors, few organizations can afford to

spend such resources on data mining. The

alternative is distributed algorithms, which

can be run on cheap clusters of standard,

off-the-shelf PCs. Algorithms suitable for

such systems include the CD and FDM

algorithms , both parallelized versions of

Apriori, which were published shortly after

it was described.

However, while clusters may easily

and cheaply be scaled to hundreds of

machines, these algorithms were shown not

to scale well. The DDM algorithm, which

overcomes this scalability problem, was

recently described. Unfortunately, all the D-

ARM algorithms for share-nothing machines

scan the database as many times as Apriori.

Since many business databases contain large

frequent itemsets, these algorithms are not

competitive with DIC and Sampling. In this

work we present a parallelized version of the

Sampling algorithm, called P-Sampling. The

algorithm is intended for clusters of share-

nothing machines. The main obstacle of this

parallelization, that of achieving a coherent

view of the distributed sample at reasonable

communication costs, was overcome using

ideas taken from DDM. Our distributed

algorithm scans the database once, just like

the Sampling algorithm, and is thus more

efficient than any D-ARM algorithm known

today. Not only does this algorithm divide

the disk-I/O costs of the single scan by

partitioning the database among several

machines, but also uses the combined

memory to linearly increase the size of the

sample.

This increase further improves the

performance of the algorithm because the

safety margin required in Sampling

decreases when the (global) sample size

increases. Extensive experiments on

standard synthetic benchmarks show that D-

Sampling is superior to previous algorithms

in every way. When compared to Sampling

one of the best sequential algorithms known

today it offers super-linear speedup. When

compared to FDM, it improves runtime by

orders of magnitude. Finally, on scalability

tests, an increase in both the number of

computing nodes and the size of the

database does not degrade D-Sampling

performance. FDM, on the other hand,

suffers performance degradation in these

tests.

2. PREVIOUS WORK

Many algorithms, representing

several different approaches, were

suggested. Some algorithms, such as

Apriori, Partition, DHP, DIC, and FP-

growth, are bottom-up, starting from

itemsets of size eand working up. Others,

like Pincer-Search, use a hybrid approach,

trying to guess large itemsets at an early

stage. Most algorithms, including those cited

above, adhere to the original problem

definition, while others search for different

kinds of rules. Algorithms for the D-ARM

problem usually can be seen as

parallelizations of sequential ARM

algorithms. The CD, FDM, and DDM

algorithms parallelize Apriori, and PDM

parallelizes DHP . The major difference

between parallel algorithms is in the

architecture of the parallel machine. This

may be shared memory, distributed shared

memory, or shared nothing. One of the best

sequential ARM algorithms. The idea

behind Sampling is simple.

International Journal of Advanced and Innovative Research (2278-7844) / # 408 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 408

A random sample of the database is

used to predict all the frequent itemsets,

which are then validated in a single database

scan. Because this approach is probabilistic,

and therefore fallible, not only the frequent

itemsets are counted in the scan but also

their negative border. If the scan reveals that

itemsets that were predicted to belong to the

negative border are frequent then a second

scan is performed to discover whether any

superset of these itemsets is also frequent.

To further reduce the chance of failure,

Toivonen suggests that mining be performed

using some low_fr < MinFreq, and the

results reported only if they pass the original

MinFreq threshold. He also gives a heuristic

which can be used to determine the cost of

using low_fr is an increase in the number of

candidates.

The performance of the two is thus

unrivaled by any other sequential ARM

algorithm. The algorithm presented here

combines ideas from several groups of

algorithms. It first mines a sample of the

database and then validates the result and

can, thus, be seen as a parallelization of the

Sampling algorithm. The sample is stored in

a vertical trie structure that resembles the

one in, and it is mined using modifications

of the DDM algorithm, which is Apriori-

based.

3. D-SAMPLING ALGORITHM

All distributed ARM algorithms that

have been presented until now are Apriori

based and thus require multiple database

scans. The reason why no distributed form

of Sampling was suggested in the six years

since its presentation may lie in the

communication complexity of the problem.

As we have seen, the communication

complexity of D-ARM algorithms is highly

dependent on the number of candidates and

on the noise level in the partitioned

database.

When Sampling reduces the database

through sampling and lowers the threshold,

it greatly increases both the number of

candidates and the noise level. This may

render a distributed algorithm useless. This

is the reason that the reduced

communication complexity of DDM seems

to offer an opportunity. The main idea of D-

Sampling is to utilize DDM to mine a

distributed sample using low_fr .instead of

MinFreq. After low_fr has been identified,

the partitioned database is scanned once in

parallel to find the actual frequencies of

low_fr and its negative border. Those

frequencies can then be collected and rules

can be generated from itemsets more

frequent than MinFreq.

Three modifications has been made

to this scheme. First, although the given

DDM is levelwise, here it is executed on a

memory resident sample. Thus we could

modify DDM to develop new itemsets on-

the-fly and calculate their estimated

frequency with no disk-I/O. Second, a new

method for the reduction of MinFreq to

low_fr yielded two additional benefits: it is

not heuristic, i.e., our error bound is

rigorous, and it produces many less

candidates than the rigorous method

suggested previously.

 Third, after scanning the database, it

would not be wise to just collect the

frequencies of all candidates. Since these

candidates were calculated according to the

lowered threshold, few of them are expected

to have frequencies above the original

MinFreq. Instead, we run DDM once more

to decide which candidates are frequent and

which are not.

3.1 ALGORITHM

D-Sampling begins by loading a

sample into memory. The sample is stored in

a trie-a lexicographic tree. This trie is the

main data structure of D-Sampling and is

International Journal of Advanced and Innovative Research (2278-7844) / # 409 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 409

accessed by all its subroutines. Each node of

the trie stores, in addition to structural

information (parents, descendants etc.), the

list of TIDs of those transactions that

include the itemset associated with this

node. These lists are initialized from the

sample for the first level of the trie; when a

new trie node- and itemset - are developed,

the TID lists of two of the parent nodes are

intersected to create the TID list of the new

node. The first step of D-Sampling is to run

a modification of DDM on the distributed

sample.

Then, in order to set low_fr the

algorithm enters a loop; in each cycle

through the loop it calls another DDM

derivative called M-Max to mine the next M

estimated-frequent itemsets. M ais a tunable

parameter we set to about 100. After it finds

those additional itemsets, D-Sampling

reduces low_fr to the estimated frequency of

the least frequent one and re-estimates the

error probability using a formula described

in section 4. When this probability drops

below the required error probability, the

loop ends. Then D-Sampling creates the

final candidate set C by adding to low_fr its

negative border.

ALGORITHM 1 D-SAMPLING

For node i out of n

Input:

 MinFreq,MinConf,DB,s,M,ᵟ

Output:

 The set of confident association

between globally frequent itemsets

Main:

 Set p_error ˂ l,

low_fr ˂ MinFreq

 Load a sample s
i

of size s from DB
i

into memory

Initialize the trie with all the size-1

itemset and calculate their TID lists

Low_fr ˂ MDDM(MinFreq)

While p_error ˂ ᵟ

 1.low_fr ˂ low_fr U

M_Max(M)

 2.set low_fr to the frequency

of least frequent itemset in low_fr

3.set p_error to the new error

bound according to MinFreq,

low_fr,Flow_fr .

Let C be

 Flow_fr U Negative_Border(Flow_fr) scan the

database and compute Freq(C, DB
i
) for each

c£C. Update the frequency in the trie to the

computed ones. Compute fminFreq such that

c≠Flow_fr report failure

Gen_Rules(FMinFreq,MinConf).

Once the candidate set is established,

each partition of the database is scanned

exactly once and in parallel, and the actual

frequencies of each candidate are calculated.

With these frequencies D-Sampling

performs yet another round of the modified

DDM. In this round the original MinFreq is

used; thus, unless there is a failure, this

round should never develop a candidate

which is outside the negative border.

 If indeed no failure occurs, then all

frequent itemsets will be evaluated

according to the actual frequencies which

were found in the database scan. Hence,

after this round it is known which of the

candidates in yare globally frequent and

which are not. In this case, rules are

generated from FMinFreq using the known

global frequencies.

 If an itemset belonging to the

negative border of Flow_fr does turn out to be

frequent, this means that DSampling has

failed: a superset of that candidate, which

was not counted, might also turn out to be

frequent.

International Journal of Advanced and Innovative Research (2278-7844) / # 410 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 410

In this case we suggest the same

solution offered by Toivonen: to create a

group of additional candidates that includes

all combinations of anticipated and

unanticipated frequent itemsets, and then

perform an additional scan. The size of this

group is limited by the number of

anticipated frequent itemsets times the

number of possible combinations of

unanticipated frequent itemsets.

Since failures are very rare events,

and the probability of multiple failure is

exponentially small, the additional scan will

incur costs that are of the same scale as the

first scan.

3.2 MDDM - A MODIFIED

DISTRIBUTED DECISION MINER

The original MDDM algorithm, as

described in, is levelwise. When the

database is small enough to fit into memory,

the levelwise structure of the algorithm

becomes super-fluous. Modified Distributed

Decision Miner, or MDDM(Algorithm 2),

therefore starts by developing all the locally

frequent candidates, regardless of their size.

It then continues to develop candidates

whenever they are required, i.e., when all

their subsets are assumed frequent

(according tothe local hypothesis) or when

another node refers to the associated itemset.

The remaining steps in MDDM are the same

as in DDM. Each party looks for itemsets

for which the global hypothesis and local

hypothesis disagree and communicate their

local counts to the rest of the parties.

When no such itemsets exists, the

party passes (it can return to activity if new

information arrives). If all of the parties

pass, the algorithm terminates and the

itemsets which are predicted to be frequent

according to the public hypothesis are the

estimated globally frequent ones.

If a message is received for an

itemset which has not yet been developed, it

is developed on-the-fly and its local

frequency is calculated.

ALGORITHM2MODIFIED

DISTRIBUTED DECISION MINER

For node I out of n

Input:

fr-target frequency

Output:

Ffr

Definitions:

 ∑j£G(X)|s
j
|Freq(x,s

j
)

P(x,s
i
) = ________________

 |S|

 ∑j£G(X)|s
j
|freq(x,s

j
)

H(X)= _________________

 ∑j£G(X)|s
j
|

Main:

Develop all the candidates which are more

frequent than fr according to P

Do

 Choose a candidate X that was not yet

choosen and for which either H(X) < fr ≤

P(X,s
i
) or P(X,s

i
) < f r ≤ H(X)

 Broadcast m=<id(X), freq(X,S
i
)>

 If no such itemset exist broadcast <pass>

Untill |Passed|=N

R ˂ all X with H(X) ≥ fr

International Journal of Advanced and Innovative Research (2278-7844) / # 411 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 411

return R

when node i receive a message m from party j

1) If m=<pass>insert j into Passed

2) Else m = <id(X),Freq(x,s
j
)>

3) If j є Passed remove j from Passed

Insert j to G(X)

Recalculate H(X) and P(X,S
i
)

3.3 MMAX ALGORITHM

The modified DDM algorithm

identifies all itemsets with frequency above

MinFreq. D-Sampling, however, requires a

further decrease in the frequency of itemsets

which are included in the database scan. The

reason for this, is that three parameters

affect the chances for failure. These are the

size of the sample N, the size of the negative

border, and the estimated frequency of the

least frequent candidate. The first parameter

is given, the second is a rather arbitrary

value which we can calculate or bound, and

the last parameter is the one we can control.

The frequency of the least frequent

candidate can be controlled by reducing

low_fr. However, this must be done with

care: lowering the frequency threshold

increases the number of candidates. This

increase depends on the distribution of

itemsets in the database and is therefore

nondeterministic. The larger number of

candidates affects the scan time: the more

candidates you have, the more comparisons

must be made per transaction. In a

distributed setting, the number of candidates

is also strongly tied to the communication

complexity of the algorithm. To better

control the reduction of low_fr, we propose

another version of DDM called M-Max

(Algorithm 3).

MMax increases the number of

frequent itemsets by a given factor rather

than decreasing the threshold value by an

arbitrary value. Although worst case

analysis shows that an increase of even one

frequent itemset may require that any

number of additional candidates be

considered, the number of such candidates

tends to remain small and roughly

proportional to the number of additional

frequent itemsets.

The M-Max algorithm is based on

the inference that changing the MinFreq

threshold to the H-value of the Ma-largest

itemset1 every time an itemset is developed

or a hypothesis value is changed will result

in all parties agreeing on the a most frequent

itemsets when DDM terminates. This is easy

to prove. Take any final state of the

modified algorithm. The H value of each

itemset is equal in all parties; hence, the

final MinFreq is equal in all parties as well.

ALGORITHM 3 M-MAX

For node I out of n

Input:

low_fr-target frequency

Output:

The M most frequent itemsets not yet in Flow_fr

Definitions:

Same as for MDDM algorithm

Let B denote theinitial size of Flow_fr,

fr=low_fr

Main:

Develop all the candidates which are more

frequent than fr according to P

International Journal of Advanced and Innovative Research (2278-7844) / # 412 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 412

Do

 Choose a candidate X that was not yet

choosen and for which either

H(X) < fr ≤ P(X,s
i
) or P(X,s

i
) < f r ≤ H(X)

 Broadcast m=<id(X), freq(X,S
i
)>

 If no such itemset exist broadcast <pass>

Untill |Passed|=N

R ˂ all X in the trie with H(X) ≥ fr which are

not in Flow_fr.

return R

when node i receive a message m from party j

1) If m=<pass>insert j into Passed

2) Else m = <id(X),Freq(x,s
j
)>

3) If j є Passed remove j from Passed

Insert j to G(X)

Recalculate H(X) and P(X,S
i
)

Call set_fr

Procedure set_fr:

Do M times:

Select next most frequent itemset outside

Flow_fr and develop its descendant if they

have not been developed yet. Set fr to H

value of last itemset selected. For itemset

H=0 consider P instead.

The static MinFreq value set to the

one finally agreed upon. The state attained

by M-Max is also a valid final state for this

DDM. Thus, by virtue of DDM correctness,

all parties must be in agreement on the same

set of frequent itemsets.

As a stand-alone ARM M-Max may

be impractical because a node may be

required to refer to itemsets it has not yet

developed. If the database is large, this

would require an additional disk scan

whenever new candidates are developed.

Nevertheless, at the low_fr correction stage

of D-Sampling, the database is the memory-

resident sample.

5. CONCLUSIONS AND FUTURE

RESEARCH

We presented a new D-ARM

algorithm that uses the communication

efficiency of the DDM algorithm to

parallelize the single-scan Sampling

algorithm. Experiments prove that the new

algorithm has superlinear speedup and

outperforms both FDM and DDM with any

MinFreq value. The exact improvement in

relation to previous algorithms depends on

the number of database scans they require.

Experiments demonstrate good

scalability, provided the database scan is the

major bottleneck of the algorithm. Some

open questions still remain. First, it would

be interesting to continue partitioning the

database until every partition becomes

memory resident. This approach may lead to

a D-ARM algorithm that mines a database

by loading it into the memory of large

number of computers and then runs with no

disk-I/O at all. Second, it would be

interesting to have a parallelized version of

the other single-scan ARM algorithm . DIC

on a share-nothing cluster, or of the two-

scans partition algorithm. Finally, the full

potential of the M-Max algorithm has not

yet been realized; we intend to research

additional applications for this algorithm.

International Journal of Advanced and Innovative Research (2278-7844) / # 413 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 413

5. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. N.

Swami. Mining association rules between

sets of items in large databases. In Proc. of

the 1993 ACM SIGMOD Int'l. Conference

on Management of Data, pages 207.216,

Washington, D.C., June 1993.

[2] R. Agrawal and J. Shafer. Parallel

mining of association rules. IEEE

Transactions on Knowledge and Data

Engineering, 8(6):962 . 969, 1996.

[3] R. Agrawal and R. Srikant. Fast

algorithms for mining association rules. In

Proc. of the 20th Int'l. Conference on Very

Large Databases (VLDB'94), pages 487 .

499, Santiago, Chile, September 1994.

[4] V. S. Ananthanarayana, D. K.

Subramanian, and M. N. Murty. Scalable,

distributed and dynamic mining of

association rules. In Proceedings of

HiPC'00, pages 559.566, Bangalore, India,

2000.

[5] S. Brin, R. Motwani, J. Ullman, and S.

Tsur. Dynamic itemset counting and

implication rules for market basket data.

SIGMOD Record, 6(2):255.264, June 1997.

[6] D. Cheung, J. Han, V. Ng, A. Fu, and Y.

Fu. A fast distributed algorithm for mining

association rules. In Proc. Of 1996 Int'l.

Conf. on Parallel and Distributed

Information Systems, pages 31 . 44, Miami

Beach, Florida, December 1996.

[7] T. Hagerup and C. Rub. A guided tour of

Chernoff bounds. Information Processing

Letters, 33:305 . 308, 1989/90.

[8] J. Han, J. Pei, and Y. Yin. Mining

frequent patterns without candidate

generation. Technical Report 99-12, Simon

Fraser University, October 1999.

[9] Z. Jarai, A. Virmani, and L. Iftode.

Towards a cost-effective parallel data

mining approach. Workshop on High

Performance Data Mining (held in

conjunction with IPPS'98), March 1998.

[10] D.-I. Lin and Z. M. Kedem. Pincer

search: A new algorithm for discovering the

maximum frequent set. In Extending

Database Technology, pages 105.119, 1998.

International Journal of Advanced and Innovative Research (2278-7844) / # 414 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 414

