
A Fast Parallel Alpha-Beta Algorithm for Tic

TAC Toe Game
Amina Y. AlSallut

 #1
, Hana H. Hejazi

 #2
, Heba A. AbuGhali

 #3

#
 Computer Engineering Department, Islamic University

Gaza, Palestine
1
aminay2005@hotmail.com

2
h_hejaze34@hotmail.com

3
heba_ali_7@hotmail.com

Abstract— In this paper, the parallel search tree algorithms, the

minimax and the alpha-beta were studied and compared to a

proposed parallel implementation version of the alpha-beta

algorithm. In the proposed scheme, a pool master slave model is

used in which the master process is given the Root node and

divides the nodes among the workers. During computation, a

worker which updates the values of alpha or beta – the upper

and lower bounds – sends the updated values to the master.

Instead of broadcasting these values to the workers by the

master, a worker which still has a work to do, requests the work

from the master and then the master sends the updated values to

this specific worker, thus, reducing the communication overhead.

The proposed algorithm among other algorithms were

implemented in the frame of a tic tac toe game application.

Simulation results showed the effectiveness of the proposed

algorithm.

Keywords— Search tree, minimax, alpha-beta, parallel model,

pool master-slave.

I. INTRODUCTION

The paper investigates the efficiency of parallel Alpha-Beta

pruning algorithm for search in a game tree. The game used as

a case study is a tic-tac-toe. The algorithm will be

implemented and parallelized among a number of processors

to improve the search performance and speedup. The

suggested parallel computational model exploits tree

partitioning at width for each level of the game tree,

considering the branches that will be pruned; never will be

visited. The updated values of alpha and beta will not be

broadcasted to all the processors. Instead, we will implement

the system such that these values will be communicated on

demand, i.e. the processor that needs them is supposed to

communicate the primary process and request the updated

values, hence reducing the communication overhead. Speedup

and efficiency will be estimated on the basis of experimental

results. The communication/computation ratio (CCR) of the

alpha-beta algorithm will also be estimated.

Search algorithms are essential part of algorithms for

solving many problems in computer science with a lot of

practical applications such as database systems, expert

systems, robot control systems, theorem-provers. Game-

playing systems have search engines at the core of the

application. A number of search algorithms have been

proposed to improve the search efficiency in many practical

applications such as branch and bound, minimax algorithm,

alpha-beta pruning, etc. A game tree in the game theory is

defined as a tree with vertices denoting different game layouts

and edges being the possible moves from one position to

another. Tree searching is fundamental and computationally

intensive problem.

II. GAME TREE SEARCH

A simple game tree for a two-player game is presented in

Fig. 1 A node in the tree represents a position in the game

while a branch represents a move available at a particular

position. Player 1 is on move at rectangular nodes and player

2 is on move at circle nodes. For example, at the Root node,

player 1 is on move and the player has two moves available: a

and b. Each leaf node is assigned a score that indicate how

valuable that position is. A positive score indicates that player

1 is winning, while a negative score indicates that player 2 is

winning. A score of 0 indicates a draw. The magnitude of the

scores also conveys important information. The higher the

score, the more favorable the position is for player 1.

Similarly, the lower the score, the more favorable the position

is for player 2.

The value of a game tree is the score of the leaf node that is

reached when both sides exercise their best options. The

problem we need to solve is to find the option at the root that

leads to the game tree value. For example, in Figure 1, the

ideally best option for player 1 is to move toward position N

because it has the highest score (8) from his viewpoint.

Assume that player 1 chooses move s to start to make progress

toward position N. As far as player 2 is concerned, move e

will play right into player 1’s hand. To prevent this from

happening, a careful player 2 will choose move d instead, and

so player 1 has to follow up the move and choose move k,

resulting in final score of −1 [1].

International Journal of Advanced and Innovative Research (2278-7844) / # 389 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 389

Fig. 1 A simple game tree of two players.

If at the root node, player 1 chooses move b, then player 2

has three follow-up moves available, f, g and h. If player 2

chooses move f, player 1 will follow up and choose move o,

resulting in final score of 4. Similarly, final scores of 6 and 7

will be returned if player 2 chooses move g and move h

respectively. Since move f results in the lowest score (4),

player 2 will choose move f. Now let’s look at the root node

again, since move a and move b result in a score of −1 and 4

respectively, the best score that player 1 can achieve when

player 2 exercises his/her best options is 4.

A. Min-Max Algorithm:

The full game tree has a root representing the initial layout

of the game and vertices and edges representing all possible

moves to the end of the game. All possible moves for the

current player are children nodes of the root and then all

moves available to the next player are children nodes of these

nodes, and so forth. Each branch of the tree represents a

possible move that player could make at a given point in the

game. Evaluating the game at a leaf of the game tree yields

the papered status of the game after that sequence of moves is

made by the players. Game tree search is aimed at finding

optimal strategy for the game. The algorithm assumes that the

second player tries to minimize the gain of the first player,

while the first player tries to maximize his gain, hence the

name of the algorithm. The game tic-tac-toe is a simple game

in which two players, represented as O and X, alternate in

marking spaces on a 3x3 grid . The game tree of tic-tac-toe

with the possible combinations of the first two moves is

shown in Fig. 2 with symmetrical positions omitted for

simplicity.

The min-max algorithm traverses the entire tree in a depth-

first fashion, and depending on whether a node is maximizing

or minimizing, the algorithm keeps track of the largest or the

smallest score, respectively. When a leaf node is reached, its

score is determined by an evaluation function. Figure 3

depicts the min-max algorithm.

Since Min-max explores every node in the game tree, the

algorithm is not practical for a game tree with many branches

or depths [1].

Fig. 2 Game tree of Tic-Tac-Toe with the possible combinations of the

first two moves.

Fig. 3 The Min-Max Algorithm

B. Alpha-Beta Algorithm:

The min-max algorithm can has been improved by

proposing an efficient algorithm, alpha-beta, for sequential

game tree search. The idea to cut-off unnecessary branches is

to keep two scores in the search. The first one is alpha (lower

bound), which keeps track of the highest score obtained at a

maximizing node higher up in the tree and is used to perform

pruning at minimizing nodes. Any move made from the

maximizing node with score less than or equal to alpha is of

no improvement and can be pruned, because there is a strategy

that is known to result in a score of alpha. The second score is

beta (upper bound, which keeps track of the lowest score

obtained at a minimizing node higher up in the tree and is

used to perform pruning at maximizing nodes. Beta can be

viewed as the worst-case scenario for the opponent, because

International Journal of Advanced and Innovative Research (2278-7844) / # 390 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 390

there is a way for the opponent to force a situation no worse

than beta. If the search finds a move that returns a score of

beta or greater, the rest of the legal moves do not have to be

searched, because there is some choice the opponent will

make to prevent that move from happening. The resulting

algorithm, called alpha-beta algorithm, is shown in Figure 4

[2].

Fig. 4 The Alpha-Beta Algorithm

III. PARALLEL TREE SEARCH ALGORITHMS

A sequential game tree search algorithm uses single

processor to search the game tree. In order to be able to search

at greater search depths in reasonable time, multiple

processors can be utilized for parallel computing. Clusters of

the shared-memory architectural style have become popular

nowadays as well as hyper threading and multi-core

processors. Consequently, shared memory parallel

programming models are emerging as a serious competitive

environment to message passing.

A. Parallel Min-Max Algorithm

The easiest way to parallelize the minimax algorithm is to

partition the search tree into sub-trees and assign them to

multiple processors for searching. For that purpose the tree is

partitioned at the top level and each processor investigates a

single possible move.

B. Parallel Alpha-Beta Algorithm

For distributed-memory machines, principle variation

splitting (PVSplit), has been a popular algorithm for searching

game trees. In PVSplit, the first branch at a PV node must be

searched before parallel search of the remaining branches may

begin. Each tree will have to search for its own bounds (alpha

and beta), and can't make use of better bounds found by other

processors. To make use of these updates, if a processor finds

an improvement to alpha or beta, it needs to inform other

processors working on other branches so that they can make

use of the tighter bounds. Passing updated alpha and beta

between processors requires high communication overhead.

The contribution of this paper is to implement the parallel

Alpha-Beta algorithm and reduce the communication

overhead as well [3].

IV. PROPOSED SCHEME

In the proposed scheme (Fast Alpha-Beta Parallel

Algorithm), a master-slave model is used in which the master

process is given the Root node and the slave processes are idle.

The master processor first divides the nodes according to the

number of worker processors. An idle worker processor sends

a message to the master requesting for work. If there are nodes

available and no other processor is working on them, the

master chooses one node and sends the node id and current

value of alpha and beta to the worker. If a worker finds an

improvement to the bounds, then the new score is transmitted

to the master. Next time when another worker requests for

work, the master will provide it with the updated bounds. A

worker processor may also discover a pruning condition (its

branch does not need to be searched) with the node it is given.

In this case, the search is complete and the worker processor

proceeds to request another work from the master or returns to

idle state if there is no work available.

C. Performance Metrics:

Our evaluation will be based on execution time differences

and comparisons between the following implemented

algorithms:

 Tic TAC Toe Tree Search-Based Game using

sequential Minimax Algorithm.

 Tic Tac Toe Tree Search-Based Game using parallel

Minimax Algorithm.

 Tic Tac Toe Tree Search-Based Game using

sequential Alpha-Beta Pruning Algorithm.

 Tic Tac Toe Tree Search-Based Game using parallel

Alpha-Beta Pruning Algorithm (with Broadcasting

technique).

 Tic Tac Toe Tree Search-Based Game using parallel

Alpha-Beta Pruning Algorithm (fast) .

Of course, for the parallel algorithms, we will also estimate

the communication to computation ratio.

V. TOOLS, ENVIRONMENT AND IMPLEMENTATION

A. Tools and Environment:

 The algorithms are implemented using Visual C++

programming language.

International Journal of Advanced and Innovative Research (2278-7844) / # 391 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 391

 The parallel multiprocessors environment is

simulated using the Message Passing Interface

(MPI).

 The algorithms were ran on a 2.4GHz CPU, 512 MB

RAM, Windows XP, Professional edition, SP2

machine.

B. Implementation

 The parallel computational model of minimax

algorithm for search in a game tree is based on

“manager-worker” model, Fig. 5 summarizes the

steps.

 The manager process is responsible for the following

activities:

 distributes particular positions of the initial mark on

the board for evaluation to the worker processes;

 Gathers the best cost function values and the best

moves determined by each of the worker

processors at a given level of the game tree

(function MPI_Gather).

 determines the best cost function value obtained by

all worker processes (function MPI_Reduce);

 broadcasts the best cost move to all worker processes

(function MPI_Bcast);

 Prints the results after examining the whole game

tree.

 The worker processes are responsible for the

following activities:

 Receives the specific game move to be evaluated at a

given level of the game tree;

 Computes the cost function values for all possible

moves of the other player according to minimax

algorithm;
 Sends the value of the best cost function and the

relevant move to the master process;
 Receives the move to be made at the given level

(broadcast by the master process).

And, for the parallel Alpha-Beta algorithm, the same

scheme is as the minimax algorithm is applied, with

the condition of that, if ,at a specific level, a processor

finds that the cost function, i.e. the score of a node is

greater/less than alpha/beta, that branch is pruned, and

thus , no further work at that branch is to be done.

Fig.6 illustrates the steps of this algorithm briefly.

While for the proposed approach, Parallel Alpha-Beta

Pruning Algorithm is based on "Pool" model, the same steps

as the previous algorithms are to be implemented with the

following differences:

 The worker processes ask the master for an available

work (node evaluation) to be done, if any.

 If there is available work, the master sends the node id

and the current values of alpha and beta to the worker.

Fig. 5 Parallel computational model of minimax search in a game

tree.

Fig. 6 Parallel computational model of alpha-beta search in a game

tree

 If the worker updates the values of alpha and beta

during work, it sends the value of the cost function and

the updated alpha and beta to the master.

 If a worker finds that the value of the cost function will

be greater/smaller than the upper/lower bounds (alpha

and beta), no longer work will be done on that branch,

i.e. the worker returns.

International Journal of Advanced and Innovative Research (2278-7844) / # 392 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 392

 When all processors are done, the master determines

the best value of the cost function and broadcasts it to

the workers. Fig. 7 briefly describes these steps.

Fig. 7 Parallel computational model of the proposed alpha-beta search in

a game tree

These algorithms has been implemented and used in the tic

tac toe game, which has the choice of playing against the

computer. In this case, the role of the algorithms takes place,

i.e. to make the computer's decision of the best next move to

be played. Screen shots of the implemented game are shown

in the following figure 8.

Fig. 8 A screen shot of the tic tac toe Game

C. Results and Evaluation

As described in the previous section, the following

algorithms have been implemented and run:

 Sequential Minimax.

 Parallel Minimax.

 Sequential Alpha-Beta.

 Parallel Alpha-Beta (with Broadcasting).

 Parallel Alpha-Beta (fast).

First, the execution time for each of the algorithms has been

measured and recorded in table 1.

TABLE I
EXECUTION TIME AND SPEEDUP FOR THE FIVE ALGORITHMS

Algorithm Execution Time SpeedUp

Seq Minimax 7500 ms 1

Parallel Minimax 5770 ms 1.3

Seq Alpha Beta 6250 ms 1.2

Parallel Alpha Beta 5000 ms 1.5

Parallel Alpha Beta (fast) 4410 ms 1.7

As depicted in the table, both the sequential algorithms are

slow, with respect to the execution time. Obviously, the

parallel version of minimax is faster than the sequential one,

and the parallel alpha-beta is faster than both the sequential

alpha-beta and the parallel minimax. This is can be interpreted

because of the pruning technique of the parallel alpha-beta,

which reduces the work and thus speeds up the algorithm.

Indeed, the proposed alpha-beta algorithm implementation

showed the least execution time and therefore, the fastest

algorithm among the five. This is of course because of the

pruning technique combined with the communication

reduction between the master and the slave processes. Fig. 9

demonstrates the execution time for the three parallel

algorithms. Speedup is computed in comparison with the

sequential minimax algorithm. Fig. 10 shows speedup for the

sequential and the parallel minimax algorithms, while fig. 11

illustrates the speedup for the sequential, parallel, and

proposed parallel alpha-beta algorithms. Fig. 12 compares the

speedup for all the five algorithms.

Fig. 9 The execution time for the parallel algorithms

Execution time

0

1000

2000

3000

4000

5000

6000

7000

Parallel MinimaxParallel Alpha BetaParallel Alpha Beta

(Ours)

Parallel Algorithms

T
im

e
 (

m
s
)

International Journal of Advanced and Innovative Research (2278-7844) / # 393 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 393

Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Algorithms

S
p

e
e
d

u
p

Seq Minimax

Parallel Minimax

Seq Alpha Beta

Parallel Alpha Beta

Parallel Alpha Beta

(Ours)

Fig. 10 Speedup for the minimax algorithms

Fig. 11 Speedup for alpha-beta algorithms

Fig. 12 The speedup for the five algorithms

Second, the communication to computation ratio is

estimated for each of the parallel algorithms. This ratio has

been estimated for the master process and for the worker

processes individually. For the worker processes, the

communication to computation ratio has been estimated for

one process only, because all of the other workers has

identical ratios. The computation and communication time for

each of the processes (the master and the worker) were

measured for the part of code where the computer makes the

decision of the next move to be played on the tic tac toe game

board. Table 2 summarizes the communication/computation

ratios for the algorithms and fig. 13 depicts the

communication to computation ratios for the three parallel

algorithms.

Table 2

 The communication to computation ratios for the parallel algorithms

Algorithm
Execution

Time

Comp. Time Comm. Time Comm/Comp

Master Pr. worker Pr. Master Pr. worker Pr. Master Pr. worker Pr.

Parallel Minimax 5770 ms 1833 975 1123 1685 0.612657 1.728205

Parallel Alpha
Beta

5000 ms 1100 758 1278 1864 1.161818 2.459103

Parallel Alpha
Beta (Ours)

4410 ms 1689 1193 814 714 0.481942 0.598491

Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Minmax Algorithms

S
p

e
e
d

u
p

Seq Minimax

Parallel Minimax

Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Alpha Beta Algorithms

S
p

e
e
d

u
p

Seq Alpha Beta

Parallel Alpha Beta

Parallel Alpha Beta

(Ours)

International Journal of Advanced and Innovative Research (2278-7844) / # 394 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 394

 Obviously, the ratio increases from the minimax to the alpha-

beta algorithm, because of the increase of the communication

overhead in the alpha-beta algorithm with broadcasting the

updated alpha and beta values to all the processors, even if

one or more of these processes don't actually need the updated

values due to a pruning condition met.
Fig. 13 The communication / computation ratio for the parallel algorithms

On the other hand, the proposed alpha-beta parallel

algorithm showed a tremendous reduction in the

communication to computation ratio. This is due to the limited

communications between the master and worker processes as

described before.

VI. CONCLUSION:

Many game tree search algorithms have been proposed in

the literature. Moreover, many parallel versions of those

algorithms have been proposed as well. This paper proposed

an implementation model of the alpha-beta parallel pruning

algorithm, trying to reduce the communication overhead, and

thus fasten the algorithm execution, while preserving the

quality of the solution. An application game which is the tic

tac toe has been implemented using this algorithm. Computer

simulations showed the tremendous overhead reduction. This

algorithm can be used in many related applications, especially

those that need faster execution time.

REFERENCES

1. Plamenka Borovska, Milena Lazarova,"Efficiency of Parallel Minimax

Algorithm for Game Tree Search", ACM International Conference

Proceeding Series 285.14 , 2007
2. Brian Greskamp,"Parallelizing a Simple Chess Program", ECE412,

2003

3. Valavan Manohararajah, "Parallel Alpha-Beta Search on Shared
Memory Multiprocessors", Masters Thesis, 2001

4. www.netlib.org/utk/lsi/pcwLSI/text/node350.html,Netlib Repository at

UTK and ORNL
5. Kevin Steele, "Parallel Alpha-Beta Pruning of Game Decision

Trees",1999

Comm./comp. ratio

0

0.5

1

1.5

2

2.5

3

Worker pr. Master pr.

C
o

m
m

./
c
o

m
p

.
ra

ti
o

Parallel Minimax

Parallel Alpha Beta

Parallel Alpha Beta

(Ours)

International Journal of Advanced and Innovative Research (2278-7844) / # 395 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 395

http://www.netlib.org/utk/lsi/pcwLSI/text/node350.html

