
An Efficient Architecture for 3-D Discrete
Wavelet Transform

 Triveni.M#1, Manoj Kumar.K*2, Purandara Babu.N#3

 P.G. Scholar (M. Tech), Dept. of ECE, AVR & SVR Engineering College, Kurnool, A.P, India

 mrudalatriveni@gmail.com afcatmanoj@gmail.com puri.hyd@gmail.com

 Abstract—This paper presents an architecture of the lifting-
based running 3-D discrete wavelet transform (DWT), which
is a powerful image and video compression algorithm. The
proposed design is one of the first lifting based complete 3-D-
DWT architectures without group of pictures restriction. The new
computing technique based on analysis of lifting signal flow graph
minimizes the storage requirement. This architecture enjoys
reduced memory referencing and related low power consumption,
low latency, and high throughput compared to those of earlier
reported works. The proposed architecture has been successfully
implemented on Xilinx Virtex-IV series field-programmable gate
array, offering a speed of 321 MHz, making it suitable for real-
time compression even with large frame dimensions. Moreover,
the architecture is fully scalable beyond the present coherent
Daubechies filterbank (9, 7).

Index Terms—Discrete wavelet transform, image compression,
lifting, video, VLSI architecture.

I. Introduction

STILL IMAGE compression technique based on 2-D
discrete wavelet transform (DWT) has already gained

superiority over traditional JPEG based on discrete cosine
transform and is standardized in forms like JPEG2000 [1].
Quite similarly, the application of its 3-D superset, i.e.,
3-D-DWT on video, outperforms the current predictive coding
standards, like H.261-3, MPEG1-2,4 by rendering the quality
features like better peak signal-to-noise ratio (PSNR), absence
of blocky artifacts in low bit rates. Furthermore, it has the
added provisions of highly scalable compression, which is
mostly coveted in modern communications over heteroge-
neous channels like the Internet [2]. Successful application
of 3-D-DWT has been reported in the literature in emerging
fields like medical image compression [3], hyper-spectral and
space image compression [4], etc. Software-based approaches
are experimented to combat the huge computational com-
plexity and memory requirement associated with 3-D-DWT

Manuscript received March 19, 2007; revised December 4, 2008 and
April 8, 2009. First version published September 4, 2009; current version
published February 5, 2010. This work was supported by the Ministry of
Information Technology, Government of India. This paper was recommended
by Associate Editor L.-G. Chen.

A. Das is with the Bangalore Design Center, Nvidia Corporation, Bangalore
560001, India (e-mail: ani.das@gmail.com).

A. Hazra is with STMicroelectronics Private Ltd., Greater Noida, Uttar
Pradesh 201308, India (e-mail: anindya.hazra@st.com).

S. Banerjee is with the Department of Electronics and Electrical Commu-
nication Engineering, Indian Institute of Technology Kharagpur, Kharagpur
721302, India (e-mail: swapna@ece.iitkgp.ernet.in).

Digital Object Identifier 10.1109/TCSVT.2009.2031551

realization [5], [6]. Though the processor speed of modern
computers soars high at the order of GHz, data fetching
and communicating with external memories consume several
T states, making the computation quite slower at the end. As
the speeds of the peripherals are still far behind the modern
processors, it causes more problems.

Nowadays, most of the applications require real-time DWT
engines with large computing potentiality for which a fast and
dedicated very-large-scale integration (VLSI) architecture ap-
pears to be the best possible solution. While it ensures high re-
source utilization, that too in cost effective platforms like field-
programmable gate array (FPGA), designing such architecture
does offer some flexibilities like speeding up the computation
by adopting more pipelined structures and parallel processing,
possibilities of reduced memory consumptions through better
task scheduling or low-power and portability features.

To overcome one of the toughest problems associated
with 3-D-DWT architectures—viz., the memory requirement,
block based [7], [8] or scan-based architectures [9]–[11] with
independent group of pictures (GOP) transform have been
reported. However, blocking degrades the PSNR quality while
the independent GOPs introduce annoying jerks in video
playback due to PSNR drop at transform boundaries [12].
Alternatively, some successful scan-based running transform
architectures with convolution filtering have been reported in
[13], [14] avoiding these limitations.

After the advent of the lifting scheme [15], [16] in 1994,
the computation of DWT has experienced a sea change. While
providing facilities like a reduced computational complexity,
in-place computation, ease in building nonlinear, and inverse
wavelets [16], the lifting also reduces the memory requirement.
Thus, it has become a powerful tool to the researchers for com-
putation of both 2-D and 3-D-DWT in several applications.
Some lifting-based solely temporal transform techniques with
infinite GOPs have been reported in literatures [12], [17], with
reduced memory requirements.

Nevertheless, following their attempt to regularize the lifting
computation and reduce the storage requirement thereafter,
computation of a lifting step is carried out in two stages
and performed sequentially. In effect, it doubles the memory
referencing and related power consumption while increasing
the required processing speed by two fold. Besides, those are
merely temporal transform methods; and clearly, there is a gap
in the literature for a complete 3-D-DWT architecture which
employs lifting and running transform with infinite GOP in its
working principle.

International Journal of Advanced and Innovative Research (2278-7844) / # 295 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 295

This paper fulfills the requirement herewith presenting a
scan-based complete 3-D architecture having infinite GOP.
Among the transform components involved in three dimen-
sions, the column and temporal directional transforms are
characteristically parallel in nature (for a row-wise scan).
The novelty of this paper lies in introducing an ingenious
analysis of signal flow graph (SFG), which subsequently
shows a newer methodology for computing those parallel
transform components with reduced storage overhead. Syn-
chronous data flow and memory arrangements in conjunction
with decimated addressing schemes are proposed afterward
for incorporating this methodology in hardware. Thus, the
designed processor has a minimum memory requirement and
much smaller hardware budget with a two-fold throughput
and half computing time, latency or memory referencing
compared to those of [12], [17]. With a single adder in its
critical path, the processor achieves a high speed, which is
a fruitful effect of pipelining and incorporation of flipping
scheme. Inside the processor, the treatments of the signals at
the boundary are done with the mirror extensions proposed
in [1].

Section II summarizes the theory of flipping as latest
modification on lifting. The proposed architecture along with
the analyzed SFG is illustrated in Section III. Section IV
discusses the issues related to implementation along with the
obtained results after mapping the design in re-configurable
Xilinx FPGAs. Besides, a performance comparison with other
related works is also furnished in this section. Finally, the
paper is concluded in Section V.

II. Theoretical Framework

As the DWT intrinsically constitutes a pair of filtering
operations, a unified representation of the polyphase matrix
is introduced as follows [16]:

P(z) =
m∏
i=1

(
he(z) ge(z)

ho(z) go(z)

)
(1)

where h(z) and g(z) stand for the transfer functions for
the lowpass and highpass filterbanks, respectively, and all
suffixes e and o in the literature correspond to even and odd
terms, respectively. Thus, the transform is symbolized with the
equation

(
λ(z) γ(z)

)
=
(
xe(z) z−1xo(z)

)
P(z) (2)

with λ(z) and γ(z) signifying the filtered lowpass and highpass
parts of the input x(z).

The lifting scheme [15], [16] factorizes the polyphase
representation into a cascade of upper and lower trian-
gular matrices and a scaling matrix which subsequently
return a set of linear algebraic equations in the time do-
main bringing forth the possibility of a pipelined proces-
sor. Several other advantages of lifting are mentioned in
[16].

For instance, the common Daubechies (9, 7) filterbank can
be factorized as

P(z) =

(
1 α(1 + z−1)
0 1

)(
1 0

β(1 + z) 1

)
(

1 γ(1 + z−1)
0 1

)(
1 0

δ(1 + z) 1

)(
ζ 0
0 (1/ζ)

)
.

(3)
The related algebraic equations are

s0
i = x2i (Splitting)

d0
i = x2i+1

d1
i = d0

i + α× (s0
i + s0

i+1) (Predict P1)

s1
i = s0

i + β × (d1
i−1 + d1

i) (Update U1)

d2
i = d1

i + γ × (s1
i + s1

i+1) (Predict P2)

s2
i = s1

i + δ× (d2
i−1 + d2

i) (Update U2)

si = ζ × s2
i (Scaling S1)

di = (1/ζ) × d2
i (Scaling S2) (4)

where α = −1.586134342, β = −0.05298011854, γ =
0.8829110762, δ = 0.4435068522, and ζ = 1.149604398 [16],
and also 0 ≤ i ≤ −1, L is the data length.

The critical path delay for the above lifting equations is
5Tm + 8Ta, where Tm and Ta denote the multiplier and adder
delay, respectively [18]. The primary reason behind this large
delay is stacking of multipliers from the inputs to outputs.
To inhibit the effect, the mechanism of flipping has been
introduced in [18] which scales the delay down to 3Tm + 4Ta.
As a fruitful result, the processing speed increases significantly
when the flipped equations are mapped into hardware.

Following the modification on SFG, the final equations for
flipping are

s0
i = x2i (Splitting)

d0
i = x2i+1

d1
i = A× d0

i + (s0
i + s0

i+1) (Predict P1)

s1
i = B× s0

i +
(d1
i−1+d1

i
)

16 (Update U1)

d2
i = C × d1

i + (s1
i
+s1
i+1)

2 (Predict P2)

s2
i = D× s1

i +
(d2
i−1+d2

i
)

2 (Update U2)

si = K0 × s2
i (Scaling S1)

di = K1 × d2
i (Scaling S2) (5)

where A = (1/α) = −0.630463, B = (1/16αβ) = 0.743750,
C = (1/32βγ) = −0.668067, D = (1/4γδ) = 0.638443, K0 =
(64αβγδ) = 2.590697 and K1 = (32αβγ/δ) = 1.929981 (up to
six fractional digits) and also 0 ≤ i ≤ L − 1, L is the data
length [18].

To handle the truncation of the signals at boundaries, mirror
extension is utilized by incorporating corresponding changes
into (5) at the start and stop of frame sequences and at the
individual frame boundaries as well as for the 3-D transforms.

Now, during the computation of 3-D wavelets, the order
of spatial and temporal transform components involved can
be interchanged where both the arrangements conform to

International Journal of Advanced and Innovative Research (2278-7844) / # 296 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 296

the definition of 3-D-DWT. However, first temporal and then
spatial (t + 2-D) transform suffer from certain limitations with
spatial scalability or spatio-temporal decomposition structure
[2] which restrict its future extensions. Thus, during the design
of the present system, first spatial and then temporal (2-D + t)
decomposition are chosen though in due requirement, the
reverse method can be equally mapped into hardware without
any difficulty.

III. Proposed Architecture

A. Working Principle

Fig. 1 presents the proposed scan-based 1 level 3-D wavelet
transform architecture with a block level illustration of prin-
cipal functional modules. Clearly from the figure, the pro-
posed architecture does the spatial transform first, followed
by its temporal counterpart. The following two parts in this
section give a detailed view about hand-in-hand working of
the different functional blocks to realize those two transform
components.

1) Spatial Transform: Scanned row-wise with double
clock, the incoming frames are fed to the spatial processor
(SP) which transform them two dimensionally with the help
of two dedicated functional blocks viz., the row processing
elements (RPE) and the column processing elements (CPE).
As presented in the figure, the scanned pixels are initially fed
to RPE for row-transform. On the other hand, CPE remains
idle for the starting frame in the video sequence till the initial
two rows are transformed by RPE and the processed coefficient
blocks are accumulated in line buffers of row MEmory module
(RMEM). Having a size of 4N/2 for a specified frame size
of N × N, RMEM provides enough space for the initial two
transformed rows. As the transformed coefficients from the
third row come out of RPE, column processing commences
computation simultaneously by fetching lowpass bands l0 and
l1 from the memory with the added l2 band available online.
During this phase, the vacant random access memory (RAM)
locations of l0 and l1 are assigned to l2 and h2 coefficient
blocks. Thus, after completion of the third row, the fourth one
is serially processed, during which the CPE gets busy with
the highpass bands of h0, h1, and h2, by fetching all of them
from the memory. As the h0 and h1 bands are not further
utilized in computation, the respective locations are attributed
to the storage of l3 and h3 bands. The chronology is preserved
henceforth, enabling the two processing elements to work in
perfect synchronization while spatially transforming each of
the frames in sequence. During the computation, CPE requires
storage space for some temporary results, which is offered
by 6N/2 depth RAMs of column MEmory module (CMEM).
Thus, the SP utilizes an overall memory size of 10N/2.

With the previously mentioned double scanning, two pixels
are fed into SP while two results emerge out of it in every clock
cycle, which necessitate a total of (N2/2) cycles to complete
the computation of each frame. If the frames have an even
number of rows, both the processing elements run smoothly
without any interruption during the skip from one frame to the
next. However, for the frame having an odd number of rows,
the CPE has to remain idle for N/2 cycles (corresponding

Fig. 1. Proposed architecture RMEM. Line buffers store row processed data
CMEM, as well as intermediate results of column processing SMEM. Frame
buffers store spatially transformed data TMEM, as well as intermediate results
of temporal transform.

to one row) at the beginning of each frame to get the first
two rows processed. Importantly, in the second instance too,
no extra clock cycles are spent by the SP to complete the
computation of individual frame.

2) Temporal Transform: The transformed frames, to be
decomposed subsequently in the temporal domain, are primar-
ily stored in two dual port frame buffers of spatial MEmory
module (SMEM), as shown in Fig. 1. With two such initial
frames already stored, and the third one approaching, the
temporal processor (TP) starts computing the final transform
component of 3-D-DWT. While at every cycle, two pixels
of previous two frames are read out from SMEM buffers
for the computation, the respective locations are utilized for
the reposition of two incoming pixels of the current frame.
Nevertheless, the computation necessitates more; one pixel of
the third frame is to be read out again from memory at single
clock rate, which can be fulfilled through the utilization of
the second port of the dual-port RAMs. Thus, the temporal
processing proceeds altogether while the RAM locations are
refreshed in a continuous manner and after passing a N2 clock
cycles, the current phase of the computation is completed.
Additionally, the SMEM buffers are totally filled up with
the pixels of the third and fourth frames. In the very next
cycle, the corresponding operations of the next phase start in
a similar manner with the temporal processor getting busy
with the computation of the third, fourth, and fifth frames.
The details of the cyclic computation pattern for the temporal
and column decompositions are discussed in Section III-C.
To incorporate periodicity in the data flow associated with
SMEM, efficient memory arrangement and addressing strategy
are used. The details are furnished in Section III-E. Like the
CPE, the temporal processor produces some temporary results
during its operation, which are called back in later cycles
repetitively and the temporal memory module (TMEM), which
contains three frame buffers inside is used as a storage space
for those results. Finally, a group of illustrated pictures is
presented in Fig. 2 which helps in understanding the sequence
of operations involved in the processing.

Provisions are open for multilevel transform with the current
architecture. The simplest possible form will be cascading
several 1 level architectures where the lll sub-band from one
level is passed onto the next. The final output data set then
needs to be synchronized or reordered according to the need
of a specific encoder.

The following sections discuss the detailed design of prin-
cipal working modules in the architecture.

International Journal of Advanced and Innovative Research (2278-7844) / # 297 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 297

Fig. 2. Spatio-temporal wavelet decomposition with proposed architecture. (a) Original frame sequence. (b) After 1 level spatial transform. (c) Lowpass
frames after the temporal transform. (d) Highpass frames after the temporal transform.

Fig. 3. (a) Architecture of RPE with (b) illustration of a generic P/U module.

B. RPE and the RMEM

Among all the micro-architectures for different submodules,
which transform the input video in three directions, the RPE
module is the simplest. As described in Fig. 3, it is a
straightforward implementation of (5) with pipelining applied
to speed up the operations. Scanned with a dual clock, the
incoming pixels are separated into successive duos of odd and
even ones at the SPLITTER stage and move forward in parallel
throughout the pipeline. The required datapath operations of
lifting are performed upon these pixels at consecutive Predict
(Pi), Update (Ui), and Shift (Si) stages of the RPE (as depicted
in Fig. 3) which finally produces pairs of highpass and lowpass
pixels available from the ports OUT EVEN and OUT ODD
in a streamlined fashion or manner.

These pixels, prior to column processing, are temporarily
put in RMEM which generate the synchronized dataflow to
store as well as feed the coefficients to CPE. After processing
the initial two rows of a frame the transformed coefficients
completely fill up the memory locations as illustrated in snap-
shot 1 of Fig. 4. At the very next clock cycle, two new pixels
viz., l(2,0) and h(2,0), arrive from RPE and they are placed at the
locations of R1 and R3 (refer to snapshot 2), which are just left
vacant as stored data, namely, l(0,0) and l(1,0) are read out at the
commencement of column processing. Subsequent locations
are similarly refreshed till all the coefficients from row 2 are
stored in those two RAMs. Similarly, during processing of
the next row, RAMs R2 and R4 undergo a series of memory
refreshments as the locations previously containing h0 and h1

coefficient blocks are attributed to the storage of coefficients of
h3 and i3, available from RPE. Thus, a periodic pattern can be
identified among the refreshed RAM pairs, which are further
given in a tabular form in Fig. 4 against the processed rows.
The proposed memory arrangement is free from any such
scenario where the RAM resources would be unnecessarily
occupied with stale data which are not to be used for future
computation.

Fig. 4. Two snapshots of RMEM with a model image size of 8 × 8.

C. Analysis of SFG to Facilitate Parallel Computation

The problems associated with designing architectures for
column and temporal directional transforms are however crit-
ical. In a setup where video frames are scanned row-wise and
processed coefficients from RPE are spaced contiguously in
rows, the column processor has to wait for an entire row
to get another input sample for processing and the temporal
processor needs to hold back for the entire frame before it
can proceed with the next computation step. Like many other
signal processing architectures, the 3-D-DWT processor thus
inherently carries a huge memory and latency overhead in its
working principle. Clearly, a pipelined design like RPE does
not fit in for column and temporal processing and parallel
architectures are mostly sought to address this issue. The
overall advantage of any DWT processor lies in addressing
these performance bottlenecks successfully.

The SFG of lifting, shown in Fig. 5, holds the key for
analyzing data dependence inside any DWT processor. Each
input and output sample to this SFG denotes a block of
data. For row processing, these blocks refer to image pixels
adjacently spaced in rows. However, for column transform,
each of these blocks signifies a group of processed l and h band
coefficients of size N/2. Similarly, for temporal transform they
relate to 2-D transformed individual frames of N2 pixels. Thus,
when the row processor can freely “sweep across” this graph
producing a stream-lined output, an intelligent column or tem-
poral processor must wait and partially finish the computation
with available inputs before they proceed to the next step. The
key for such parallel processing is to find an optimized basic
step of computation which minimizes the latency together with
memory overhead for overall architecture.

A careful observation of SFG shown in Fig. 5(a)–(c), infers
that the individual slices are the most distinguished represen-
tation of the aforesaid basic computation steps. Highlighted
in blue, the predict and update calculations inside each such

International Journal of Advanced and Innovative Research (2278-7844) / # 298 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 298

Fig. 5. Data-dependence analysis of SFG for parallel computation. (a) SFG during computation of slice 1. (b) SFG during computation of slice 2.
(c) SFG during computation of slice 3. (d) Explanation of color code.

slice can be perfectly represented as the function of two input
samples from previous slice (colored in green), one input block
from current slice (shown in red) and computed predict and
update coefficient blocks from previous slice (highlighted in
pink). Since slice 0 holds only input samples, computation
should commence with slice 1. Following the sequence in
Fig. 5(a)–(c), the computation can henceforth continue for
successive slices until the termination of SFG which happens
at the end of each frame of column processing or at the
termination of video sequence for temporal processing. A pair
of output sample blocks (highlighted in brown) from each
individual slice are the natural outcomes of this computa-
tion.

Such slice-wise computation solves the problem of parallel
computing in an efficient way both in terms of latency and
memory requirement. From the SFG, the inherent latency to
start a basic computation and collect the first output is two
and four blocks respectively. This is preserved in proposed
slice-wise computation. Counting the contributions from row,
column and temporal processors, the latency of the complete
3-D-DWT processor thus adds up to four rows and four
frames. The theoretical minimum memory requirement for
each parallel computation is five coefficient blocks, which

are divided into groups of input coefficients (green) and
intermediate results (pink) inside a slice. Thus, the critical
memory overhead of entire 3-D-DWT is five rows plus five
frames.

The present architecture successfully implements this slice-
wise computing strategy carefully preserving the critical
latency and memory requirement with the help of some unique
memory arrangement techniques. Explained in Fig. 5(d), the
individual group of memory blocks is handled differently
during the column transform of l and h bands and temporal
transform. While for the l band processing, the computation
starts with input coefficient block in red reaching on-the-go
from RPE and the green ones being fed from RMEM, during
the h band processing all three of them are read from RMEM.
For the temporal transform, the frame from the current slice
is actually stored in SMEM and read back at half rate. The
intermediate coefficients in pink are stored in CMEM and
TMEM, respectively.

With the description of RMEM as detailed in the previous
section, the next ones depict how the column and temporal
processors and related memory blocks are designed to preserve
the theoretical critical memory requirement and latency in
overall architecture.

International Journal of Advanced and Innovative Research (2278-7844) / # 299 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 299

Fig. 6. (a) Snapshot of CPE pipeline and (b) detailed P/U module.

D. CPE

The architecture of CPE, shown in Fig. 6(a), is quite
similar to that of RPE. Fig. 6(b) presents its inside details
with a P/U module. However, the continuity of RPE pipeline
is purposefully broken at several places creating a new set
of input and output ports which contribute to the aforesaid
parallel computation. Among all the ports, IN 1-3 and OUT
4-5 are connected to RMEM and SMEM respectively and
help creating a streamlined dataflow from spatial processor to
temporal processor, as depicted in the main architecture (refer
to Fig. 1). The other ports, IN 4-6 and OUT 1-3 from RPE
are utilized to exchange intermediate coefficients with the six
CMEM buffers which is the key to slice-wise computation.

With a view to explaining the computing strategy mentioned
in the previous section, a snapshot of the CPE is presented in
Fig. 6(a) for lucidity. The snapshot is captured while column
processing of slice 3 is ongoing for a random frame of the
incoming video sequence. The coefficient indices beside each
of the ports in the snapshot indicate the respective locations of
those coefficients in the row processed frame matrix. Follow-
ing those indices, the snapshot can be directly mapped onto
slice 3 in SFG. In a similar way, the snapshot can be updated
for the next couple of slices and thus it helps to visualize the
carrying out of the slice wise computing pattern by the CPE as
a whole. To maintain the computation, the aforesaid memory
requirement of five nodes (refer to Section III-C) can be
mapped here onto five N/2 depth coefficient blocks. However,
considering the fact that CPE has to process the two l and h
bands after the row transform, the requirement is doubled to
ten N/2 which is retained in the design of RMEM and CMEM.

E. SMEM

Once transformed spatially, the frames are directed to
SMEM (refer to Fig. 1), which requires a minimum of two
frame buffers for the data management. While the first two
frames can be given room in those two frame buffers easily,
complexity arises when the third frame arrives from SP and
the computation is simultaneously started by the TP. While in
every clock cycle, a pixel pair of frame 2 can be allocated
into the vacant memory locations from where the two pixels
of the frames 0 and 1 have been read out for the computation,
the temporal processing methodology demands an extra set
of the read operation to be carried out; for collecting the
corresponding pixels of frame 2 which act as the third set

Fig. 7. Arrangement of SMEM frame buffers.

of input in computation of the first lifting step (refer to slice
1 in Fig. 5).

Importantly, this second set of data cannot be provided
online to the TP, as the frames are arriving at double rate
and computation needs them at single clock. So, all that is
needed is to read them back from memory with a half data
rate. Thus, the memory arrangement of Fig. 7 is followed
where port A of the dual port RAMs is used for reading older
frames from memory as well as storing the newer ones in
those locations when the Port B remains dedicated for the
second set of read operations. Thus, the first kind of operations
in effect refreshes the memory with the consecutive duos of
frames 0, 1 and 2, 3 and so on, while the second operations are
solely responsible for providing the additional pixels of frame
2i during computations involving slice i (i = 1, 2, 3, . . .).

As depicted in snapshot 1 of Fig. 8, the frames 0 and 1,
being divided in parts L and H, where L and H signify the
fact that those pixels emerge from the lowpass and highpass
ports of CPE, initially arrange themselves in buffers of SMEM.
Once the computation progresses, the pixels of the two frames
are replaced with those of frame 2 and as a matter of
fact, the new frame gets decimated inside the RAMs as the
pixels of the new frame are allocated to memory locations,
just released off the older frames every time. Thus, as the
computation of slice 2 is completed, the new frames 2 and 3
reposit themselves according to the topography described in
snapshot 2 of that figure. The order of decimation increases
as the computation moves ahead following a manner very
similar to that of fast Fourier transform addressing. The
pattern repeats itself after log2

(
N2
)

cycles. Fig. 9 helps us

International Journal of Advanced and Innovative Research (2278-7844) / # 300 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 300

Fig. 8. Two snapshots of the SMEM.

Fig. 9. Addressing pattern in SMEM. RAMs illustrated for a memory depth
of 8.

to visualize the addressing pattern for a sample RAM depth
of 8.

The dual port BlockRAMs of Xilinx FPGA, which is used
as target platform for the proposed architecture, provides the
facility of “read before write” operations in the same clock
cycle at the memory locations. Utilizing it, simultaneous read
and write operations are performed by an address in port A
through the channels DIA and DOA, according to the re-
quirements. The address in port B follows the same practice,
only changing at a half speed, as they simultaneously pick
up two pixels from the RAM pairs in a clock cycle which
are further multiplexed to feed INT 2 of TP at single clock
rate.

F. TP and TMEM

The architecture of Temporal Processor is identical to that
of CPE as both follow the slice-wise computation strategy
described in Section III-C. Fig. 10 clarifies the same with a
snapshot of pipelined TP unit. The notation Xfi (p × l = j)
adopted in the snapshot symbolizes the coefficient X in SFG
[refer to Fig. 5(a)–(c)] corresponding to the jth pixel in frame i.
Thus, comparison of those frame indices with the SFG reveals
the activity of TP in computing the slice 3 nodes at the
snapshot instant. The pipelined TP architecture attributes to
the difference of pixel numbers across the ports.

While the inputs INT 1-3 are received from SMEM, the
TMEM buffers, which act as a storage place for temporary
results, exchange these intermediate coefficients with the CPE
through ports INT 4-6 and OUT 1-3. The pattern for ad-
dressing those frame buffers is straightforward as the serial
addressing scheme can handle the data transfer properly.

Fig. 10. Snapshot of the TP.

Fig. 11. Processor scheduling during the inter-frame transition.

G. Arrangement to Avoid Latency in Inter-Frame Transition
for the SP

At the beginning of computation by SP, which is basically a
2-D-DWT processor, the starting of CPE gets delayed by two
rows than RPE. However, large value of cumulative delays
for successive frames is to be avoided as it affects the online
computation. In the present architecture, this delay is avoided
by a processor scheduling arrangement shown in Fig. 11. For
the purpose of illustration, a frame depth of 5 has been taken.
In the proposed processor scheduling, the CPE has to sit idle
at the row 1 of all the frames starting from frame 1 (F1), to
collect enough data for column processing. However, the RPE
runs smooth, as shown in processor scheduling, indicating no
delay between the frames. This is specific to frames containing
odd number of rows only. For frames having an even row
count, both the CPE and RPE run smoothly over the transition.
In that case, the sliced SFG of Fig. 5(c) can be extended over
to the next frame, and the CPE computes in slices without
interruption. Thus, for each of the cases, inter-frame latency
is eliminated.

H. Latency and Complete Memory Requirement

Following the SFG of lifting (refer to Fig. 5), the minimum
number of inputs required for computing a wavelet coefficient
is restricted to five. Thus, with the provision of the fifth input
to arrive online during the computation, the CPE and TP,
respectively, need a minimum wait time of four rows (2N
clock cycles) and four frames (2N2 cycles) to produce the

International Journal of Advanced and Innovative Research (2278-7844) / # 301 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 301

first output from the architecture, thereby resulting in a total
parametric latency of T clock cycles, where

T = 2N2 + 2N +LatencyRPE +LatencyCPE +LatencyTP . (6)

The extra terms arise due to the pipelined design of each
computing unit. The memory requirement for five frames and
ten N/2 length line buffers is 5N2 + 5N.

I. Scalability of the Present Architecture and Future Design
Trends

Though primarily intended to be an efficient realization of
an ideal (2-D + t) DWT in hardware, the present architecture
is a scalable one. It can be modified to build hardware engines
of some variants of 3-D-DWT and related video compression
algorithms reported in recent literatures. The spatial and tem-
poral transform blocks along with their memory modules are
completely independent. They can be used either in reverse
order with minimal effort or along with some more signal
processing blocks to have a fruitful end effect on mapping the
architecture to related transform algorithms.

Simply using them in reverse order gives a conventional
(t + 2-D) transform. However, we need extra buffers between
the temporal processor output and input of the spatial proces-
sor. In that case, a complete frame of size N × N for spatial
processing is available from TP in N2 cycles. To avoid any
extra latency and reduce memory requirement, the SP module
should be able to complete reading the last pixel of first and
successive odd frames as soon as they arrive. Considering the
fact that SP is able to read two pixels per cycle, it would add
up to an extra latency of N2/2 cycles. During this time, the
second and successive even frames arriving parallel (as the
TP provides two pixels, one from each processed L and H
frames) with their odd counterparts are required to be stored
for processing offline in the next N2/2 cycles. Thus, an extra
buffer of size of N2 is required which can be utilized for
synchronization between SP and TP. The read-write pattern in
this buffer would follow the address generation model of the
SMEM buffers, as shown in Fig. 8.

As the present single level architecture adjoins temporal (t)
and spatial (2-D) processing blocks, a multilevel transform of
n ∗ (t + 2-D) or n ∗ (2-D + t) can be achieved by cascading
such one-level architectures and passing the output lll band
from one to the next. Interestingly, the architecture is flexible
enough to allow cascading of multiple level stacking of (SP +
RMEM + CMEM) and (TP + SMEM + TMEM) inside a single
level architecture which realizes (m*t + n*2-D) or (m*2-D +
n*t) kind of sub-banding. However, to avoid data loss, frame
and row buffers need to be placed between such stacked pro-
cessor. As mentioned in the above paragraph, the size of such
synchronizing RAMs and inter-block latency, and processor
synchronizing like Fig. 13 should be calculated by case study.

A combination of motion estimation/compensation, a part of
today’s popular motion estimated predictive coding standards,
with the temporal wavelet transform gives even better energy
compaction [23]. Commonly referred to as motion com-
pensated temporal filtering (MCTF), this technique involves
incorporating motion compensation in the calculation of lifting

steps of (4). A number of approaches [23]–[29] have been
devised to realize MCTF in a most beneficial and convenient
manner.

The present architecture, focused on improving memory and
other performance bottlenecks of a 3-D-DWT, is equally ex-
tensible as a MCTF computation engine with all the usual ben-
efits. This necessitates integration of a motion compensation
block in the architecture of Fig. 1. The computation of motion
vectors inside the new block would require a set of surrounding
pixels of temporally connected frames which are already
present online inside RAMs of SMEM and TMEM, and can
be subsequently fetched. The generated motion vectors need
to be forwarded to the TP, which uses them to fetch the motion
compensated pixels from SMEM and TMEM during the calcu-
lation of Predict (P) and Update (U) stages. A spatial transform
would follow subsequently. The overall architecture would be
a t + 2-D transform, already mentioned in the above paragraph.
The generated motion vectors need to be forwarded along
with transformed coefficients to the encoding stage. While
computation of motion vectors can grossly benefit from the
proposed parallel computing method of temporal wavelet, the
new block adds to the memory bandwidth and latency of
the present architecture.

IV. Implementation Results and Discussions

A. Multipliers and Datapath Precisions

After the details of the architecture and the data manage-
ment principles have been thoroughly chalked out, the issues
related to mapping the design into a reconfigurable device are
of prime interest. These include the precision of the multipliers
in the architecture.

Being irrational numbers, the flipping coefficients corre-
sponding to (4) are not ideally realizable in architecture with
the hardware multipliers. Instead, those numbers could be con-
sidered up to a finite precision during designing. However, the
impacts of this limited precision are experienced with lowered
PSNR values and subsequent degradation of the quality of
reproduced video during the decompression. Additionally, the
precision of the data samples right after each multiplier affects
the PSNR in a quite similar way.

These facts indicate to a trade-off between the affordable
hardware budget, which increases linearly with precision and
the video quality. Thus, simulations are done to measure
the effects of those two parameters after which respective
coefficient and fractional data precision of 11 and 2 bits
are fixed up to achieve good video quality at comparatively
low hardware constraints. The respective hard multipliers are
designed through “shift-n-add” mechanism and pipelined to
speed up the processing.

B. Implementation Results

The architecture has been mapped into Xilinx pro-
grammable device (FPGA) XC4VFX140 with speed grade of
12 through the Xilinx ISE 7.1i tool. A uniform wordlength
of 17 bits has been maintained throughout the processor to
afford sufficient data depth. After pipelining the multipliers,

International Journal of Advanced and Innovative Research (2278-7844) / # 302 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 302

TABLE I

Comparison of the Designed Processor with Existing Works

M. Weeks
et al.∗1 [9]

Q. Dai et al.
[10]

C. Parisot et al.
[19]

B. Das et al. [14] J. Xu et al.
[12]

Z. Taghavi
et al. [17]

Proposed

Memory
requirement

2N2

(P + 1) + 6l
(spatial +
temporal)

4N2 +
896N +
968∗2

(spatial +
temporal)

9N2

(only temporal)
0.5N2 + 6N
(spatial +
temporal)

5N2

(only temporal)
5N2 fast & few
slow
(only temporal)

5N2

(temporal)
+ 5N
(spatial)

Memory
referencing
at fixed FPS
(i, o/T)∗3

– – – – 5 ip/T,
5 op/T

5 ip/T,
5 op/T

5 ip/(2T),
6 op/(2T)

Throughput – – – – 1 res/cycle 1 res/cycle 2 res/cycle

1 Level computa-
tional latency

N2(P +0.5)+
0.5l

– – – 4N2cycles 4N2cycles (2N2) cycles

1 level computing
time for P frames

3
4N

2P +
N2

2 + 3l
2

– – – (P + 4)N2 (P + 4)N2 2N2 + P
2 N

2

Operating
frequency

200 MHz
(ASIC)

– – 100 MHz
(0.25µm
BiCMOS)

– – 321 MHz
(Xilinx FPGA –
xc4vfx140)

Adders 6l MACs 24 × 9 – – – – 26 × 3
Multipliers – 24 × 8 – Nil – – Nil
Area – – – – – – 1825 slices
Hardware
utilization

– – – 100% – – 100%

Filterbank l-length For
D-9/7

– D-4 D-9/7 For D-9/7 D-9/7

GOP (P) P = 32 (max) 32 (max) Infinite Infinite Infinite Infinite Infinite
Design type Complete

3-D
Complete
3-D

Temporal
processor

Complete
3-D

Temporal
processor

Temporal
processor

Complete
3-D

∗1 The 3D-DWT-I architecture.
∗24N2 corresponds to off-chip memory.
∗3 T symbolizes time period of computation in a standard frame rate.

the critical path for the processor consists of single adder,
making it quite fast. A fast counter based controller was
designed which handles all the address generation and other
switching operations at the high speed of main data-path. Such
controllers are programmable and can synchronize the control
signal generation according to different video frame sizes. So
other than standard N × N, they can handle standard quarter
common intermediate format or common intermediate format
or various different aspect ratios.

The adders from the library and device dual port block
RAMs have been utilized as the principal resources for the
designed processor. Simulation is performed by ModelSim
XE III 6.0a, which yields a set of end results completely
matching the results from MATLAB 7.0.0, where a model
of the hardware is created.

The overall design report can be formulated as

Custom frame size 256 × 256
Group of frames (GOP) Infinite
Maximum clock frequency 321 MHz
Throughput Two results/cycle
Initial latency 2N2 + 2Nψ + 47 clock cycles
Number of occupied slices 1776 (2%)
Total number four input
LUTs 2188 (1%)
Number of block RAMs 350 (63%).

C. Performance Evaluation

Among the few dedicated architectures for 3-D-DWT re-
ported in literature until date, the inherent problems associated
with the designs following block based approaches [7], [8], or
having finite GOPs [9]–[11] are already discussed. Amidst the
running transform methods, [14] was quite successful being
convolution based, whereas [12], [17], though promisingly
formulated upon lifting, limit their discussions in the temporal
processing methodology alone. Only the present design is
one of the first lifting based complete 3-D-DWT architectures
which enjoy no restriction on GOP.

A comparison of the present design with those available in
literatures is furnished in Table I. It is worth mentioning that
though [9], [10], having finite GOPs, do not represent ideal
temporal transform.

From the table, the memory requirement of the presented
design is found to be less than those of [9], [19] and compared
to [10], requirement is less for frame sizes down to the order
of 800 pixels. Even so, architecture in [10] necessitates 4N2

off-chip memories with higher read-write latency. Memory
consumption is low at [14]. However, it implements a lower
length D-4 filter bank.

The designs referred in [12], [17] have the same temporal
buffer requirement as the proposed one. Nevertheless, in both
the cases, dynamic updating of buffers data is done with the
arrival of each frame whereas, as mentioned in Sections III-C

International Journal of Advanced and Innovative Research (2278-7844) / # 303 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 303

TABLE II

Comparison of the Spatial Submodule with Three 2-D DWT Architectures

S. Barua et al. [20] G. Kuzmanov et al. [21] I. S. Uzun et al. [22] Proposed
ASIC/FPGA Altera FPGA APEX20KE Xilinx FPGA xc2v1000 Xilinx FPGA Virtex-2000E Xilinx FPGA xc4vfx140
Speed 66.8 MHz 50 MHz 105 MHz 321 MHz
Area 7726 logic elements 985 slices 3974 slices 973 slices
Memory
requirement

14 ×N/2: internal memory 22 BlockRAM: total 14 BlockRAM (1 Level DWT) 10 N/2 (10 BlockRAM)

Memory access 38
3 N

2(1 − 1
4L

) – – 38
3 N

2(1 − 1
4L

)

Initial latency 4N + 35 – – 4N + 28
Filter used 9/7 4/4 9/7 9/7

and III-E, the proposed methodology succeeds in doing the
transform by doing the computations once after the arrival of
every two frames only. The subsequent improvements are a
halved latency and computational time during processing and
a doubled throughput.

Moreover, while working with the same frame rate, the
speed burden of the proposed processor and memory refer-
encing become one-half compared to those of [12] and [17].
These together, for such computation intensive processing such
as 3-D-DWT, impact the power consumptions to a great extent.
Thus, the results indicate the wide possibilities of the proposed
design in applications requiring low power consumptions like
medical imaging. Also, the computing time is close to 75%
of that required by [9] for large GOPs too.

Largely due to the fact that the critical path delay cor-
responds to a single adder, the maximum operating speed
of the architecture reaches 321 MHz which makes it fastest
among all. At standard rates of 30 FPS with a frame size of
256 × 256, any DWT processor with a throughput of 2 requires
a minimum 1.09 MHz for real-time 1 level processing. Thus,
at 321 MHz, the current design offers quite large computing
potentials.

As the spatial processor module is basically a 2-D-DWT
engine, comparison of this part is carried out with three other
standard 2-D-DWT architectures available in the literatures
and presented in Table II. It shows that the present design
has the lowest memory requirement among all and latency is
lower than that of [20]. Moreover, the proposed architecture is
much faster than the rest. The device resource consumption of
the present design is also lower than [21] and [22]. Comparing
all the performance parameters, this architecture surely gets a
cutting edge performance.

V. Conclusion

The applications of 3-D wavelet based coding are open-
ing new vistas in video and other multidimensional signal
compression and processing. The prominent needs in these
diversified application areas are efficient 3-D-DWT engines
with good computing power which draws the attention of the
dedicated VLSI architectures as the best possible solution.
Though the researches of 2-D-DWT architectures are progress-
ing quite fast, fewer approaches are reported in the literatures
designing their 3-D counterpart.

This paper has presented a lifting based 3-D-DWT architec-
ture with running transform, possibly the first of its kind. The
main flavors of the design are minimized storage requirement
and memory referencing, low latency and power consumption
and increased throughput, which become evident when they
are compared with those of existing ones. Having single adder
in its critical path, the mapped processor achieves a high speed
of 321 MHz, offering large computing potentials which opens
up new vista for real-time video processing applications.

Compared to the original 3-D-DWT transform, successful
application of motion compensations before temporal trans-
form has been reported in the literature [2] as a good alter-
native for predictive coding. It is worth mentioning that the
present design is fully scalable to those future modifications
and can be accepted as an introductory step toward those future
3-D wavelet computing machines.

References

[1] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still
image compression standard,” IEEE Signal Process. Mag., vol. 18,
no. 5, pp. 36–58, Sep. 2001.

[2] J.-R. Ohm, M. van der Schaar, and J. W. Woods, “Interframe wavelet
coding: Motion picture representation for universal scalability,” J. Signal
Process. Image Commun., vol. 19, no. 9, pp. 877–908, Oct. 2004.

[3] G. Menegaz and J.-P. Thiran, “Lossy to lossless object-based coding of
3-D MRI data,” IEEE Trans. Image Process., vol. 11, no. 9, pp. 1053–
1061, Sep. 2002.

[4] J. E. Fowler and J. T. Rucker, “3-D wavelet-based compression of
hyperspectral imagery,” in Hyperspectral Data Exploitation: Theory
and Applications, C.-I. Chang, Ed. Hoboken, NJ: Wiley, 2007, ch. 14,
pp. 379–407.

[5] L. R. C. Suzuki, J. R. Reid, T. J. Burns, G. B. Lamont, and S. K.
Rogers, “Parallel computation of 3-D wavelets,” in Proc. Scalable High-
Performance Computing Conf., May 1994, pp. 454–461.

[6] E. Moyano, P. Gonzalez, L. Orozco-Barbosa, F. J. Quiles, P. J. Garcia,
and A. Garrido, “3-D wavelet compression by message passing on a
Myrinet cluster,” in Proc. Can. Conf. Electr. Comput. Eng., vol. 2. 2001,
pp. 1005–1010.

[7] W. Badawy, G. Zhang, M. Talley, M. Weeks, and M. Bayoumi, “Low
power architecture of running 3-D wavelet transform for medical imag-
ing application,” in Proc. IEEE Workshop Signal Process. Syst., Taiwan,
1999, pp. 65–74.

[8] G. Bernabé, J. González, J. M. García, and J. Duato, “Memory conscious
3-D wavelet transform,” in Proc. 28th Euromicro Conf. Multimedia
Telecommun., Dortmund, Germany, Sep. 2002, pp. 108–113.

[9] M. Weeks and M. A. Bayoumi, “Three-dimensional discrete wavelet
transform architectures,” IEEE Trans. Signal Process., vol. 50, no. 8,
pp. 2050–2063, Aug. 2002.

[10] Q. Dai, X. Chen, and C. Lin, “Novel VLSI architecture for multidi-
mensional discrete wavelet transform,” IEEE Trans. Circuits Syst. Video
Technol., vol. 14, no. 8, pp. 1105–1110, Aug. 2004.

International Journal of Advanced and Innovative Research (2278-7844) / # 304 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 304

[11] W. Badawy, M. Weeks, G. Zhang, M. Talley, and M. A. Bayoumi, “MRI
data compression using a 3-D discrete wavelet transform,” IEEE Eng.
Med. Biol. Mag., vol. 21, no. 4, pp. 95–103, Jul.–Aug. 2002.

[12] J. Xu, Z. Xiong, S. Li, and Y.-Q. Zhang, “Memory-constrained 3-D
wavelet transform for video coding without boundary effects,” IEEE
Trans. Circuits Syst. Video Technol., vol. 12, no. 9, pp. 812–818, Sep.
2002.

[13] B. Das and S. Banerjee, “Low power architecture of running 3-D wavelet
transform for medical imaging application,” in Proc. Eng. Med. Biol.
Soc./Biomed. Eng. Soc. Conf., vol. 2. 2002, pp. 1062–1063.

[14] B. Das and S. Banerjee, “Data-folded architecture for running 3-D DWT
using 4-tap Daubechies filters,” IEE Proc. Circuits Devices Syst., vol.
152, no. 1, pp. 17–24, Feb. 2005.

[15] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,” Appl. Comput. Harmon. Anal., vol. 3, no. 15,
pp. 186–200, 1996.

[16] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting steps,” J. Fourier Anal. Appl., vol. 4, no. 3, pp. 247–269, 1998.

[17] Z. Taghavi and S. Kasaei, “A memory efficient algorithm for multi-
dimensional wavelet transform based on lifting,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process. (ICASSP), vol. 6. 2003, pp. 401–404.

[18] C.-T. Huang, P.-C. Tsneg, and L.-G. Chen, “Flipping structure: An
efficient VLSI architecture for lifting-based discrete wavelet transform,”
IEEE Trans. Signal Process., vol. 52, no. 4, pp. 1080–1090, Apr. 2004.

[19] C. Pilrisot, M. Antonini, and M. Barlaud, “3-D scan based wavelet
transform and quality control for video coding,” Eur. Assoc. Signal
Process. J. Appl. Signal Process., vol. 2003, pp. 56–65, Jan. 2003.

[20] S. Barua, J. E. Carletta, K. A. Kotteri, and A. E. Bell, “An efficient archi-
tecture for lifting-based two-dimensional discrete wavelet transforms,”
VLSI J. Integration, vol. 38, no. 3, pp. 341–352, Jan. 2005.

[21] G. Kuzmanov, B. Zafarifar, P. Shrestha, and S. Vassiliadis, “Reconfig-
urable DWT unit based on lifting,” in Proc. Program Res. Integr. Syst.
Circuits, Veldhoven, The Netherlands, Nov. 2002, pp. 325–333.

[22] I. S. Uzun and A. Amira, “Design and FPGA implementation of nonsep-
arable 2-D biorthogonal wavelet transforms for image/video coding,” in
Proc. Int. Conf. Image Process. (ICIP), vol. 4. Belfast, U.K., Oct. 2004,
pp. 2825–2828.

[23] B. Girod and S. Han, “Optimum update for motion-compensated lifting,”
IEEE Signal Process. Lett., vol. 12, no. 2, pp. 150–153, Feb. 2005.

International Journal of Advanced and Innovative Research (2278-7844) / # 305 / Volume 2 Issue 11

 © 2013 IJAIR. ALL RIGHTS RESERVED 305

